Multi-Dimensional AI-Based Modeling of Real Estate Investment Risk: A Regulatory and Explainable Framework for Investment Decisions
Abstract
1. Introduction
2. Literature Review
2.1. Integration of AI into Real Estate Risk Management
2.2. AI-Driven Forensic Risk Assessment
2.3. Legal and Ethical Considerations
2.4. Closing Synthesis
3. Methodology
3.1. Feature Selection and Operationalization
3.2. Mixed-Methods Design: Structured Surveys and Expert Interviews
3.2.1. Data Sources and Index Weighting
3.2.2. Investor Behavior and Risk Prioritization
3.2.3. Expert Consultation
3.3. Dataset Construction
3.3.1. TRS Indices
| Indices | Abbr. | Weights (wi) | Years | ||||
|---|---|---|---|---|---|---|---|
| 2015 | 2017 | 2019 | 2021 | 2023 | |||
| Market Volatility | MV | 0.180 | 4.42 | 4.98 | 5.33 | 5.64 | 6.37 |
| Location Score | LS | 0.225 | 7.65 | 7.71 | 7.98 | 8.18 | 8.55 |
| Property Condition | PC | 0.063 | 3.98 | 4.11 | 4.23 | 4.36 | 4.93 |
| Legal and Regulatory | LR | 0.252 | 7.90 | 7.99 | 8.11 | 8.27 | 8.46 |
| Economic Indicators | EI | 0.099 | 6.99 | 7.13 | 7.48 | 7.55 | 7.76 |
| Environmental Risks | ER | 0.081 | 3.17 | 3.29 | 3.37 | 3.45 | 3.77 |
| Additional Data Points Reserve | ADP | 0.100 | 3.43 | 3.50 | 3.57 | 3.64 | 3.85 |
| Total Risk Score | TRS | 6.05 | 6.23 | 6.44 | 6.61 | 6.97 | |
3.3.2. American Housing Survey (AHS)
3.3.3. World Development Indicators (WDI)
3.3.4. Dataset Assembly
3.4. Model Development
3.4.1. Data Preprocessing
3.4.2. Variable Decomposition and Cleaning
3.4.3. WDI Indicator Filtering
3.4.4. Final Dataset
3.4.5. Feature Engineering
3.4.6. Data Quality and Drift Management
3.5. Model Selection and Performance Assessment
3.5.1. Data Partitioning and Evaluation
3.5.2. Model Families and Screening
3.5.3. Cross-Validation Results
3.5.4. Addressing Overfitting and Multicollinearity
3.5.5. Treatment of Categorical Variables and Outliers
3.5.6. Implementation
3.6. Algorithm Selection
3.7. Model Optimization
3.8. Model Interpretation and Governance Auditing
4. Findings
4.1. Final Model Selection
4.2. Performance
4.3. Baselines & Temporal Generalization
4.4. Ablation & Parsimony
4.5. Predictive Accuracy
4.6. Computational Efficiency and Feature Importance
4.7. Discussion and Implications
5. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADPs | additional data points |
| AHS | American Housing Survey |
| AI | artificial intelligence |
| CV | cross-validation |
| HUD | Department of Housing and Urban Development |
| MAE | mean absolute error |
| ML | machine learning |
| MSE | mean squared error |
| NLP | natural language processing |
| PUF | public use file |
| TRS | total risk score |
| WDI | World Development Indicators |
Appendix A
| Source | Website | Description | Access Date |
|---|---|---|---|
| Zillow | https://www.zillow.com/research/ | Zillow provides various real estate market reports, housing data, and research insights. | Accessed on 13 October 2025 |
| Redfin | https://www.redfin.com/blog/data-center | Redfin’s data center offers housing market trends, reports, and downloadable datasets. | Accessed on 13 October 2025 |
| Realtor.com | https://www.realtor.com/research/ | Realtor.com Research provides market insights, trends, and reports on the US real estate market. | Accessed on 13 October 2025 |
| Federal Housing Finance Agency (FHFA) | https://www.fhfa.gov/DataTools/Downloads/Pages/House-Price-Index.aspx | FHFA offers the House Price Index (HPI) dataset, providing information on housing price trends. | Accessed on 13 October 2025 |
| U.S. Census Bureau | https://www.census.gov/topics/housing/data.html | The U.S. Census Bureau offers various datasets related to housing and demographics. | Accessed on 13 October 2025 |
| National Association of Realtors (NAR) | https://www.nar.realtor/research-and-statistics | NAR provides research and statistics on the real estate market, including home sales and prices. | Accessed on 13 October 2025 |
| CoreLogic | https://www.corelogic.com/ | CoreLogic offers a range of real estate data, including property information, analytics, and market trends. | Accessed on 13 October 2025 |
| Harvard Joint Center for Housing Studies (JCHS) | https://www.jchs.harvard.edu/data | Harvard JCHS provides datasets on housing markets, demographics, and affordability. | Accessed on 13 October 2025 |
| FRED Economic Data (Federal Reserve Bank of St. Louis) | https://fred.stlouisfed.org/ | FRED offers economic data, including housing-related indicators and economic trends. | Accessed on 13 October 2025 |
| Urban Institute—Housing Finance Policy Center | https://www.urban.org/policy-centers/housing-finance-policy-center | Urban Institute provides research and data on housing finance policies. | Accessed on 13 October 2025 |
| HUD via Data.gov | https://www.data.gov/ | Explore datasets related to housing and urban development from various government agencies. | Accessed on 13 October 2025 |
| Trulia | https://www.trulia.com/research/ | Trulia’s research section offers insights and reports on real estate market trends. | Accessed on 13 October 2025 |
| Attom Data Solutions | https://www.attomdata.com/ | Attom Data Solutions provides property data, analytics, and reports for real estate professionals. | Accessed on 13 October 2025 |
| Harvard JCHS—State of the Nation’s Housing | https://www.jchs.harvard.edu/state-nations-housing | Harvard’s JCHS publishes annual reports on the state of the nation’s housing, including comprehensive data. | Accessed on 13 October 2025 |
| World Bank—World Development Indicators (WDI) | https://databank.worldbank.org/source/world-development-indicators/preview/on | WDI is the primary World Bank collection of development indicators, compiled from international sources. | Accessed on 13 October 2025 |
| MLS Databases | Various local MLSs | Local Multiple Listing Services (MLSs) offer property listings, sales, and market trends (access varies by region). | Accessed on 13 October 2025 |
| Detail | Topic | Subtopic | Name | Description |
|---|---|---|---|---|
| household | Occupancy and Tenure | Months Occupied | OCCYRRND | Flag indicating unit is typically occupied year-round |
| Structural | Interior Features | BATHEXCLU | Flag indicating the unit’s bathroom facilities are for the exclusive use of the household | |
| BATHROOMS | Number of bathrooms in unit | |||
| BEDROOMS | Number of bedrooms in unit | |||
| DINING | Number of dining rooms in unit | |||
| FOUNDTYPE | Type of foundation | |||
| TOTROOMS | Number of rooms in unit | |||
| UNITSIZE | Unit size (square feet) | |||
| Housing Problems | Structural Problems | FLOORHOLE | Flag indicating floor has holes | |
| FNDCRUMB | Flag indicating foundation has holes, cracks, or crumbling | |||
| PAINTPEEL | Flag indicating interior area of peeling paint larger than 8 x 11 | |||
| ROOFHOLE | Flag indicating roof has holes | |||
| ROOFSAG | Flag indicating roof’s surface sags or is uneven | |||
| ROOFSHIN | Flag indicating roof has missing shingles or other roofing materials | |||
| WALLCRACK | Flag indicating inside walls or ceilings have open holes or cracks | |||
| WALLSIDE | Flag indicating outside walls have missing siding, bricks, or other missing wall materials | |||
| WALLSLOPE | Flag indicating outside walls slope, lean, buckle, or slant | |||
| WINBOARD | Flag indicating windows are boarded up | |||
| WINBROKE | Flag indicating windows are broken | |||
| Demographics | Householder Demographics | HHADLTKIDS | Number of the householder’s unmarried children age 18 and over, living in this unit | |
| HHAGE | Age of householder | |||
| HHCITSHP | U.S. citizenship of householder | |||
| HHGRAD | Educational level of householder | |||
| Income | Total Household Income | FINCP | Family income (past 12 months) | |
| HINCP | Household income (past 12 months) | |||
| Housing Costs | Total Housing Cost | HOAAMT | Monthly homeowners or condominium association amount | |
| INSURAMT | Monthly homeowner or renter insurance amount | |||
| LOTAMT | Monthly lot rent amount | |||
| MORTAMT | Monthly total mortgage amount (all mortgages) | |||
| PROTAXAMT | Monthly property tax amount | |||
| RENT | Monthly rent amount | |||
| TOTHCAMT | Monthly total housing costs | |||
| UTILAMT | Monthly total utility amount | |||
| Utilities | ELECAMT | Monthly electric amount | ||
| GASAMT | Monthly gas amount | |||
| OILAMT | Monthly oil amount | |||
| OTHERAMT | Monthly amount for other fuels | |||
| TRASHAMT | Monthly trash amount | |||
| WATERAMT | Monthly water amount | |||
| Renter Subsidy | HUDSUB | Subsidized renter status and eligibility | ||
| RENTCNTRL | Flag indicating rent is limited by rent control or stabilization | |||
| RENTSUB | Type of rental subsidy or reduction (based on respondent report) | |||
| Affordability | PERPOVLVL | Household income as a percent of poverty threshold (rounded) | ||
| Owner’s Purchase, Value, and Debt | DWNPAYPCT | Down payment percentage | ||
| FIRSTHOME | Flag indicating if first-time home buyer | |||
| HOWBUY | Description of how owner obtained unit | |||
| LEADINSP | Flag indicating lead pipes inspected before purchase | |||
| MARKETVAL | Current market value of unit | |||
| TOTBALAMT | Total remaining debt across all mortgages or similar debts for this unit | |||
| Home Improvement | General | HMRACCESS | Flag indicating home improvements done in last two years to make home more accessible for those with physical limitations | |
| HMRENEFF | Flag indicating home improvements done to make home more energy efficient in last two years | |||
| HMRSALE | Flag indicating home improvements done to get house ready for sale in last two years | |||
| MAINTAMT | Amount of annual routine maintenance costs | |||
| REMODAMT | Total cost of home improvement jobs in last two years | |||
| REMODJOBS | Total number of home improvement jobs in last two years | |||
| Neighborhood Features | General | NORC | Flag indicating respondent thinks the majority of neighbors 55 or older | |
| Ratings | NHQPCRIME | Agree or disagree: this neighborhood has a lot of petty crime | ||
| NHQPUBTRN | Agree or disagree: this neighborhood has good bus, subway, or commuter train service | |||
| NHQRISK | Agree or disagree: this neighborhood is at high risk for floods or other disasters | |||
| NHQSCHOOL | Agree or disagree: this neighborhood has good schools | |||
| NHQSCRIME | Agree or disagree: this neighborhood has a lot of serious crime | |||
| RATINGHS | Rating of unit as a place to live | |||
| RATINGNH | Rating of neighborhood as place to live | |||
| Housing Search | HRATE | Rating of current home | ||
| NRATE | Rating of current neighborhood | |||
| person | Income | Person Income | INTP | Person’s interest, dividends, and net rental income (past 12 months) |
| OIP | Person’s other income (past 12 months) | |||
| PAP | Person’s public assistance income (past 12 months) | |||
| RETP | Person’s retirement income (past 12 months) | |||
| SEMP | Person’s self-employment income (past 12 months) | |||
| SSIP | Person’s Supplemental Security Income (past 12 months) | |||
| SSP | Person’s Social Security income (past 12 months) | |||
| WAGP | Person’s wages or salary income (past 12 months) | |||
| project | Home Improvement | Job Specific | JOBTYPE | Cost of home improvement job |
| mortgage | Mortgage Details | Mortgage Origination | INTRATE | Interest rate of mortgage |
| Current Payment Details | PMTAMT | Amount of mortgage payment | ||
| TAXPMT | Flag indicating property taxes included in mortgage payment | |||
| Refinance | REFI | Flag indicating mortgage is a refinance of previous mortgage |
| Detail | Topic | Subtopic | Model Name | Databank Name | Description |
|---|---|---|---|---|---|
| World Development Indicators (WDI) | Economic Policy & Debt | National accounts | NGMK | NY.GDP.MKTP.KN | GDP (constant LCU) |
| NGPK | NY.GDP.PCAP.KN | GDP per capita (constant LCU) | |||
| NGNMK | NY.GNP.MKTP.KN | GNI (constant LCU) | |||
| NGNPK | NY.GNP.PCAP.KN | GNI per capita (constant LCU) | |||
| NTNC | NY.TRF.NCTR.CN | Net secondary income (Net current transfers from abroad) (current LCU) | |||
| NGNC | NY.GSR.NFCY.CN | Net primary income (Net income from abroad) (current LCU) | |||
| NGIC | NY.GNS.ICTR.CN | Gross savings (current LCU) | |||
| NGPC | NY.GNP.PCAP.CN | GNI per capita (current LCU) | |||
| NGTC | NY.GDS.TOTL.CN | Gross domestic savings (current LCU) | |||
| NGDPC | NY.GDP.PCAP.CN | GDP per capita (current LCU) | |||
| NGMCA | NY.GDP.MKTP.CN.AD | GDP: linked series (current LCU) | |||
| NGMC | NY.GDP.MKTP.CN | GDP (current LCU) | |||
| NGNMC | NY.GNP.MKTP.CN | GNI (current LCU) | |||
| NGMKD | NY.GDP.MKTP.KD | GDP (constant 2015 US$) | |||
| NGPKD | NY.GDP.PCAP.KD | GDP per capita (constant 2015 US$) | |||
| NGNMKD | NY.GNP.MKTP.KD | GNI (constant 2015 US$) | |||
| NGNPKD | NY.GNP.PCAP.KD | GNI per capita (constant 2015 US$) | |||
| Environment | Agricultural production | AYCK | AG.YLD.CREL.KG | Cereal yield (kg per hectare) | |
| APCM | AG.PRD.CREL.MT | Cereal production (metric tons) | |||
| ALCH | AG.LND.CREL.HA | Land under cereal production (hectares) | |||
| Financial Sector | Assets | FRLAZ | FD.RES.LIQU.AS.ZS | Bank liquid reserves to bank assets ratio (%) | |
| FBCZ | FB.BNK.CAPA.ZS | Bank capital to assets ratio (%) | |||
| FANZ | FB.AST.NPER.ZS | Bank nonperforming loans to total gross loans (%) | |||
| Health | Population | SPG | SP.POP.GROW | Population growth (annual %) | |
| SPDY | SP.POP.DPND.YG | Age dependency ratio, young (% of working-age population) | |||
| SPDO | SP.POP.DPND.OL | Age dependency ratio, old (% of working-age population) | |||
| SPPODP | SP.POP.DPND | Age dependency ratio (% of working-age population) | |||
| SP6TZ | SP.POP.65UP.TO.ZS | Population ages 65 and above (% of total population) | |||
| SP0TZ | SP.POP.0014.TO.ZS | Population ages 0–14 (% of total population) | |||
| SP1TZ | SP.POP.1564.TO.ZS | Population ages 15–64 (% of total population) | |||
| Infrastructure | Communications | INBP | IT.NET.BBND.P2 | Fixed broadband subscriptions (per 100 people) | |
| IMMP | IT.MLT.MAIN.P2 | Fixed telephone subscriptions (per 100 people) | |||
| IMM | IT.MLT.MAIN | Fixed telephone subscriptions | |||
| INB | IT.NET.BBND | Fixed broadband subscriptions | |||
| ICS | IT.CEL.SETS | Mobile cellular subscriptions | |||
| Technology | TVTMZ | TX.VAL.TECH.MF.ZS | High-technology exports (% of manufactured exports) | ||
| TVTC | TX.VAL.TECH.CD | High-technology exports (current US$) | |||
| Private Sector & Trade | Exports | TVTZW | TX.VAL.TRAN.ZS.WT | Transport services (% of commercial service exports) | |
| TVSCW | TX.VAL.SERV.CD.WT | Commercial service exports (current US$) | |||
| TVAZU | TX.VAL.AGRI.ZS.UN | Agricultural raw materials exports (% of merchandise exports) | |||
| TVFZU | TX.VAL.FUEL.ZS.UN | Fuel exports (% of merchandise exports) | |||
| Public Sector | Conflict & fragility | VIN | VC.IDP.NWDS | Internally displaced persons, new displacement associated with disasters (number of cases) | |
| Defense & arms trade | MMXC | MS.MIL.XPND.CD | Military expenditure (current USD) | ||
| Government finance | GLTGZ | GC.LBL.TOTL.GD.ZS | Net incurrence of liabilities, total (% of GDP) | ||
| GNTC | GC.NLD.TOTL.CN | Net lending (+)/net borrowing (−) (current LCU) | |||
| GDTC | GC.DOD.TOTL.CN | Central government debt, total (current LCU) | |||
| GATGZ | GC.AST.TOTL.GD.ZS | Net acquisition of financial assets (% of GDP) | |||
| GDTGZ | GC.DOD.TOTL.GD.ZS | Central government debt, total (% of GDP) | |||
| GXTGZ | GC.XPN.TOTL.GD.ZS | Expense (% of GDP) | |||
| GTOC | GC.TAX.OTHR.CN | Other taxes (current LCU) | |||
| Policy & institutions | RPRL | RL.PER.RNK.LOWER | Rule of Law: Percentile Rank, Lower Bound of 90% Confidence Interval | ||
| RPRU | RL.PER.RNK.UPPER | Rule of Law: Percentile Rank, Upper Bound of 90% Confidence Interval | |||
| RSE | RL.STD.ERR | Rule of Law: Standard Error | |||
| RQPRU | RQ.PER.RNK.UPPER | Regulatory Quality: Percentile Rank, Upper Bound of 90% Confidence Interval | |||
| RQSE | RQ.STD.ERR | Regulatory Quality: Standard Error | |||
| Social Protection & Labor | Economic activity | SIEFZ | SL.IND.EMPL.FE.ZS | Employment in industry, female (% of female employment) (modeled ILO estimate) | |
| SIEMZ | SL.IND.EMPL.MA.ZS | Employment in industry, male (% of male employment) (modeled ILO estimate) | |||
| SSEMZ | SL.SRV.EMPL.MA.ZS | Employment in services, male (% of male employment) (modeled ILO estimate) | |||
| SGPEK | SL.GDP.PCAP.EM.KD | GDP per person employed (constant 2021 PPP $) | |||
| SSEFZ | SL.SRV.EMPL.FE.ZS | Employment in services, female (% of female employment) (modeled ILO estimate) | |||
| Labor force structure | STCFNZ | SL.TLF.CACT.FM.NE.ZS | Ratio of female to male labor force participation rate (%) (national estimate) | ||
| STCMZ | SL.TLF.CACT.MA.ZS | Labor force participation rate, male (% of male population ages 15+) (modeled ILO estimate) | |||
| STTFZ | SL.TLF.TOTL.FE.ZS | Labor force, female (% of total labor force) | |||
| STAFZ | SL.TLF.ACTI.FE.ZS | Labor force participation rate, female (% of female population ages 15–64) (modeled ILO estimate) | |||
| STA1FZ | SL.TLF.ACTI.1524.FE.ZS | Labor force participation rate for ages 15–24, female (%) (modeled ILO estimate) | |||
| Migration | SPR | SM.POP.REFG | Refugee population by country or territory of asylum | ||
| Unemployment | SUNZ | SL.UEM.NEET.ZS | Share of youth not in education, employment or training, total (% of youth population) | ||
| SUNMZ | SL.UEM.NEET.ME.ZS | Share of youth not in education, employment or training, total (% of youth population) (modeled ILO estimate) | |||
| SUNMAZ | SL.UEM.NEET.MA.ZS | Share of youth not in education, employment or training, male (% of male youth population) | |||
| SUIFZ | SL.UEM.INTM.FE.ZS | Unemployment with intermediate education, female (% of female labor force with intermediate education) | |||
| SUAMZ | SL.UEM.ADVN.MA.ZS | Unemployment with advanced education, male (% of male labor force with advanced education) | |||
| SUAFZ | SL.UEM.ADVN.FE.ZS | Unemployment with advanced education, female (% of female labor force with advanced education) |
| Number Features and Records of Final Dataset by Year | |||
|---|---|---|---|
| Year | No. Features | No. Records | |
| 2015 | 198 | 69,493 | |
| 2017 | 196 | 66,752 | |
| 2019 | 196 | 63,185 | |
| 2021 | 198 | 64,141 | |
| 2023 | 198 | 55,669 | |
| Final Dataset | 198 | 318,240 | |
| SOURCE | of features (variables) | ||
| AHS | 125 | American Housing Survey (US Census Bureau) | |
| WDI | 72 | World Development Indicators (World Bank) | |
| TRS | 1 | Author Survey (Expert Judgment) | |
| TOTAL | 198 | ||
| VARIABLE TYPE | COUNT | OBSERVATION | |
| KEYS | 2 | YEAR, CONTROL | |
| TARGET VARIABLE | 1 | TRS | |
| INDEPENDENT VARIABLES | 197 | See Table 8 | |
| TOTAL VARIABLES | 200 | ||
| CATEGORICAL | 83 | ||
| NUMERICAL | 114 | ||
| A. Numerical variables | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Name | Count | Mean | Std | Min | 25% | 50% | 75% | Max | Description | Source | |
| TRS_housing | 319,240 | 6.437771 | 0.315361 | 5.908453 | 6.208251 | 6.439217 | 6.626868 | 7.116613 | Total Risk Score | All sources | |
| BEDROOMS_num | 319,240 | 2.672475 | 1.098498 | 0 | 2 | 3 | 3 | 6 | Number of bedrooms in unit | American Housing Survey (US Census Bureau) | |
| DINING_num | 319,240 | 0.497478 | 0.53361 | 0 | 0 | 0 | 1 | 2 | Number of dining rooms in unit | American Housing Survey (US Census Bureau) | |
| TOTROOMS_num | 319,240 | 5.514785 | 1.800217 | 1 | 4 | 5 | 7 | 14 | Number of rooms in unit | American Housing Survey (US Census Bureau) | |
| HHADLTKIDS_num | 277,511 | 0.226287 | 0.555885 | 0 | 0 | 0 | 0 | 8 | Number of the householder’s unmarried children age 18 and over, living in this unit | American Housing Survey (US Census Bureau) | |
| HHAGE_num | 277,511 | 52.76503 | 16.91829 | 15 | 39 | 53 | 66 | 85 | Age of householder | American Housing Survey (US Census Bureau) | |
| FINCP_num | 277,511 | 82,559.62 | 118,481 | −10,000 | 23,000 | 52,000 | 101,000 | 6,405,000 | Family income (past 12 months) | American Housing Survey (US Census Bureau) | |
| HINCP_num | 277,511 | 86,477.3 | 120,651.6 | −10,000 | 24,970 | 56,900 | 108,000 | 6,445,000 | Household income (past 12 months) | American Housing Survey (US Census Bureau) | |
| HOAAMT_num | 312,735 | 27.96784 | 203.9184 | 0 | 0 | 0 | 0 | 25,947 | Monthly homeowners or condominium association amount | American Housing Survey (US Census Bureau) | |
| INSURAMT_num | 277,085 | 69.44089 | 97.46847 | 0 | 0 | 41 | 99 | 959 | Monthly homeowner or renter insurance amount | American Housing Survey (US Census Bureau) | |
| LOTAMT_num | 317,998 | 6.557805 | 103.7443 | 0 | 0 | 0 | 0 | 10,907 | Monthly lot rent amount | American Housing Survey (US Census Bureau) | |
| MORTAMT_num | 318,639 | 424.1185 | 1782.857 | −7988 | 0 | 0 | 485 | 201,207 | Monthly total mortgage amount (all mortgages) | American Housing Survey (US Census Bureau) | |
| PROTAXAMT_num | 319,240 | 172.9731 | 354.179 | 0 | 0 | 0 | 243 | 9031 | Monthly property tax amount | American Housing Survey (US Census Bureau) | |
| RENT_num | 319,240 | 464.1232 | 888.7809 | 0 | 0 | 0 | 730 | 13,100 | Monthly rent amount | American Housing Survey (US Census Bureau) | |
| TOTHCAMT_num | 277,511 | 1512.421 | 2136.725 | 0 | 650 | 1137 | 1866 | 203,093 | Monthly total housing costs | American Housing Survey (US Census Bureau) | |
| UTILAMT_num | 299,106 | 205.3452 | 153.5214 | 0 | 90 | 190 | 290 | 1790 | Monthly total utility amount | American Housing Survey (US Census Bureau) | |
| ELECAMT_num | 294,314 | 114.1421 | 87.61234 | 0 | 60 | 100 | 150 | 750 | Monthly electric amount | American Housing Survey (US Census Bureau) | |
| GASAMT_num | 294,314 | 38.83496 | 56.30936 | 0 | 0 | 20 | 60 | 700 | Monthly gas amount | American Housing Survey (US Census Bureau) | |
| OILAMT_num | 294,299 | 5.228125 | 34.35815 | 0 | 0 | 0 | 0 | 830 | Monthly oil amount | American Housing Survey (US Census Bureau) | |
| OTHERAMT_num | 294,312 | 1.228866 | 10.96232 | 0 | 0 | 0 | 0 | 480 | Monthly amount for other fuels | American Housing Survey (US Census Bureau) | |
| TRASHAMT_num | 299,106 | 20.64897 | 36.80245 | 0 | 2 | 3 | 30 | 670 | Monthly trash amount | American Housing Survey (US Census Bureau) | |
| WATERAMT_num | 299,106 | 30.65193 | 48.31193 | 0 | 2 | 3 | 50 | 500 | Monthly water amount | American Housing Survey (US Census Bureau) | |
| PERPOVLVL_num | 277,511 | 304.4335 | 175.3248 | 1 | 144 | 312 | 502 | 516 | Household income as percent of poverty threshold (rounded) | American Housing Survey (US Census Bureau) | |
| MARKETVAL_num | 319,240 | 228,432.4 | 467,382 | 0 | 0 | 91,040.5 | 307,983.5 | 11,221,977 | Current market value of unit | American Housing Survey (US Census Bureau) | |
| TOTBALAMT_num | 298,407 | 49,999.22 | 153,204.3 | 0 | 0 | 0 | 0 | 13,660,037 | Total remaining debt across all mortgages or similar debts for this unit | American Housing Survey (US Census Bureau) | |
| MAINTAMT_num | 300,613 | 713.9122 | 2396.192 | 0 | 0 | 0 | 526 | 101,031 | Amount of annual routine maintenance costs | American Housing Survey (US Census Bureau) | |
| REMODAMT_num | 319,240 | 3716.94 | 16,144.24 | 0 | 0 | 0 | 600 | 937,900 | Total cost of home improvement jobs in last two years | American Housing Survey (US Census Bureau) | |
| REMODJOBS_num | 319,240 | 0.792191 | 1.743335 | 0 | 0 | 0 | 1 | 28 | Total number of home improvement jobs in last two years | American Housing Survey (US Census Bureau) | |
| RATINGHS_num | 268,544 | 8.284769 | 1.715192 | 1 | 7 | 8 | 10 | 10 | Rating of unit as a place to live | American Housing Survey (US Census Bureau) | |
| RATINGNH_num | 268,026 | 8.197712 | 1.779518 | 1 | 7 | 8 | 10 | 10 | Rating of neighborhood as place to live | American Housing Survey (US Census Bureau) | |
| PERSCOUNT_num | 319,240 | 2.128223 | 1.586905 | 0 | 1 | 2 | 3 | 19 | Number of people in the household | Derived from AHS Data | |
| INTP_num | 277,511 | 4229.273 | 35,880.09 | −10,000 | 0 | 0 | 0 | 4,911,000 | Person’s interest, dividends, and net rental income (past 12 months) | American Housing Survey (US Census Bureau) | |
| OIP_num | 277,511 | 2218.439 | 17,773.16 | 0 | 0 | 0 | 0 | 3,007,500 | Person’s other income (past 12 months) | American Housing Survey (US Census Bureau) | |
| PAP_num | 277,511 | 80.50247 | 809.5531 | 0 | 0 | 0 | 0 | 40,800 | Person’s public assistance income (past 12 months) | American Housing Survey (US Census Bureau) | |
| RETP_num | 277,511 | 4226.844 | 20,710.15 | 0 | 0 | 0 | 0 | 2,396,000 | Person’s retirement income (past 12 months) | American Housing Survey (US Census Bureau) | |
| SEMP_num | 277,511 | 6307.864 | 55,311.02 | −10,000 | 0 | 0 | 0 | 5,786,000 | Person’s selfemployment income (past 12 months) | American Housing Survey (US Census Bureau) | |
| SSIP_num | 277,511 | 455.2386 | 2512.08 | 0 | 0 | 0 | 0 | 92,000 | Person’s Supplemental Security Income (past 12 months) | American Housing Survey (US Census Bureau) | |
| SSP_num | 277,511 | 5342.128 | 11,074.12 | 0 | 0 | 0 | 4000 | 130,000 | Person’s Social Security income (past 12 months) | American Housing Survey (US Census Bureau) | |
| WAGP_num | 277,511 | 63,617.01 | 96,489.19 | 0 | 0 | 36,000 | 90,000 | 3325,000 | Person’s wages or salary income (past 12 months) | American Housing Survey (US Census Bureau) | |
| PROJCOUNT_num | 319,240 | 0.792191 | 1.743335 | 0 | 0 | 0 | 1 | 28 | Number of home improvement projects | Derived from AHS Data | |
| MORTCOUNT_num | 319,240 | 0.32386 | 0.51829 | 0 | 0 | 0 | 1 | 3 | Number of mortgages | Derived from AHS Data | |
| INTRATE_num | 95,576 | 4.13062 | 1.514271 | 0 | 3.221375 | 3.9 | 4.701 | 20.875 | Interest rate of mortgage | American Housing Survey (US Census Bureau) | |
| PMTAMT_num | 95,576 | 1670.083 | 3004.353 | 0 | 793 | 1274 | 1967 | 171,299 | Amount of mortgage payment | American Housing Survey (US Census Bureau) | |
| NGMK_num | 319,240 | 1.97 × 1013 | 1.25 × 1012 | 1.8 × 1013 | 1.89 × 1013 | 1.99 × 1013 | 2.03 × 1013 | 2.18 × 1013 | GDP (constant LCU) | World Development Indicators (World Bank) | |
| NGPK_num | 319,240 | 60,134.38 | 2903.059 | 56,428.89 | 58,180.91 | 60,763.88 | 61,244.72 | 65,108.65 | GDP per capita (constant LCU) | World Development Indicators (World Bank) | |
| NGNMK_num | 319,240 | 1.99 × 1013 | 1.18 × 1012 | 1.83 × 1013 | 1.91 × 1013 | 2.01 × 1013 | 2.05 × 1013 | 2.18 × 1013 | GNI (constant LCU) | World Development Indicators (World Bank) | |
| NGNPK_num | 319,240 | 60,725.35 | 2669.867 | 57,320.37 | 58,882.39 | 61,469.96 | 61,648.12 | 65,277.41 | GNI per capita (constant LCU) | World Development Indicators (World Bank) | |
| NTNC_num | 319,240 | −1.3 × 1011 | 2.03 × 1010 | −1.7 × 1011 | −1.5 × 1011 | −1.3 × 1011 | −1.2 × 1011 | −1.1 × 1011 | Net secondary income (Net current transfers from abroad) (current LCU) | World Development Indicators (World Bank) | |
| NGNC_num | 319,240 | 2.19 × 1011 | 5.59 × 1010 | 1.25 × 1011 | 1.82 × 1011 | 2.28 × 1011 | 2.62 × 1011 | 2.86 × 1011 | Net primary income (Net income from abroad) (current LCU) | World Development Indicators (World Bank) | |
| NGIC_num | 319,240 | 3.99 × 1012 | 4.45 × 1011 | 3.53 × 1012 | 3.61 × 1012 | 4.07 × 1012 | 4.08 × 1012 | 4.82 × 1012 | Gross savings (current LCU) | World Development Indicators (World Bank) | |
| NGPC_num | 319,240 | 65,622.13 | 7892.876 | 57,251.02 | 59,886.72 | 65,092.35 | 68,249.1 | 80,523.81 | GNI per capita (current LCU) | World Development Indicators (World Bank) | |
| NGTC_num | 319,240 | 3.92 × 1012 | 5.63 × 1011 | 3.28 × 1012 | 3.52 × 1012 | 3.98 × 1012 | 4.07 × 1012 | 4.96 × 1012 | Gross domestic savings (current LCU) | World Development Indicators (World Bank) | |
| NGDPC_num | 319,240 | 65,022.33 | 8181.068 | 56,172.26 | 59,264.44 | 64,402.86 | 67,864.84 | 80,402.29 | GDP per capita (current LCU) | World Development Indicators (World Bank) | |
| NGMCA_num | 319,240 | 2.13 × 1013 | 3.01 × 1012 | 1.8 × 1013 | 1.92 × 1013 | 2.11 × 1013 | 2.25 × 1013 | 2.69 × 1013 | GDP: linked series (current LCU) | World Development Indicators (World Bank) | |
| NGMC_num | 319,240 | 2.13 × 1013 | 3.01 × 1012 | 1.8 × 1013 | 1.92 × 1013 | 2.11 × 1013 | 2.25 × 1013 | 2.69 × 1013 | GDP (current LCU) | World Development Indicators (World Bank) | |
| NGNMC_num | 319,240 | 2.15 × 1013 | 2.92 × 1012 | 1.83 × 1013 | 1.94 × 1013 | 2.13 × 1013 | 2.26 × 1013 | 2.69 × 1013 | GNI (current LCU) | World Development Indicators (World Bank) | |
| NGMKD_num | 319,240 | 1.97 × 1013 | 1.25 × 1012 | 1.8 × 1013 | 1.89 × 1013 | 1.99 × 1013 | 2.03 × 1013 | 2.18 × 1013 | GDP (constant 2015 US$) | World Development Indicators (World Bank) | |
| NGPKD_num | 319,240 | 60,134.38 | 2903.059 | 56,428.89 | 58,180.91 | 60,763.88 | 61,244.72 | 65,108.65 | GDP per capita (constant 2015 US$) | World Development Indicators (World Bank) | |
| NGNMKD_num | 319,240 | 1.99 × 1013 | 1.18 × 1012 | 1.83 × 1013 | 1.91 × 1013 | 2.01 × 1013 | 2.05 × 1013 | 2.18 × 1013 | GNI (constant 2015 US$) | World Development Indicators (World Bank) | |
| NGNPKD_num | 319,240 | 60,725.35 | 2669.867 | 57,320.37 | 58,882.39 | 61,469.96 | 61,648.12 | 65,277.41 | GNI per capita (constant 2015 US$) | World Development Indicators (World Bank) | |
| AYCK_num | 319,240 | 8117.029 | 331.1207 | 7534.1 | 8100.75 | 8198.35 | 8372.93 | 8447.75 | Cereal yield (kg per hectare) | World Development Indicators (World Bank) | |
| APCM_num | 319,240 | 4.49 × 100⁸ | 15,843,828 | 4.3 × 100⁸ | 4.37 × 100⁸ | 4.42 × 100⁸ | 4.63 × 100⁸ | 4.72 × 100⁸ | Cereal production (metric tons) | World Development Indicators (World Bank) | |
| ALCH_num | 319,240 | 55,665,136 | 1,904,915 | 53,111,230 | 53,963,016 | 55,805,029 | 57,377,828 | 58,051,885 | Land under cereal production (hectares) | World Development Indicators (World Bank) | |
| FRLAZ_num | 319,240 | 14.68726 | 3.409423 | 9.410917 | 12.53117 | 15.29589 | 17.72731 | 18.8309 | Bank liquid reserves to bank assets ratio (%) | World Development Indicators (World Bank) | |
| FBCZ_num | 319,240 | 9.210828 | 0.302499 | 8.61504 | 9.282331 | 9.355478 | 9.399317 | 9.418105 | Bank capital to assets ratio (%) | World Development Indicators (World Bank) | |
| FANZ_num | 319,240 | 1.248317 | 0.310957 | 0.884207 | 0.939417 | 1.223673 | 1.53055 | 1.662069 | Bank nonperforming loans to total gross loans (%) | World Development Indicators (World Bank) | |
| SPG_num | 319,240 | 0.5871 | 0.112994 | 0.429699 | 0.490908 | 0.563171 | 0.67866 | 0.734789 | Population growth (annual %) | World Development Indicators (World Bank) | |
| SPDY_num | 319,240 | 28.27517 | 0.579775 | 27.25321 | 27.9102 | 28.40665 | 28.69683 | 28.9061 | Age dependency ratio, young (% of workingage population) | World Development Indicators (World Bank) | |
| SPDO_num | 319,240 | 23.54723 | 1.79117 | 21.26373 | 22.31532 | 23.52238 | 24.8605 | 26.39001 | Age dependency ratio, old (% of workingage population) | World Development Indicators (World Bank) | |
| SPPODP_num | 319,240 | 51.82239 | 1.221816 | 50.16983 | 51.01214 | 51.92904 | 52.7707 | 53.64322 | Age dependency ratio (% of workingage population) | World Development Indicators (World Bank) | |
| SP6TZ_num | 319,240 | 15.50098 | 1.053649 | 14.15958 | 14.77693 | 15.48219 | 16.27284 | 17.17572 | Population ages 65 and above (% of total population) | World Development Indicators (World Bank) | |
| SP0TZ_num | 319,240 | 18.62817 | 0.527452 | 17.73823 | 18.26949 | 18.69746 | 19.00309 | 19.24902 | Population ages 0−14 (% of total population) | World Development Indicators (World Bank) | |
| SP1TZ_num | 319,240 | 65.87084 | 0.529827 | 65.08605 | 65.45767 | 65.82036 | 66.21998 | 66.5914 | Population ages 15−64 (% of total population) | World Development Indicators (World Bank) | |
| INBP_num | 319,240 | 33.98047 | 2.540882 | 30.80605 | 32.34235 | 33.44555 | 36.36155 | 37.7711 | Fixed broadband subscriptions (per 100 people) | World Development Indicators (World Bank) | |
| IMMP_num | 319,240 | 32.90733 | 4.462145 | 26.55 | 29.3 | 32.2 | 35.95 | 39.05 | Fixed telephone subscriptions (per 100 people) | World Development Indicators (World Bank) | |
| IMM_num | 319,240 | 1.1 × 100⁸ | 12,763,103 | 90,907,000 | 99,507,000 | 1.08 × 100⁸ | 1.19 × 100⁸ | 1.27 × 100⁸ | Fixed telephone subscriptions | World Development Indicators (World Bank) | |
| INB_num | 319,240 | 1.14 × 100⁸ | 10,674,682 | 99,900,000 | 1.07 × 100⁸ | 1.13 × 100⁸ | 1.24 × 100⁸ | 1.3 × 100⁸ | Fixed broadband subscriptions | World Development Indicators (World Bank) | |
| ICS_num | 319,240 | 3.5 × 100⁸ | 17,301,098 | 3.28 × 100⁸ | 3.39 × 100⁸ | 3.52 × 100⁸ | 3.58 × 100⁸ | 3.8 × 100⁸ | Mobile cellular subscriptions | World Development Indicators (World Bank) | |
| TVTMZ_num | 319,240 | 20.25086 | 0.973616 | 18.58483 | 19.69772 | 20.84263 | 20.93742 | 21.21249 | Hightechnology exports (% of manufactured exports) | World Development Indicators (World Bank) | |
| TVTC_num | 319,240 | 1.69 × 1011 | 1.63 × 1010 | 1.54 × 1011 | 1.55 × 1011 | 1.64 × 1011 | 1.76 × 1011 | 2 × 1011 | Hightechnology exports (current US$) | World Development Indicators (World Bank) | |
| TVTZW_num | 319,240 | 10.32887 | 1.152628 | 8.350894 | 9.94246 | 10.62805 | 10.76102 | 11.78374 | Transport services (% of commercial service exports) | World Development Indicators (World Bank) | |
| TVSCW_num | 319,240 | 8.13 × 1011 | 7.82 × 1010 | 7.43 × 1011 | 7.43 × 1011 | 7.91 × 1011 | 8.56 × 1011 | 9.57 × 1011 | Commercial service exports (current US$) | World Development Indicators (World Bank) | |
| TVAZU_num | 319,240 | 2.144748 | 0.143138 | 1.88866 | 2.090265 | 2.123947 | 2.279152 | 2.290435 | Agricultural raw materials exports (% of merchandise exports) | World Development Indicators (World Bank) | |
| TVFZU_num | 319,240 | 13.07431 | 3.884633 | 9.044552 | 9.494549 | 13.86468 | 14.31904 | 20.04383 | Fuel exports (% of merchandise exports) | World Development Indicators (World Bank) | |
| VIN_num | 319,240 | 814,043.8 | 499,162.7 | 48,500 | 438,500 | 1,081,500 | 1,144,000 | 1,354,000 | Internally displaced persons, new displacement associated with disasters (number of cases) | World Development Indicators (World Bank) | |
| MMXC_num | 319,240 | 7.28 × 1011 | 9.24 × 1010 | 6.41 × 1011 | 6.43 × 1011 | 7.08 × 1011 | 7.92 × 1011 | 8.88 × 1011 | Military expenditure (current USD) | World Development Indicators (World Bank) | |
| GLTGZ_num | 319,240 | 7.128477 | 4.007017 | 3.96595 | 4.237253 | 5.885602 | 7.095942 | 14.8048 | Net incurrence of liabilities, total (% of GDP) | World Development Indicators (World Bank) | |
| GNTC_num | 319,240 | −1.4 × 1012 | 8.75 × 1011 | −3 × 1012 | −1.6 × 1012 | −1.1 × 1012 | −6.5 × 1011 | −6.2 × 1011 | Net lending (+)/net borrowing (−) (current LCU) | World Development Indicators (World Bank) | |
| GDTC_num | 319,240 | 2.26 × 1013 | 5.07 × 1012 | 1.72 × 1013 | 1.87 × 1013 | 2.09 × 1013 | 2.73 × 1013 | 3.06 × 1013 | Central government debt, total (current LCU) | World Development Indicators (World Bank) | |
| GATGZ_num | 319,240 | 0.894788 | 0.283848 | 0.596667 | 0.683851 | 0.812949 | 0.952981 | 1.409915 | Net acquisition of financial assets (% of GDP) | World Development Indicators (World Bank) | |
| GDTGZ_num | 319,240 | 105.1277 | 10.27927 | 95.70481 | 97.47495 | 99.24091 | 113.8834 | 121.5008 | Central government debt, total (% of GDP) | World Development Indicators (World Bank) | |
| GXTGZ_num | 319,240 | 24.44842 | 3.44769 | 22.27831 | 22.34298 | 22.4918 | 24.09891 | 31.20412 | Expense (% of GDP) | World Development Indicators (World Bank) | |
| GTOC_num | 319,240 | 4.71 × 1010 | 4.7 × 1010 | 1.94 × 1010 | 1.95 × 1010 | 2.32 × 1010 | 3.14 × 1010 | 1.38 × 1011 | Other taxes (current LCU) | World Development Indicators (World Bank) | |
| RPRL_num | 319,240 | 85.35579 | 1.621815 | 83.01887 | 83.80952 | 85.47619 | 86.60028 | 87.38095 | Rule of Law: Percentile Rank, Lower Bound of 90% Confidence Interval | World Development Indicators (World Bank) | |
| RPRU_num | 319,240 | 94.46973 | 1.89013 | 92.38095 | 92.92453 | 93.80952 | 95.21062 | 97.61905 | Rule of Law: Percentile Rank, Upper Bound of 90% Confidence Interval | World Development Indicators (World Bank) | |
| RSE_num | 319,240 | 0.160035 | 0.005182 | 0.15412 | 0.154673 | 0.160141 | 0.164199 | 0.167804 | Rule of Law: Standard Error | World Development Indicators (World Bank) | |
| RQPRU_num | 319,240 | 95.97601 | 1.834019 | 92.58471 | 96.42857 | 96.66667 | 96.93396 | 97.61905 | Regulatory Quality: Percentile Rank, Upper Bound of 90% Confidence Interval | World Development Indicators (World Bank) | |
| RQSE_num | 319,240 | 0.227125 | 0.005551 | 0.221328 | 0.223406 | 0.224027 | 0.232495 | 0.235875 | Regulatory Quality: Standard Error | World Development Indicators (World Bank) | |
| SIEFZ_num | 319,240 | 8.527767 | 0.060608 | 8.423692 | 8.519016 | 8.531087 | 8.575221 | 8.599635 | Employment in industry, female (% of female employment) (modeled ILO estimate) | World Development Indicators (World Bank) | |
| SIEMZ_num | 319,240 | 28.48904 | 0.234365 | 28.1772 | 28.24099 | 28.51357 | 28.71592 | 28.74575 | Employment in industry, male (% of male employment) (modeled ILO estimate) | World Development Indicators (World Bank) | |
| SSEMZ_num | 319,240 | 69.20172 | 0.315729 | 68.86961 | 68.98205 | 69.04037 | 69.54918 | 69.65875 | Employment in services, male (% of male employment) (modeled ILO estimate) | World Development Indicators (World Bank) | |
| SGPEK_num | 319,240 | 141,434.3 | 6084.95 | 134,569.2 | 136,422.9 | 140,202.3 | 147,749.9 | 150,135.2 | GDP per person employed (constant 2021 PPP $) | World Development Indicators (World Bank) | |
| SSEFZ_num | 319,240 | 90.50678 | 0.067141 | 90.4108 | 90.46812 | 90.50777 | 90.5118 | 90.6182 | Employment in services, female (% of female employment) (modeled ILO estimate) | World Development Indicators (World Bank) | |
| STCFNZ_num | 319,240 | 82.81009 | 0.573211 | 82.19841 | 82.33613 | 82.85047 | 83.01751 | 83.85717 | Ratio of female to male labor force participation rate (%) (national estimate) | World Development Indicators (World Bank) | |
| STCMZ_num | 319,240 | 68.25799 | 0.622571 | 67.3775 | 67.5515 | 68.696 | 68.7545 | 68.768 | Labor force participation rate, male (% of male population ages 15+) (modeled ILO estimate) | World Development Indicators (World Bank) | |
| STTFZ_num | 319,240 | 45.19341 | 0.118051 | 45.07938 | 45.13319 | 45.16603 | 45.19355 | 45.4362 | Labor force, female (% of total labor force) | World Development Indicators (World Bank) | |
| STAFZ_num | 319,240 | 66.85501 | 0.799545 | 65.8365 | 66.404 | 66.7935 | 67.3005 | 68.2325 | Labor force participation rate, female (% of female population ages 15–64) (modeled ILO estimate) | World Development Indicators (World Bank) | |
| STA1FZ_num | 319,240 | 49.36338 | 0.544539 | 48.807 | 48.972 | 49.115 | 49.849 | 50.2555 | Labor force participation rate for ages 15–24, female (%) (modeled ILO estimate) | World Development Indicators (World Bank) | |
| SPR_num | 319,240 | 317,840 | 41,508.42 | 270,206 | 280,049 | 327,478.5 | 340,012.5 | 386,130.5 | Refugee population by country or territory of asylum | World Development Indicators (World Bank) | |
| SUNZ_num | 319,240 | 11.90356 | 0.952111 | 10.6655 | 11.2175 | 11.4945 | 12.915 | 13.0485 | Share of youth not in education, employment or training, total (% of youth population) | World Development Indicators (World Bank) | |
| SUNMZ_num | 319,240 | 11.90356 | 0.952111 | 10.6655 | 11.2175 | 11.4945 | 12.915 | 13.0485 | Share of youth not in education, employment or training, total (% of youth population) (modeled ILO estimate) | World Development Indicators (World Bank) | |
| SUNMAZ_num | 319,240 | 11.28533 | 0.930138 | 10.0995 | 10.714 | 10.8815 | 11.9375 | 12.692 | Share of youth not in education, employment or training, male (% of male youth population) | World Development Indicators (World Bank) | |
| SUIFZ_num | 319,240 | 6.56709 | 1.561493 | 4.9295 | 5.007 | 6.069 | 7.462 | 9.074 | Unemployment with intermediate education, female (% of female labor force with intermediate education) | World Development Indicators (World Bank) | |
| SUAMZ_num | 319,240 | 3.039129 | 0.747095 | 2.375 | 2.382 | 2.7155 | 3.2345 | 4.388 | Unemployment with advanced education, male (% of male labor force with advanced education) | World Development Indicators (World Bank) | |
| SUAFZ_num | 319,240 | 3.207142 | 0.88418 | 2.32 | 2.447 | 2.876 | 3.485 | 4.7695 | Unemployment with advanced education, female (% of female labor force with advanced education) | World Development Indicators (World Bank) | |
| B. Categorical variables | |||||||||||
| Name | Count | Unique | Top | Freq | Unique Values | Mode | Description | Source | |||
| OCCYRRND_cat | 318,269 | 3 | −6 | 277,511 | 3 | −6 | Flag indicating unit is typically occupied yearround (category) | American Housing Survey (US Census Bureau) | |||
| BATHEXCLU_cat | 319,211 | 3 | −6 | 318,636 | 3 | −6 | Flag indicating the unit’s bathroom facilities are for the exclusive use of the household (category) | American Housing Survey (US Census Bureau) | |||
| BATHROOMS_cat | 319,240 | 13 | 1 | 114,275 | 13 | 1 | Number of bathrooms in unit (category) | American Housing Survey (US Census Bureau) | |||
| FOUNDTYPE_cat | 319,240 | 10 | −6 | 98,917 | 10 | −6 | Type of foundation (category) | American Housing Survey (US Census Bureau) | |||
| UNITSIZE_cat | 277,430 | 9 | 4 | 70,560 | 9 | 4 | Unit size (square feet) (category) | American Housing Survey (US Census Bureau) | |||
| FLOORHOLE_cat | 319,240 | 2 | 2 | 313,454 | 2 | 2 | Flag indicating floor has holes (category) | American Housing Survey (US Census Bureau) | |||
| FNDCRUMB_cat | 311,751 | 3 | 2 | 200,118 | 3 | 2 | Flag indicating foundation has holes, cracks, or crumbling (category) | American Housing Survey (US Census Bureau) | |||
| PAINTPEEL_cat | 319,240 | 2 | 2 | 310,836 | 2 | 2 | Flag indicating interior area of peeling paint larger than 8 × 11 (category) | American Housing Survey (US Census Bureau) | |||
| ROOFHOLE_cat | 312,352 | 3 | 2 | 209,246 | 3 | 2 | Flag indicating roof has holes (category) | American Housing Survey (US Census Bureau) | |||
| ROOFSAG_cat | 312,981 | 3 | 2 | 208,810 | 3 | 2 | Flag indicating roof’s surface sags or is uneven (category) | American Housing Survey (US Census Bureau) | |||
| ROOFSHIN_cat | 312,387 | 3 | 2 | 205,005 | 3 | 2 | Flag indicating roof has missing shingles or other roofing materials (category) | American Housing Survey (US Census Bureau) | |||
| WALLCRACK_cat | 319,240 | 2 | 2 | 300,075 | 2 | 2 | Flag indicating inside walls or ceilings have open holes or cracks (category) | American Housing Survey (US Census Bureau) | |||
| WALLSIDE_cat | 313,503 | 3 | 2 | 207,868 | 3 | 2 | Flag indicating outside walls have missing siding, bricks, or other missing wall materials (category) | American Housing Survey (US Census Bureau) | |||
| WALLSLOPE_cat | 313,645 | 3 | 2 | 211,228 | 3 | 2 | Flag indicating outside walls slope, lean, buckle, or slant (category) | American Housing Survey (US Census Bureau) | |||
| WINBOARD_cat | 314,626 | 3 | 2 | 211,668 | 3 | 2 | Flag indicating windows are boarded up (category) | American Housing Survey (US Census Bureau) | |||
| WINBROKE_cat | 314,380 | 3 | 2 | 205,750 | 3 | 2 | Flag indicating windows are broken (category) | American Housing Survey (US Census Bureau) | |||
| HHADLTKIDS_cat | 319,240 | 2 | 0 | 277,511 | 2 | 0 | Number of the householder’s unmarried children age 18 and over, living in this unit (category) | American Housing Survey (US Census Bureau) | |||
| HHAGE_cat | 319,240 | 3 | 0 | 267,972 | 3 | 0 | Age of householder (category) | American Housing Survey (US Census Bureau) | |||
| HHCITSHP_cat | 319,240 | 6 | 1 | 220,318 | 6 | 1 | U.S. citizenship of householder (category) | American Housing Survey (US Census Bureau) | |||
| HHGRAD_cat | 319,240 | 18 | 39 | 65,875 | 18 | 39 | Educational level of householder (category) | American Housing Survey (US Census Bureau) | |||
| FINCP_cat | 319,240 | 2 | −1 × 108 | 277,511 | 2 | −1 × 108 | Family income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| HINCP_cat | 319,240 | 2 | −1 × 108 | 277,511 | 2 | −1 × 108 | Household income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| HOAAMT_cat | 312,735 | 2 | 0 | 165,946 | 2 | 0 | Monthly homeowners or condominium association amount (category) | American Housing Survey (US Census Bureau) | |||
| INSURAMT_amax | 277,085 | 2 | 0 | 276,750 | 2 | 0 | Monthly homeowner or renter insurance amount (topcoded) | American Housing Survey (US Census Bureau) | |||
| INSURAMT_cat | 318,814 | 3 | 0 | 276,750 | 3 | 0 | Monthly homeowner or renter insurance amount (category) | American Housing Survey (US Census Bureau) | |||
| LOTAMT_amax | 7462 | 2 | 0 | 7457 | 2 | 0 | Monthly lot rent amount (topcoded) | American Housing Survey (US Census Bureau) | |||
| LOTAMT_cat | 317,998 | 4 | −6 | 310,536 | 4 | −6 | Monthly lot rent amount (category) | American Housing Survey (US Census Bureau) | |||
| MORTAMT_cat | 318,639 | 2 | −6 | 223,664 | 2 | −6 | Monthly total mortgage amount (all mortgages) (category) | American Housing Survey (US Census Bureau) | |||
| PROTAXAMT_amax | 163,984 | 2 | 0 | 163,936 | 2 | 0 | Monthly property tax amount (topcoded) | American Housing Survey (US Census Bureau) | |||
| PROTAXAMT_cat | 319,240 | 3 | 0 | 163,936 | 3 | 0 | Monthly property tax amount (category) | American Housing Survey (US Census Bureau) | |||
| RENT_cat | 319,240 | 3 | −6 | 191,994 | 3 | −6 | Monthly rent amount (category) | American Housing Survey (US Census Bureau) | |||
| TOTHCAMT_cat | 319,240 | 2 | 0 | 277,511 | 2 | 0 | Monthly total housing costs (category) | American Housing Survey (US Census Bureau) | |||
| UTILAMT_cat | 319,240 | 3 | 1 | 262,682 | 3 | 1 | Monthly total utility amount (category) | American Housing Survey (US Census Bureau) | |||
| ELECAMT_cat | 319,240 | 6 | 4 | 260,096 | 6 | 4 | Monthly electric amount (category) | American Housing Survey (US Census Bureau) | |||
| GASAMT_cat | 319,240 | 6 | 4 | 167,729 | 6 | 4 | Monthly gas amount (category) | American Housing Survey (US Census Bureau) | |||
| OILAMT_cat | 319,225 | 6 | 0 | 276,672 | 6 | 0 | Monthly oil amount (category) | American Housing Survey (US Census Bureau) | |||
| OTHERAMT_cat | 319,238 | 6 | 0 | 274,024 | 6 | 0 | Monthly amount for other fuels (category) | American Housing Survey (US Census Bureau) | |||
| TRASHAMT_cat | 319,240 | 6 | 4 | 128,957 | 6 | 4 | Monthly trash amount (category) | American Housing Survey (US Census Bureau) | |||
| WATERAMT_cat | 319,240 | 6 | 4 | 133,897 | 6 | 4 | Monthly water amount (category) | American Housing Survey (US Census Bureau) | |||
| HUDSUB_cat | 319,240 | 4 | −6 | 204,395 | 4 | −6 | Subsidized renter status and eligibility (category) | American Housing Survey (US Census Bureau) | |||
| RENTCNTRL_cat | 317,904 | 3 | −6 | 300,622 | 3 | −6 | Flag indicating rent is limited by rent control or stabilization (category) | American Housing Survey (US Census Bureau) | |||
| RENTSUB_cat | 315,889 | 9 | −6 | 188,233 | 9 | −6 | Type of rental subsidy or reduction (based on respondent report) (category) | American Housing Survey (US Census Bureau) | |||
| PERPOVLVL_amax | 277,511 | 2 | 0 | 194,729 | 2 | 0 | Household income as percent of poverty threshold (rounded) (topcoded) | American Housing Survey (US Census Bureau) | |||
| PERPOVLVL_cat | 319,240 | 4 | 2 | 188,075 | 4 | 2 | Household income as percent of poverty threshold (rounded) (category) | American Housing Survey (US Census Bureau) | |||
| DWNPAYPCT_cat | 289,122 | 11 | −6 | 171,179 | 11 | −6 | Down payment percentage (category) | American Housing Survey (US Census Bureau) | |||
| FIRSTHOME_cat | 312,037 | 3 | −6 | 156,574 | 3 | −6 | Flag indicating if firsttime home buyer (category) | American Housing Survey (US Census Bureau) | |||
| HOWBUY_cat | 314,839 | 6 | −6 | 156,574 | 6 | −6 | Description of how owner obtained unit (category) | American Housing Survey (US Census Bureau) | |||
| LEADINSP_cat | 310,303 | 3 | −6 | 156,574 | 3 | −6 | Flag indicating lead pipes inspected before purchase (category) | American Housing Survey (US Census Bureau) | |||
| MARKETVAL_amax | 188,233 | 2 | 0 | 188,134 | 2 | 0 | Current market value of unit (topcoded) | American Housing Survey (US Census Bureau) | |||
| MARKETVAL_cat | 319,240 | 3 | 1 | 188,134 | 3 | 1 | Current market value of unit (category) | American Housing Survey (US Census Bureau) | |||
| TOTBALAMT_cat | 298,407 | 2 | −6 | 223,664 | 2 | −6 | Total remaining debt across all mortgages or similar debts for this unit (category) | American Housing Survey (US Census Bureau) | |||
| HMRACCESS_cat | 318,960 | 3 | −6 | 225,695 | 3 | −6 | Flag indicating home improvements done in last two years to make home more accessible for those with physical limitations (category) | American Housing Survey (US Census Bureau) | |||
| HMRENEFF_cat | 318,878 | 3 | −6 | 225,695 | 3 | −6 | Flag indicating home improvements done to make home more energy efficient in last two years (category) | American Housing Survey (US Census Bureau) | |||
| HMRSALE_cat | 318,947 | 3 | −6 | 225,695 | 3 | −6 | Flag indicating home improvements done to get house ready for sale in last two years (category) | American Housing Survey (US Census Bureau) | |||
| MAINTAMT_amax | 144,039 | 2 | 0 | 144,038 | 2 | 0 | Amount of annual routine maintenance costs (topcoded) | American Housing Survey (US Census Bureau) | |||
| MAINTAMT_cat | 300,613 | 3 | −6 | 156,574 | 3 | −6 | Amount of annual routine maintenance costs (category) | American Housing Survey (US Census Bureau) | |||
| REMODAMT_cat | 319,240 | 2 | 0 | 162,666 | 2 | 0 | Total cost of home improvement jobs in last two years (category) | American Housing Survey (US Census Bureau) | |||
| REMODJOBS_cat | 319,240 | 2 | 0 | 162,666 | 2 | 0 | Total number of home improvement jobs in last two years (category) | American Housing Survey (US Census Bureau) | |||
| NORC_cat | 313,978 | 3 | −6 | 256,048 | 3 | −6 | Flag indicating respondent thinks the majority of neighbors 55 or older (category) | American Housing Survey (US Census Bureau) | |||
| NHQPCRIME_cat | 305,254 | 3 | 2 | 219,292 | 3 | 2 | Agree or disagree: this neighborhood has a lot of petty crime (category) | American Housing Survey (US Census Bureau) | |||
| NHQPUBTRN_cat | 299,798 | 3 | 1 | 137,446 | 3 | 1 | Agree or disagree: this neighborhood has good bus, subway, or commuter train service (category) | American Housing Survey (US Census Bureau) | |||
| NHQRISK_cat | 308,299 | 3 | 2 | 251,692 | 3 | 2 | Agree or disagree: this neighborhood is at high risk for floods or other disasters (category) | American Housing Survey (US Census Bureau) | |||
| NHQSCHOOL_cat | 284,322 | 3 | 1 | 227,493 | 3 | 1 | Agree or disagree: this neighborhood has good schools (category) | American Housing Survey (US Census Bureau) | |||
| NHQSCRIME_cat | 306,755 | 3 | 2 | 252,964 | 3 | 2 | Agree or disagree: this neighborhood has a lot of serious crime (category) | American Housing Survey (US Census Bureau) | |||
| RATINGHS_cat | 310,273 | 2 | 1 | 268,544 | 2 | 1 | Rating of unit as a place to live (category) | American Housing Survey (US Census Bureau) | |||
| RATINGNH_cat | 309,941 | 2 | 1 | 268,026 | 2 | 1 | Rating of neighborhood as place to live (category) | American Housing Survey (US Census Bureau) | |||
| HRATE_cat | 315,334 | 4 | −6 | 253,775 | 4 | −6 | Rating of current home (category) | American Housing Survey (US Census Bureau) | |||
| NRATE_cat | 315,254 | 5 | −6 | 253,775 | 5 | −6 | Rating of current neighborhood (category) | American Housing Survey (US Census Bureau) | |||
| INTP_cat | 319,240 | 4 | 0 | 227,251 | 4 | 0 | Person’s interest, dividends, and net rental income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| OIP_cat | 319,240 | 4 | 0 | 235,874 | 4 | 0 | Person’s other income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| PAP_cat | 319,240 | 4 | 0 | 250,119 | 4 | 0 | Person’s public assistance income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| RETP_cat | 319,240 | 4 | 0 | 219,217 | 4 | 0 | Person’s retirement income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| SEMP_cat | 319,240 | 4 | 0 | 252,775 | 4 | 0 | Person’s selfemployment income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| SSIP_cat | 319,240 | 4 | 0 | 243,149 | 4 | 0 | Person’s Supplemental Security Income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| SSP_cat | 319,240 | 4 | 0 | 183,148 | 4 | 0 | Person’s Social Security income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| WAGP_cat | 319,240 | 4 | 1 | 160,125 | 4 | 1 | Person’s wages or salary income (past 12 months) (category) | American Housing Survey (US Census Bureau) | |||
| JOBTYPE_cat | 319,240 | 38 | −8 | 225,695 | 38 | −8 | Type of home improvement job (category) | American Housing Survey (US Census Bureau) | |||
| INTRATE_cat | 319,240 | 3 | −8 | 223,664 | 3 | −8 | Interest rate of mortgage (category) | American Housing Survey (US Census Bureau) | |||
| PMTAMT_amax | 318,525 | 3 | −8 | 223,664 | 3 | −8 | Amount of mortgage payment (topcoded) | American Housing Survey (US Census Bureau) | |||
| PMTAMT_cat | 318,982 | 4 | −8 | 223,664 | 4 | −8 | Amount of mortgage payment (category) | American Housing Survey (US Census Bureau) | |||
| TAXPMT_cat | 315,013 | 4 | −8 | 223,664 | 4 | −8 | Flag indicating property taxes included in mortgage payment (category) | American Housing Survey (US Census Bureau) | |||
| REFI_cat | 316,374 | 4 | −8 | 223,664 | 4 | −8 | Flag indicating mortgage is a refinance of previous mortgage (category) | American Housing Survey (US Census Bureau) | |||
| Target Feature | Input Features | |||
|---|---|---|---|---|
| Categorical | Numerical | |||
| TRS | OCCYRRND_cat | HMRACCESS_cat | BEDROOMS_num | SEMP_num |
| BATHROOMS_cat | HMRENEFF_cat | DINING_num | SSIP_num | |
| FOUNDTYPE_cat | HMRSALE_cat | HHAGE_num | SSP_num | |
| UNITSIZE_cat | NORC_cat | FINCP_num | WAGP_num | |
| FNDCRUMB_cat | NHQPCRIME_cat | HOAAMT_num | MORTCOUNT_num | |
| ROOFHOLE_cat | NHQPUBTRN_cat | INSURAMT_num | INTRATE_num | |
| ROOFSAG_cat | NHQRISK_cat | LOTAMT_num | PMTAMT_num | |
| ROOFSHIN_cat | NHQSCHOOL_cat | PROTAXAMT_num | NTNC_num | |
| WALLSIDE_cat | NHQSCRIME_cat | UTILAMT_num | NGMC_num | |
| WALLSLOPE_cat | RATINGHS_cat | ELECAMT_num | AYCK_num | |
| WINBOARD_cat | RATINGNH_cat | GASAMT_num | ALCH_num | |
| WINBROKE_cat | HRATE_cat | OILAMT_num | TVTC_num | |
| HHADLTKIDS_cat | NRATE_cat | OTHERAMT_num | TVSCW_num | |
| HHAGE_cat | INTP_cat | TRASHAMT_num | GDTGZ_num | |
| HHCITSHP_cat | OIP_cat | WATERAMT_num | GTOC_num | |
| HHGRAD_cat | PAP_cat | PERPOVLVL_num | RPRU_num | |
| INSURAMT_cat | SEMP_cat | MARKETVAL_num | SUNZ_num | |
| LOTAMT_cat | WAGP_cat | TOTBALAMT_num | ||
| ELECAMT_cat | JOBTYPE_cat | MAINTAMT_num | ||
| GASAMT_cat | INTRATE_cat | REMODAMT_num | ||
| OILAMT_cat | PERSCOUNT_num | |||
| OTHERAMT_cat | INTP_num | |||
| HUDSUB_cat | OIP_num | |||
| PERPOVLVL_cat | PAP_num | |||
| DWNPAYPCT_cat | RETP_num | |||
| ID | Model | Control | K-Fold | Fit Time (s) | Score Time (s) | Test R2 | Train R2 | Test NMSE | Train NMSE |
|---|---|---|---|---|---|---|---|---|---|
| ElaN | Elastic Net Regression | 101 | 1 | 1.6963 | 0.0735 | 9.43 × 10−1 | 9.43 × 10−1 | 5.64 × 10−3 | 5.68 × 10−3 |
| ElaN | Elastic Net Regression | 102 | 2 | 1.6658 | 0.0737 | 9.43 × 10−1 | 9.43 × 10−1 | 5.67 × 10−3 | 5.68 × 10−3 |
| Lars | Lars Regression | 201 | 1 | 1.0196 | 0.0605 | 9.98 × 10−1 | 9.98 × 10−1 | 2.27 × 10−4 | 2.26 × 10−4 |
| RscR | RANSAC Regression | 301 | 1 | 7.2345 | 0.1280 | 9.98 × 10−1 | 9.98 × 10−1 | 2.19 × 10−4 | 2.20 × 10−4 |
| KnnR | K-Nearest Neighbors Regression | 401 | 1 | 1.9126 | 16.6020 | 7.65 × 10−1 | 8.10 × 10−1 | 2.33 × 10−2 | 1.89 × 10−2 |
| DTRg | Decision Tree Regression | 501 | 1 | 2.3233 | 0.0887 | 9.87 × 10−1 | 9.87 × 10−1 | 1.29 × 10−3 | 1.27 × 10−3 |
| HGBRg | Hist. Gradient Boosting Regression | 601 | 1 | 6.8778 | 0.1112 | 9.97 × 10−1 | 9.97 × 10−1 | 3.33 × 10−4 | 3.34 × 10−4 |
| RFRg | Random Forest Regression | 701 | 1 | 115.4885 | 0.9066 | 9.99 × 10−1 | 1.00 × 100 | 1.30 × 10−4 | 3.73 × 10−5 |
| MlpR | MLP Regression | 801 | 1 | 68.4073 | 0.0834 | 9.18 × 10−1 | 9.17 × 10−1 | 8.09 × 10−3 | 8.20 × 10−3 |


| Model (Parameters) | Metric | Estimator | Type | Folds | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||
| Lars (Least Angle Regression) (eps, fit_intercept, n_nonzero_coefs) | R2 | (0.0001, True, 5) | test | 9.5959 × 10−1 | 9.5930 × 10−1 | 9.5963 × 10−1 | 9.5937 × 10−1 | 9.5895 × 10−1 | 9.5960 × 10−1 | 9.5990 × 10−1 | 9.5944 × 10−1 | 9.6004 × 10−1 | 9.5946 × 10−1 |
| (0.0001, True, 5) | train | 9.5958 × 10−1 | 9.5950 × 10−1 | 9.5946 × 10−1 | 9.5974 × 10−1 | 9.5977 × 10−1 | 9.5938 × 10−1 | 9.5977 × 10−1 | 9.5937 × 10−1 | 9.5946 × 10−1 | 9.5932 × 10−1 | ||
| (0.0001, True, 10) | test | 9.7172 × 10−1 | 9.7234 × 10−1 | 9.7219 × 10−1 | 9.7207 × 10−1 | 9.7177 × 10−1 | 9.7168 × 10−1 | 9.7244 × 10−1 | 9.7215 × 10−1 | 9.7190 × 10−1 | 9.7193 × 10−1 | ||
| (0.0001, True, 10) | train | 9.7167 × 10−1 | 9.7246 × 10−1 | 9.7204 × 10−1 | 9.7236 × 10−1 | 9.7241 × 10−1 | 9.7151 × 10−1 | 9.7233 × 10−1 | 9.7216 × 10−1 | 9.7141 × 10−1 | 9.7187 × 10−1 | ||
| (0.0001, True, 15) | test | 9.9190 × 10−1 | 9.9194 × 10−1 | 9.9184 × 10−1 | 9.9177 × 10−1 | 9.9166 × 10−1 | 9.9200 × 10−1 | 9.9207 × 10−1 | 9.9181 × 10−1 | 9.9199 × 10−1 | 9.9201 × 10−1 | ||
| (0.0001, True, 15) | train | 9.9188 × 10−1 | 9.9195 × 10−1 | 9.9185 × 10−1 | 9.9188 × 10−1 | 9.9184 × 10−1 | 9.9192 × 10−1 | 9.9200 × 10−1 | 9.9185 × 10−1 | 9.9185 × 10−1 | 9.9199 × 10−1 | ||
| (0.0001, True, 25) | test | 9.9601 × 10−1 | 9.9607 × 10−1 | 9.9621 × 10−1 | 9.9608 × 10−1 | 9.9600 × 10−1 | 9.9615 × 10−1 | 9.9625 × 10−1 | 9.9612 × 10−1 | 9.9607 × 10−1 | 9.9603 × 10−1 | ||
| (0.0001, True, 25) | train | 9.9599 × 10−1 | 9.9603 × 10−1 | 9.9628 × 10−1 | 9.9609 × 10−1 | 9.9608 × 10−1 | 9.9607 × 10−1 | 9.9621 × 10−1 | 9.9617 × 10−1 | 9.9604 × 10−1 | 9.9604 × 10−1 | ||
| (0.001, True, 5) | test | 9.5959 × 10−1 | 9.5930 × 10−1 | 9.5963 × 10−1 | 9.5937 × 10−1 | 9.5895 × 10−1 | 9.5960 × 10−1 | 9.5990 × 10−1 | 9.5944 × 10−1 | 9.6004 × 10−1 | 9.5946 × 10−1 | ||
| (0.001, True, 5) | train | 9.5958 × 10−1 | 9.5950 × 10−1 | 9.5946 × 10−1 | 9.5974 × 10−1 | 9.5977 × 10−1 | 9.5938 × 10−1 | 9.5977 × 10−1 | 9.5937 × 10−1 | 9.5946 × 10−1 | 9.5932 × 10−1 | ||
| (0.001, True, 10) | test | 9.7172 × 10−1 | 9.7234 × 10−1 | 9.7219 × 10−1 | 9.7207 × 10−1 | 9.7177 × 10−1 | 9.7168 × 10−1 | 9.7244 × 10−1 | 9.7215 × 10−1 | 9.7190 × 10−1 | 9.7193 × 10−1 | ||
| (0.001, True, 10) | train | 9.7167 × 10−1 | 9.7246 × 10−1 | 9.7204 × 10−1 | 9.7236 × 10−1 | 9.7241 × 10−1 | 9.7151 × 10−1 | 9.7233 × 10−1 | 9.7216 × 10−1 | 9.7141 × 10−1 | 9.7187 × 10−1 | ||
| (0.001, True, 15) | test | 9.9190 × 10−1 | 9.9194 × 10−1 | 9.9184 × 10−1 | 9.9177 × 10−1 | 9.9166 × 10−1 | 9.9200 × 10−1 | 9.9207 × 10−1 | 9.9181 × 10−1 | 9.9199 × 10−1 | 9.9201 × 10−1 | ||
| (0.001, True, 15) | train | 9.9188 × 10−1 | 9.9195 × 10−1 | 9.9185 × 10−1 | 9.9188 × 10−1 | 9.9184 × 10−1 | 9.9192 × 10−1 | 9.9200 × 10−1 | 9.9185 × 10−1 | 9.9185 × 10−1 | 9.9199 × 10−1 | ||
| (0.001, True, 25) | test | 9.9601 × 10−1 | 9.9607 × 10−1 | 9.9621 × 10−1 | 9.9608 × 10−1 | 9.9600 × 10−1 | 9.9615 × 10−1 | 9.9625 × 10−1 | 9.9612 × 10−1 | 9.9607 × 10−1 | 9.9603 × 10−1 | ||
| (0.001, True, 25) | train | 9.9599 × 10−1 | 9.9603 × 10−1 | 9.9628 × 10−1 | 9.9609 × 10−1 | 9.9608 × 10−1 | 9.9607 × 10−1 | 9.9621 × 10−1 | 9.9617 × 10−1 | 9.9604 × 10−1 | 9.9604 × 10−1 | ||
| MSE | (0.0001, True, 5) | test | 4.0332 × 10−3 | 4.0822 × 10−3 | 4.0184 × 10−3 | 4.0262 × 10−3 | 4.0452 × 10−3 | 4.0260 × 10−3 | 4.0102 × 10−3 | 4.0174 × 10−3 | 3.9856 × 10−3 | 4.0015 × 10−3 | |
| (0.0001, True, 5) | train | 4.0182 × 10−3 | 4.0237 × 10−3 | 4.0309 × 10−3 | 4.0057 × 10−3 | 4.0050 × 10−3 | 4.0389 × 10−3 | 3.9983 × 10−3 | 4.0428 × 10−3 | 4.0299 × 10−3 | 4.0493 × 10−3 | ||
| (0.0001, True, 10) | test | 2.8230 × 10−3 | 2.7744 × 10−3 | 2.7678 × 10−3 | 2.7678 × 10−3 | 2.7818 × 10−3 | 2.8227 × 10−3 | 2.7562 × 10−3 | 2.7586 × 10−3 | 2.8030 × 10−3 | 2.7702 × 10−3 | ||
| (0.0001, True, 10) | train | 2.8164 × 10−3 | 2.7364 × 10−3 | 2.7801 × 10−3 | 2.7499 × 10−3 | 2.7470 × 10−3 | 2.8324 × 10−3 | 2.7497 × 10−3 | 2.7700 × 10−3 | 2.8421 × 10−3 | 2.7995 × 10−3 | ||
| (0.0001, True, 15) | test | 8.0874 × 10−4 | 8.0845 × 10−4 | 8.1236 × 10−4 | 8.1544 × 10−4 | 8.2201 × 10−4 | 7.9736 × 10−4 | 7.9269 × 10−4 | 8.1144 × 10−4 | 7.9889 × 10−4 | 7.8893 × 10−4 | ||
| (0.0001, True, 15) | train | 8.0692 × 10−4 | 7.9996 × 10−4 | 8.1016 × 10−4 | 8.0821 × 10−4 | 8.1208 × 10−4 | 8.0358 × 10−4 | 7.9499 × 10−4 | 8.1121 × 10−4 | 8.1027 × 10−4 | 7.9732 × 10−4 | ||
| (0.0001, True, 25) | test | 3.9849 × 10−4 | 3.9437 × 10−4 | 3.7696 × 10−4 | 3.8868 × 10−4 | 3.9456 × 10−4 | 3.8417 × 10−4 | 3.7543 × 10−4 | 3.8405 × 10−4 | 3.9157 × 10−4 | 3.9164 × 10−4 | ||
| (0.0001, True, 25) | train | 3.9815 × 10−4 | 3.9432 × 10−4 | 3.7008 × 10−4 | 3.8929 × 10−4 | 3.8974 × 10−4 | 3.9072 × 10−4 | 3.7682 × 10−4 | 3.8136 × 10−4 | 3.9344 × 10−4 | 3.9451 × 10−4 | ||
| (0.001, True, 5) | test | 4.0332 × 10−3 | 4.0822 × 10−3 | 4.0184 × 10−3 | 4.0262 × 10−3 | 4.0452 × 10−3 | 4.0260 × 10−3 | 4.0102 × 10−3 | 4.0174 × 10−3 | 3.9856 × 10−3 | 4.0015 × 10−3 | ||
| (0.001, True, 5) | train | 4.0182 × 10−3 | 4.0237 × 10−3 | 4.0309 × 10−3 | 4.0057 × 10−3 | 4.0050 × 10−3 | 4.0389 × 10−3 | 3.9983 × 10−3 | 4.0428 × 10−3 | 4.0299 × 10−3 | 4.0493 × 10−3 | ||
| (0.001, True, 10) | test | 2.8230 × 10−3 | 2.7744 × 10−3 | 2.7678 × 10−3 | 2.7678 × 10−3 | 2.7818 × 10−3 | 2.8227 × 10−3 | 2.7562 × 10−3 | 2.7586 × 10−3 | 2.8030 × 10−3 | 2.7702 × 10−3 | ||
| (0.001, True, 10) | train | 2.8164 × 10−3 | 2.7364 × 10−3 | 2.7801 × 10−3 | 2.7499 × 10−3 | 2.7470 × 10−3 | 2.8324 × 10−3 | 2.7497 × 10−3 | 2.7700 × 10−3 | 2.8421 × 10−3 | 2.7995 × 10−3 | ||
| (0.001, True, 15) | test | 8.0874 × 10−4 | 8.0845 × 10−4 | 8.1236 × 10−4 | 8.1544 × 10−4 | 8.2201 × 10−4 | 7.9736 × 10−4 | 7.9269 × 10−4 | 8.1144 × 10−4 | 7.9889 × 10−4 | 7.8893 × 10−4 | ||
| (0.001, True, 15) | train | 8.0692 × 10−4 | 7.9996 × 10−4 | 8.1016 × 10−4 | 8.0821 × 10−4 | 8.1208 × 10−4 | 8.0358 × 10−4 | 7.9499 × 10−4 | 8.1121 × 10−4 | 8.1027 × 10−4 | 7.9732 × 10−4 | ||
| (0.001, True, 25) | test | 3.9849 × 10−4 | 3.9437 × 10−4 | 3.7696 × 10−4 | 3.8868 × 10−4 | 3.9456 × 10−4 | 3.8417 × 10−4 | 3.7543 × 10−4 | 3.8405 × 10−4 | 3.9157 × 10−4 | 3.9164 × 10−4 | ||
| (0.001, True, 25) | train | 3.9815 × 10−4 | 3.9432 × 10−4 | 3.7008 × 10−4 | 3.8929 × 10−4 | 3.8974 × 10−4 | 3.9072 × 10−4 | 3.7682 × 10−4 | 3.8136 × 10−4 | 3.9344 × 10−4 | 3.9451 × 10−4 | ||
| RMSE | (0.0001, True, 5) | test | 6.3508 × 10−2 | 6.3892 × 10−2 | 6.3391 × 10−2 | 6.3452 × 10−2 | 6.3602 × 10−2 | 6.3451 × 10−2 | 6.3326 × 10−2 | 6.3383 × 10−2 | 6.3131 × 10−2 | 6.3257 × 10−2 | |
| (0.0001, True, 5) | train | 6.3389 × 10−2 | 6.3433 × 10−2 | 6.3489 × 10−2 | 6.3290 × 10−2 | 6.3285 × 10−2 | 6.3553 × 10−2 | 6.3232 × 10−2 | 6.3583 × 10−2 | 6.3482 × 10−2 | 6.3634 × 10−2 | ||
| (0.0001, True, 10) | test | 5.3132 × 10−2 | 5.2672 × 10−2 | 5.2610 × 10−2 | 5.2610 × 10−2 | 5.2742 × 10−2 | 5.3129 × 10−2 | 5.2500 × 10−2 | 5.2523 × 10−2 | 5.2943 × 10−2 | 5.2632 × 10−2 | ||
| (0.0001, True, 10) | train | 5.3070 × 10−2 | 5.2310 × 10−2 | 5.2727 × 10−2 | 5.2439 × 10−2 | 5.2412 × 10−2 | 5.3220 × 10−2 | 5.2437 × 10−2 | 5.2630 × 10−2 | 5.3312 × 10−2 | 5.2910 × 10−2 | ||
| (0.0001, True, 15) | test | 2.8438 × 10−2 | 2.8433 × 10−2 | 2.8502 × 10−2 | 2.8556 × 10−2 | 2.8671 × 10−2 | 2.8238 × 10−2 | 2.8155 × 10−2 | 2.8486 × 10−2 | 2.8265 × 10−2 | 2.8088 × 10−2 | ||
| (0.0001, True, 15) | train | 2.8406 × 10−2 | 2.8284 × 10−2 | 2.8463 × 10−2 | 2.8429 × 10−2 | 2.8497 × 10−2 | 2.8348 × 10−2 | 2.8196 × 10−2 | 2.8482 × 10−2 | 2.8465 × 10−2 | 2.8237 × 10−2 | ||
| (0.0001, True, 25) | test | 1.9962 × 10−2 | 1.9859 × 10−2 | 1.9416 × 10−2 | 1.9715 × 10−2 | 1.9864 × 10−2 | 1.9600 × 10−2 | 1.9376 × 10−2 | 1.9597 × 10−2 | 1.9788 × 10−2 | 1.9790 × 10−2 | ||
| (0.0001, True, 25) | train | 1.9954 × 10−2 | 1.9857 × 10−2 | 1.9238 × 10−2 | 1.9730 × 10−2 | 1.9742 × 10−2 | 1.9767 × 10−2 | 1.9412 × 10−2 | 1.9528 × 10−2 | 1.9835 × 10−2 | 1.9862 × 10−2 | ||
| (0.001, True, 5) | test | 6.3508 × 10−2 | 6.3892 × 10−2 | 6.3391 × 10−2 | 6.3452 × 10−2 | 6.3602 × 10−2 | 6.3451 × 10−2 | 6.3326 × 10−2 | 6.3383 × 10−2 | 6.3131 × 10−2 | 6.3257 × 10−2 | ||
| (0.001, True, 5) | train | 6.3389 × 10−2 | 6.3433 × 10−2 | 6.3489 × 10−2 | 6.3290 × 10−2 | 6.3285 × 10−2 | 6.3553 × 10−2 | 6.3232 × 10−2 | 6.3583 × 10−2 | 6.3482 × 10−2 | 6.3634 × 10−2 | ||
| (0.001, True, 10) | test | 5.3132 × 10−2 | 5.2672 × 10−2 | 5.2610 × 10−2 | 5.2610 × 10−2 | 5.2742 × 10−2 | 5.3129 × 10−2 | 5.2500 × 10−2 | 5.2523 × 10−2 | 5.2943 × 10−2 | 5.2632 × 10−2 | ||
| (0.001, True, 10) | train | 5.3070 × 10−2 | 5.2310 × 10−2 | 5.2727 × 10−2 | 5.2439 × 10−2 | 5.2412 × 10−2 | 5.3220 × 10−2 | 5.2437 × 10−2 | 5.2630 × 10−2 | 5.3312 × 10−2 | 5.2910 × 10−2 | ||
| (0.001, True, 15) | test | 2.8438 × 10−2 | 2.8433 × 10−2 | 2.8502 × 10−2 | 2.8556 × 10−2 | 2.8671 × 10−2 | 2.8238 × 10−2 | 2.8155 × 10−2 | 2.8486 × 10−2 | 2.8265 × 10−2 | 2.8088 × 10−2 | ||
| (0.001, True, 15) | train | 2.8406 × 10−2 | 2.8284 × 10−2 | 2.8463 × 10−2 | 2.8429 × 10−2 | 2.8497 × 10−2 | 2.8348 × 10−2 | 2.8196 × 10−2 | 2.8482 × 10−2 | 2.8465 × 10−2 | 2.8237 × 10−2 | ||
| (0.001, True, 25) | test | 1.9962 × 10−2 | 1.9859 × 10−2 | 1.9416 × 10−2 | 1.9715 × 10−2 | 1.9864 × 10−2 | 1.9600 × 10−2 | 1.9376 × 10−2 | 1.9597 × 10−2 | 1.9788 × 10−2 | 1.9790 × 10−2 | ||
| (0.001, True, 25) | train | 1.9954 × 10−2 | 1.9857 × 10−2 | 1.9238 × 10−2 | 1.9730 × 10−2 | 1.9742 × 10−2 | 1.9767 × 10−2 | 1.9412 × 10−2 | 1.9528 × 10−2 | 1.9835 × 10−2 | 1.9862 × 10−2 | ||
| Decision Tree (max_depth, min_samples_leaf) | R2 | (2, 2) | test | 9.4184 × 10−1 | 9.4247 × 10−1 | 9.4055 × 10−1 | 9.4093 × 10−1 | 9.4137 × 10−1 | 9.4251 × 10−1 | 9.4216 × 10−1 | 9.4167 × 10−1 | 9.4262 × 10−1 | 9.4174 × 10−1 |
| (2, 2) | train | 9.4179 × 10−1 | 9.4172 × 10−1 | 9.4193 × 10−1 | 9.4189 × 10−1 | 9.4184 × 10−1 | 9.4171 × 10−1 | 9.4175 × 10−1 | 9.4181 × 10−1 | 9.4170 × 10−1 | 9.4180 × 10−1 | ||
| (2, 5) | test | 9.4184 × 10−1 | 9.4247 × 10−1 | 9.4055 × 10−1 | 9.4093 × 10−1 | 9.4137 × 10−1 | 9.4251 × 10−1 | 9.4216 × 10−1 | 9.4167 × 10−1 | 9.4262 × 10−1 | 9.4174 × 10−1 | ||
| (2, 5) | train | 9.4179 × 10−1 | 9.4172 × 10−1 | 9.4193 × 10−1 | 9.4189 × 10−1 | 9.4184 × 10−1 | 9.4171 × 10−1 | 9.4175 × 10−1 | 9.4181 × 10−1 | 9.4170 × 10−1 | 9.4180 × 10−1 | ||
| (5, 2) | test | 9.9648 × 10−1 | 9.9657 × 10−1 | 9.9645 × 10−1 | 9.9645 × 10−1 | 9.9637 × 10−1 | 9.9647 × 10−1 | 9.9647 × 10−1 | 9.9647 × 10−1 | 9.9655 × 10−1 | 9.9647 × 10−1 | ||
| (5, 2) | train | 9.9648 × 10−1 | 9.9647 × 10−1 | 9.9648 × 10−1 | 9.9648 × 10−1 | 9.9649 × 10−1 | 9.9648 × 10−1 | 9.9648 × 10−1 | 9.9648 × 10−1 | 9.9647 × 10−1 | 9.9648 × 10−1 | ||
| (5, 5) | test | 9.9648 × 10−1 | 9.9657 × 10−1 | 9.9645 × 10−1 | 9.9645 × 10−1 | 9.9637 × 10−1 | 9.9647 × 10−1 | 9.9647 × 10−1 | 9.9647 × 10−1 | 9.9655 × 10−1 | 9.9647 × 10−1 | ||
| (5, 5) | train | 9.9648 × 10−1 | 9.9647 × 10−1 | 9.9648 × 10−1 | 9.9648 × 10−1 | 9.9649 × 10−1 | 9.9648 × 10−1 | 9.9648 × 10−1 | 9.9648 × 10−1 | 9.9647 × 10−1 | 9.9648 × 10−1 | ||
| (10, 2) | test | 9.9858 × 10−1 | 9.9862 × 10−1 | 9.9856 × 10−1 | 9.9862 × 10−1 | 9.9853 × 10−1 | 9.9861 × 10−1 | 9.9859 × 10−1 | 9.9856 × 10−1 | 9.9860 × 10−1 | 9.9858 × 10−1 | ||
| (10, 2) | train | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9867 × 10−1 | 9.9866 × 10−1 | 9.9867 × 10−1 | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9867 × 10−1 | ||
| (10, 5) | test | 9.9858 × 10−1 | 9.9862 × 10−1 | 9.9855 × 10−1 | 9.9863 × 10−1 | 9.9853 × 10−1 | 9.9861 × 10−1 | 9.9859 × 10−1 | 9.9856 × 10−1 | 9.9860 × 10−1 | 9.9859 × 10−1 | ||
| (10, 5) | train | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9867 × 10−1 | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9866 × 10−1 | 9.9867 × 10−1 | ||
| (20, 2) | test | 9.9801 × 10−1 | 9.9809 × 10−1 | 9.9801 × 10−1 | 9.9809 × 10−1 | 9.9797 × 10−1 | 9.9805 × 10−1 | 9.9803 × 10−1 | 9.9799 × 10−1 | 9.9806 × 10−1 | 9.9804 × 10−1 | ||
| (20, 2) | train | 9.9919 × 10−1 | 9.9920 × 10−1 | 9.9918 × 10−1 | 9.9919 × 10−1 | 9.9918 × 10−1 | 9.9917 × 10−1 | 9.9917 × 10−1 | 9.9920 × 10−1 | 9.9919 × 10−1 | 9.9922 × 10−1 | ||
| (20, 5) | test | 9.9820 × 10−1 | 9.9822 × 10−1 | 9.9818 × 10−1 | 9.9825 × 10−1 | 9.9813 × 10−1 | 9.9821 × 10−1 | 9.9821 × 10−1 | 9.9814 × 10−1 | 9.9824 × 10−1 | 9.9824 × 10−1 | ||
| (20, 5) | train | 9.9912 × 10−1 | 9.9911 × 10−1 | 9.9910 × 10−1 | 9.9910 × 10−1 | 9.9911 × 10−1 | 9.9911 × 10−1 | 9.9912 × 10−1 | 9.9912 × 10−1 | 9.9910 × 10−1 | 9.9911 × 10−1 | ||
| MSE | (2, 2) | test | 5.8051 × 10−3 | 5.7697 × 10−3 | 5.9168 × 10−3 | 5.8541 × 10−3 | 5.7767 × 10−3 | 5.7294 × 10−3 | 5.7839 × 10−3 | 5.7779 × 10−3 | 5.7232 × 10−3 | 5.7500 × 10−3 | |
| (2, 2) | train | 5.7867 × 10−3 | 5.7906 × 10−3 | 5.7742 × 10−3 | 5.7812 × 10−3 | 5.7898 × 10−3 | 5.7951 × 10−3 | 5.7890 × 10−3 | 5.7897 × 10−3 | 5.7958 × 10−3 | 5.7928 × 10−3 | ||
| (2, 5) | test | 5.8051 × 10−3 | 5.7697 × 10−3 | 5.9168 × 10−3 | 5.8541 × 10−3 | 5.7767 × 10−3 | 5.7294 × 10−3 | 5.7839 × 10−3 | 5.7779 × 10−3 | 5.7232 × 10−3 | 5.7500 × 10−3 | ||
| (2, 5) | train | 5.7867 × 10−3 | 5.7906 × 10−3 | 5.7742 × 10−3 | 5.7812 × 10−3 | 5.7898 × 10−3 | 5.7951 × 10−3 | 5.7890 × 10−3 | 5.7897 × 10−3 | 5.7958 × 10−3 | 5.7928 × 10−3 | ||
| (5, 2) | test | 3.5126 × 10−4 | 3.4440 × 10−4 | 3.5305 × 10−4 | 3.5202 × 10−4 | 3.5751 × 10−4 | 3.5194 × 10−4 | 3.5319 × 10−4 | 3.4979 × 10−4 | 3.4412 × 10−4 | 3.4829 × 10−4 | ||
| (5, 2) | train | 3.5027 × 10−4 | 3.5104 × 10−4 | 3.5007 × 10−4 | 3.5019 × 10−4 | 3.4958 × 10−4 | 3.5019 × 10−4 | 3.5006 × 10−4 | 3.5043 × 10−4 | 3.5106 × 10−4 | 3.5060 × 10−4 | ||
| (5, 5) | test | 3.5126 × 10−4 | 3.4440 × 10−4 | 3.5305 × 10−4 | 3.5202 × 10−4 | 3.5751 × 10−4 | 3.5194 × 10−4 | 3.5319 × 10−4 | 3.4979 × 10−4 | 3.4412 × 10−4 | 3.4829 × 10−4 | ||
| (5, 5) | train | 3.5027 × 10−4 | 3.5104 × 10−4 | 3.5007 × 10−4 | 3.5019 × 10−4 | 3.4958 × 10−4 | 3.5019 × 10−4 | 3.5006 × 10−4 | 3.5043 × 10−4 | 3.5106 × 10−4 | 3.5060 × 10−4 | ||
| (10, 2) | test | 1.4156 × 10−4 | 1.3884 × 10−4 | 1.4328 × 10−4 | 1.3631 × 10−4 | 1.4442 × 10−4 | 1.3883 × 10−4 | 1.4107 × 10−4 | 1.4264 × 10−4 | 1.3934 × 10−4 | 1.4019 × 10−4 | ||
| (10, 2) | train | 1.3292 × 10−4 | 1.3297 × 10−4 | 1.3254 × 10−4 | 1.3326 × 10−4 | 1.3253 × 10−4 | 1.3303 × 10−4 | 1.3274 × 10−4 | 1.3286 × 10−4 | 1.3301 × 10−4 | 1.3279 × 10−4 | ||
| (10, 5) | test | 1.4138 × 10−4 | 1.3848 × 10−4 | 1.4392 × 10−4 | 1.3618 × 10−4 | 1.4468 × 10−4 | 1.3885 × 10−4 | 1.4137 × 10−4 | 1.4272 × 10−4 | 1.3960 × 10−4 | 1.3966 × 10−4 | ||
| (10, 5) | train | 1.3297 × 10−4 | 1.3334 × 10−4 | 1.3286 × 10−4 | 1.3357 × 10−4 | 1.3288 × 10−4 | 1.3319 × 10−4 | 1.3278 × 10−4 | 1.3306 × 10−4 | 1.3320 × 10−4 | 1.3283 × 10−4 | ||
| (20, 2) | test | 1.9850 × 10−4 | 1.9163 × 10−4 | 1.9776 × 10−4 | 1.8927 × 10−4 | 2.0052 × 10−4 | 1.9422 × 10−4 | 1.9690 × 10−4 | 1.9871 × 10−4 | 1.9355 × 10−4 | 1.9370 × 10−4 | ||
| (20, 2) | train | 8.0396 × 10−5 | 7.9783 × 10−5 | 8.1531 × 10−5 | 8.0727 × 10−5 | 8.2064 × 10−5 | 8.2488 × 10−5 | 8.2033 × 10−5 | 7.9881 × 10−5 | 8.0350 × 10−5 | 7.7962 × 10−5 | ||
| (20, 5) | test | 1.7923 × 10−4 | 1.7858 × 10−4 | 1.8116 × 10−4 | 1.7334 × 10−4 | 1.8437 × 10−4 | 1.7792 × 10−4 | 1.7914 × 10−4 | 1.8444 × 10−4 | 1.7553 × 10−4 | 1.7386 × 10−4 | ||
| (20, 5) | train | 8.7741 × 10−5 | 8.8280 × 10−5 | 8.9938 × 10−5 | 8.9490 × 10−5 | 8.8491 × 10−5 | 8.8102 × 10−5 | 8.7458 × 10−5 | 8.7934 × 10−5 | 8.9727 × 10−5 | 8.8532 × 10−5 | ||
| RMSE | (2, 2) | test | 7.6191 × 10−2 | 7.5958 × 10−2 | 7.6921 × 10−2 | 7.6512 × 10−2 | 7.6005 × 10−2 | 7.5693 × 10−2 | 7.6052 × 10−2 | 7.6012 × 10−2 | 7.5652 × 10−2 | 7.5829 × 10−2 | |
| (2, 2) | train | 7.6070 × 10−2 | 7.6096 × 10−2 | 7.5988 × 10−2 | 7.6034 × 10−2 | 7.6091 × 10−2 | 7.6125 × 10−2 | 7.6085 × 10−2 | 7.6090 × 10−2 | 7.6130 × 10−2 | 7.6110 × 10−2 | ||
| (2, 5) | test | 7.6191 × 10−2 | 7.5958 × 10−2 | 7.6921 × 10−2 | 7.6512 × 10−2 | 7.6005 × 10−2 | 7.5693 × 10−2 | 7.6052 × 10−2 | 7.6012 × 10−2 | 7.5652 × 10−2 | 7.5829 × 10−2 | ||
| (2, 5) | train | 7.6070 × 10−2 | 7.6096 × 10−2 | 7.5988 × 10−2 | 7.6034 × 10−2 | 7.6091 × 10−2 | 7.6125 × 10−2 | 7.6085 × 10−2 | 7.6090 × 10−2 | 7.6130 × 10−2 | 7.6110 × 10−2 | ||
| (5, 2) | test | 1.8742 × 10−2 | 1.8558 × 10−2 | 1.8790 × 10−2 | 1.8762 × 10−2 | 1.8908 × 10−2 | 1.8760 × 10−2 | 1.8793 × 10−2 | 1.8703 × 10−2 | 1.8551 × 10−2 | 1.8663 × 10−2 | ||
| (5, 2) | train | 1.8715 × 10−2 | 1.8736 × 10−2 | 1.8710 × 10−2 | 1.8713 × 10−2 | 1.8697 × 10−2 | 1.8713 × 10−2 | 1.8710 × 10−2 | 1.8720 × 10−2 | 1.8737 × 10−2 | 1.8724 × 10−2 | ||
| (5, 5) | test | 1.8742 × 10−2 | 1.8558 × 10−2 | 1.8790 × 10−2 | 1.8762 × 10−2 | 1.8908 × 10−2 | 1.8760 × 10−2 | 1.8793 × 10−2 | 1.8703 × 10−2 | 1.8551 × 10−2 | 1.8663 × 10−2 | ||
| (5, 5) | train | 1.8715 × 10−2 | 1.8736 × 10−2 | 1.8710 × 10−2 | 1.8713 × 10−2 | 1.8697 × 10−2 | 1.8713 × 10−2 | 1.8710 × 10−2 | 1.8720 × 10−2 | 1.8737 × 10−2 | 1.8724 × 10−2 | ||
| (10, 2) | test | 1.1898 × 10−2 | 1.1783 × 10−2 | 1.1970 × 10−2 | 1.1675 × 10−2 | 1.2017 × 10−2 | 1.1783 × 10−2 | 1.1877 × 10−2 | 1.1943 × 10−2 | 1.1804 × 10−2 | 1.1840 × 10−2 | ||
| (10, 2) | train | 1.1529 × 10−2 | 1.1531 × 10−2 | 1.1513 × 10−2 | 1.1544 × 10−2 | 1.1512 × 10−2 | 1.1534 × 10−2 | 1.1521 × 10−2 | 1.1527 × 10−2 | 1.1533 × 10−2 | 1.1523 × 10−2 | ||
| (10, 5) | test | 1.1890 × 10−2 | 1.1768 × 10−2 | 1.1997 × 10−2 | 1.1670 × 10−2 | 1.2028 × 10−2 | 1.1783 × 10−2 | 1.1890 × 10−2 | 1.1946 × 10−2 | 1.1815 × 10−2 | 1.1818 × 10−2 | ||
| (10, 5) | train | 1.1531 × 10−2 | 1.1547 × 10−2 | 1.1526 × 10−2 | 1.1557 × 10−2 | 1.1528 × 10−2 | 1.1541 × 10−2 | 1.1523 × 10−2 | 1.1535 × 10−2 | 1.1541 × 10−2 | 1.1525 × 10−2 | ||
| (20, 2) | test | 1.4089 × 10−2 | 1.3843 × 10−2 | 1.4063 × 10−2 | 1.3758 × 10−2 | 1.4160 × 10−2 | 1.3936 × 10−2 | 1.4032 × 10−2 | 1.4096 × 10−2 | 1.3912 × 10−2 | 1.3918 × 10−2 | ||
| (20, 2) | train | 8.9664 × 10−3 | 8.9321 × 10−3 | 9.0294 × 10−3 | 8.9848 × 10−3 | 9.0589 × 10−3 | 9.0823 × 10−3 | 9.0572 × 10−3 | 8.9376 × 10−3 | 8.9638 × 10−3 | 8.8296 × 10−3 | ||
| (20, 5) | test | 1.3388 × 10−2 | 1.3363 × 10−2 | 1.3460 × 10−2 | 1.3166 × 10−2 | 1.3578 × 10−2 | 1.3339 × 10−2 | 1.3384 × 10−2 | 1.3581 × 10−2 | 1.3249 × 10−2 | 1.3186 × 10−2 | ||
| (20, 5) | train | 9.3670 × 10−3 | 9.3958 × 10−3 | 9.4836 × 10−3 | 9.4599 × 10−3 | 9.4069 × 10−3 | 9.3863 × 10−3 | 9.3519 × 10−3 | 9.3773 × 10−3 | 9.4724 × 10−3 | 9.4092 × 10−3 | ||
| Hist. Gradient Boosting (learning_rate, max_iter, min_samples_leaf) | R2 | (0.05, 30, 20) | test | 9.5219 × 10−1 | 9.5210 × 10−1 | 9.5225 × 10−1 | 9.5202 × 10−1 | 9.5203 × 10−1 | 9.5207 × 10−1 | 9.5222 × 10−1 | 9.5196 × 10−1 | 9.5233 × 10−1 | 9.5221 × 10−1 |
| (0.05, 30, 20) | train | 9.5213 × 10−1 | 9.5214 × 10−1 | 9.5213 × 10−1 | 9.5215 × 10−1 | 9.5216 × 10−1 | 9.5214 × 10−1 | 9.5215 × 10−1 | 9.5214 × 10−1 | 9.5214 × 10−1 | 9.5215 × 10−1 | ||
| (0.05, 100, 20) | test | 9.9857 × 10−1 | 9.9859 × 10−1 | 9.9854 × 10−1 | 9.9860 × 10−1 | 9.9853 × 10−1 | 9.9859 × 10−1 | 9.9857 × 10−1 | 9.9854 × 10−1 | 9.9858 × 10−1 | 9.9856 × 10−1 | ||
| (0.05, 100, 20) | train | 9.9857 × 10−1 | 9.9857 × 10−1 | 9.9858 × 10−1 | 9.9857 × 10−1 | 9.9858 × 10−1 | 9.9857 × 10−1 | 9.9858 × 10−1 | 9.9858 × 10−1 | 9.9857 × 10−1 | 9.9858 × 10−1 | ||
| (0.05, 300, 20) | test | 9.9876 × 10−1 | 9.9878 × 10−1 | 9.9873 × 10−1 | 9.9880 × 10−1 | 9.9872 × 10−1 | 9.9880 × 10−1 | 9.9876 × 10−1 | 9.9874 × 10−1 | 9.9878 × 10−1 | 9.9876 × 10−1 | ||
| (0.05, 300, 20) | train | 9.9880 × 10−1 | 9.9880 × 10−1 | 9.9880 × 10−1 | 9.9879 × 10−1 | 9.9880 × 10−1 | 9.9880 × 10−1 | 9.9880 × 10−1 | 9.9880 × 10−1 | 9.9879 × 10−1 | 9.9880 × 10−1 | ||
| (0.1, 30, 20) | test | 9.9665 × 10−1 | 9.9666 × 10−1 | 9.9664 × 10−1 | 9.9664 × 10−1 | 9.9659 × 10−1 | 9.9665 × 10−1 | 9.9666 × 10−1 | 9.9658 × 10−1 | 9.9670 × 10−1 | 9.9666 × 10−1 | ||
| (0.1, 30, 20) | train | 9.9665 × 10−1 | 9.9665 × 10−1 | 9.9665 × 10−1 | 9.9663 × 10−1 | 9.9665 × 10−1 | 9.9664 × 10−1 | 9.9665 × 10−1 | 9.9665 × 10−1 | 9.9665 × 10−1 | 9.9665 × 10−1 | ||
| (0.1, 100, 20) | test | 9.9874 × 10−1 | 9.9876 × 10−1 | 9.9870 × 10−1 | 9.9878 × 10−1 | 9.9870 × 10−1 | 9.9878 × 10−1 | 9.9874 × 10−1 | 9.9872 × 10−1 | 9.9876 × 10−1 | 9.9874 × 10−1 | ||
| (0.1, 100, 20) | train | 9.9877 × 10−1 | 9.9876 × 10−1 | 9.9877 × 10−1 | 9.9877 × 10−1 | 9.9877 × 10−1 | 9.9877 × 10−1 | 9.9877 × 10−1 | 9.9877 × 10−1 | 9.9877 × 10−1 | 9.9877 × 10−1 | ||
| (0.1, 300, 20) | test | 9.9876 × 10−1 | 9.9880 × 10−1 | 9.9873 × 10−1 | 9.9880 × 10−1 | 9.9873 × 10−1 | 9.9880 × 10−1 | 9.9876 × 10−1 | 9.9874 × 10−1 | 9.9878 × 10−1 | 9.9876 × 10−1 | ||
| (0.1, 300, 20) | train | 9.9880 × 10−1 | 9.9882 × 10−1 | 9.9881 × 10−1 | 9.9881 × 10−1 | 9.9882 × 10−1 | 9.9881 × 10−1 | 9.9881 × 10−1 | 9.9881 × 10−1 | 9.9881 × 10−1 | 9.9881 × 10−1 | ||
| MSE | (0.05, 30, 20) | test | 4.7720 × 10−3 | 4.8041 × 10−3 | 4.7522 × 10−3 | 4.7551 × 10−3 | 4.7271 × 10−3 | 4.7767 × 10−3 | 4.7781 × 10−3 | 4.7588 × 10−3 | 4.7547 × 10−3 | 4.7168 × 10−3 | |
| (0.05, 30, 20) | train | 4.7583 × 10−3 | 4.7554 × 10−3 | 4.7597 × 10−3 | 4.7609 × 10−3 | 4.7629 × 10−3 | 4.7580 × 10−3 | 4.7553 × 10−3 | 4.7617 × 10−3 | 4.7583 × 10−3 | 4.7627 × 10−3 | ||
| (0.05, 100, 20) | test | 1.4294 × 10−4 | 1.4170 × 10−4 | 1.4575 × 10−4 | 1.3847 × 10−4 | 1.4523 × 10−4 | 1.4055 × 10−4 | 1.4316 × 10−4 | 1.4479 × 10−4 | 1.4142 × 10−4 | 1.4194 × 10−4 | ||
| (0.05, 100, 20) | train | 1.4171 × 10−4 | 1.4197 × 10−4 | 1.4126 × 10−4 | 1.4221 × 10−4 | 1.4150 × 10−4 | 1.4209 × 10−4 | 1.4150 × 10−4 | 1.4146 × 10−4 | 1.4172 × 10−4 | 1.4175 × 10−4 | ||
| (0.05, 300, 20) | test | 1.2347 × 10−4 | 1.2196 × 10−4 | 1.2633 × 10−4 | 1.1888 × 10−4 | 1.2614 × 10−4 | 1.1974 × 10−4 | 1.2382 × 10−4 | 1.2463 × 10−4 | 1.2199 × 10−4 | 1.2245 × 10−4 | ||
| (0.05, 300, 20) | train | 1.1977 × 10−4 | 1.1953 × 10−4 | 1.1917 × 10−4 | 1.2055 × 10−4 | 1.1968 × 10−4 | 1.1942 × 10−4 | 1.1949 × 10−4 | 1.1904 × 10−4 | 1.1990 × 10−4 | 1.1955 × 10−4 | ||
| (0.1, 30, 20) | test | 3.3401 × 10−4 | 3.3504 × 10−4 | 3.3419 × 10−4 | 3.3299 × 10−4 | 3.3585 × 10−4 | 3.3396 × 10−4 | 3.3444 × 10−4 | 3.3861 × 10−4 | 3.2946 × 10−4 | 3.3011 × 10−4 | ||
| (0.1, 30, 20) | train | 3.3329 × 10−4 | 3.3331 × 10−4 | 3.3302 × 10−4 | 3.3484 × 10−4 | 3.3354 × 10−4 | 3.3369 × 10−4 | 3.3343 × 10−4 | 3.3308 × 10−4 | 3.3296 × 10−4 | 3.3382 × 10−4 | ||
| (0.1, 100, 20) | test | 1.2541 × 10−4 | 1.2397 × 10−4 | 1.2902 × 10−4 | 1.2050 × 10−4 | 1.2789 × 10−4 | 1.2178 × 10−4 | 1.2551 × 10−4 | 1.2685 × 10−4 | 1.2388 × 10−4 | 1.2446 × 10−4 | ||
| (0.1, 100, 20) | train | 1.2260 × 10−4 | 1.2277 × 10−4 | 1.2251 × 10−4 | 1.2284 × 10−4 | 1.2252 × 10−4 | 1.2271 × 10−4 | 1.2241 × 10−4 | 1.2238 × 10−4 | 1.2258 × 10−4 | 1.2280 × 10−4 | ||
| (0.1, 300, 20) | test | 1.2344 × 10−4 | 1.2075 × 10−4 | 1.2618 × 10−4 | 1.1847 × 10−4 | 1.2526 × 10−4 | 1.1962 × 10−4 | 1.2368 × 10−4 | 1.2476 × 10−4 | 1.2164 × 10−4 | 1.2193 × 10−4 | ||
| (0.1, 300, 20) | train | 1.1895 × 10−4 | 1.1742 × 10−4 | 1.1800 × 10−4 | 1.1871 × 10−4 | 1.1769 × 10−4 | 1.1808 × 10−4 | 1.1875 × 10−4 | 1.1818 × 10−4 | 1.1834 × 10−4 | 1.1864 × 10−4 | ||
| RMSE | (0.05, 30, 20) | test | 6.9079 × 10−2 | 6.9312 × 10−2 | 6.8936 × 10−2 | 6.8957 × 10−2 | 6.8754 × 10−2 | 6.9114 × 10−2 | 6.9124 × 10−2 | 6.8984 × 10−2 | 6.8955 × 10−2 | 6.8679 × 10−2 | |
| (0.05, 30, 20) | train | 6.8981 × 10−2 | 6.8960 × 10−2 | 6.8991 × 10−2 | 6.8999 × 10−2 | 6.9014 × 10−2 | 6.8978 × 10−2 | 6.8959 × 10−2 | 6.9005 × 10−2 | 6.8981 × 10−2 | 6.9013 × 10−2 | ||
| (0.05, 100, 20) | test | 1.1956 × 10−2 | 1.1904 × 10−2 | 1.2073 × 10−2 | 1.1767 × 10−2 | 1.2051 × 10−2 | 1.1855 × 10−2 | 1.1965 × 10−2 | 1.2033 × 10−2 | 1.1892 × 10−2 | 1.1914 × 10−2 | ||
| (0.05, 100, 20) | train | 1.1904 × 10−2 | 1.1915 × 10−2 | 1.1885 × 10−2 | 1.1925 × 10−2 | 1.1895 × 10−2 | 1.1920 × 10−2 | 1.1895 × 10−2 | 1.1894 × 10−2 | 1.1905 × 10−2 | 1.1906 × 10−2 | ||
| (0.05, 300, 20) | test | 1.1112 × 10−2 | 1.1044 × 10−2 | 1.1239 × 10−2 | 1.0903 × 10−2 | 1.1231 × 10−2 | 1.0943 × 10−2 | 1.1128 × 10−2 | 1.1164 × 10−2 | 1.1045 × 10−2 | 1.1065 × 10−2 | ||
| (0.05, 300, 20) | train | 1.0944 × 10−2 | 1.0933 × 10−2 | 1.0916 × 10−2 | 1.0979 × 10−2 | 1.0940 × 10−2 | 1.0928 × 10−2 | 1.0931 × 10−2 | 1.0910 × 10−2 | 1.0950 × 10−2 | 1.0934 × 10−2 | ||
| (0.1, 30, 20) | test | 1.8276 × 10−2 | 1.8304 × 10−2 | 1.8281 × 10−2 | 1.8248 × 10−2 | 1.8326 × 10−2 | 1.8275 × 10−2 | 1.8288 × 10−2 | 1.8401 × 10−2 | 1.8151 × 10−2 | 1.8169 × 10−2 | ||
| (0.1, 30, 20) | train | 1.8256 × 10−2 | 1.8257 × 10−2 | 1.8249 × 10−2 | 1.8299 × 10−2 | 1.8263 × 10−2 | 1.8267 × 10−2 | 1.8260 × 10−2 | 1.8250 × 10−2 | 1.8247 × 10−2 | 1.8271 × 10−2 | ||
| (0.1, 100, 20) | test | 1.1199 × 10−2 | 1.1134 × 10−2 | 1.1359 × 10−2 | 1.0977 × 10−2 | 1.1309 × 10−2 | 1.1035 × 10−2 | 1.1203 × 10−2 | 1.1263 × 10−2 | 1.1130 × 10−2 | 1.1156 × 10−2 | ||
| (0.1, 100, 20) | train | 1.1072 × 10−2 | 1.1080 × 10−2 | 1.1068 × 10−2 | 1.1083 × 10−2 | 1.1069 × 10−2 | 1.1077 × 10−2 | 1.1064 × 10−2 | 1.1063 × 10−2 | 1.1072 × 10−2 | 1.1081 × 10−2 | ||
| (0.1, 300, 20) | test | 1.1110 × 10−2 | 1.0988 × 10−2 | 1.1233 × 10−2 | 1.0884 × 10−2 | 1.1192 × 10−2 | 1.0937 × 10−2 | 1.1121 × 10−2 | 1.1170 × 10−2 | 1.1029 × 10−2 | 1.1042 × 10−2 | ||
| (0.1, 300, 20) | train | 1.0906 × 10−2 | 1.0836 × 10−2 | 1.0863 × 10−2 | 1.0896 × 10−2 | 1.0849 × 10−2 | 1.0866 × 10−2 | 1.0897 × 10−2 | 1.0871 × 10−2 | 1.0878 × 10−2 | 1.0892 × 10−2 | ||
| Feature | Mean | Std. Dev | IQR | Lower Bound | Min | 25% | 50% | 75% | Max | Upper Bound |
|---|---|---|---|---|---|---|---|---|---|---|
| GASAMT_cat | 1.9936 × 100 | 8.2363 × 10−3 | 1.1023 × 10−2 | 1.9719 × 100 | 1.9777 × 100 | 1.9884 × 100 | 1.9974 × 100 | 1.9994 × 100 | 2.0021 × 100 | 2.0160 × 100 |
| GASAMT_num | 3.8956 × 10−1 | 1.6090 × 10−3 | 1.6560 × 10−3 | 3.8638 × 10−1 | 3.8712 × 10−1 | 3.8886 × 10−1 | 3.8952 × 10−1 | 3.9052 × 10−1 | 3.9240 × 10−1 | 3.9300 × 10−1 |
| TOTBALAMT_num | 9.3035 × 10−3 | 5.8660 × 10−5 | 6.1182 × 10−5 | 9.1790 × 10−3 | 9.2172 × 10−3 | 9.2708 × 10−3 | 9.2976 × 10−3 | 9.3319 × 10−3 | 9.4295 × 10−3 | 9.4237 × 10−3 |
| HUDSUB_cat | 6.5143 × 10−3 | 3.6001 × 10−5 | 3.9541 × 10−5 | 6.4348 × 10−3 | 6.4512 × 10−3 | 6.4941 × 10−3 | 6.5202 × 10−3 | 6.5337 × 10−3 | 6.5684 × 10−3 | 6.5930 × 10−3 |
| TRASHAMT_num | 6.4855 × 10−3 | 3.3977 × 10−5 | 4.0293 × 10−5 | 6.4018 × 10−3 | 6.4444 × 10−3 | 6.4622 × 10−3 | 6.4775 × 10−3 | 6.5025 × 10−3 | 6.5525 × 10−3 | 6.5630 × 10−3 |
| NHQSCRIME_cat | 5.6403 × 10−3 | 5.1427 × 10−5 | 5.4697 × 10−5 | 5.5249 × 10−3 | 5.5754 × 10−3 | 5.6070 × 10−3 | 5.6365 × 10−3 | 5.6616 × 10−3 | 5.7305 × 10−3 | 5.7437 × 10−3 |
| UTILAMT_num | 4.5517 × 10−3 | 2.0407 × 10−5 | 2.7779 × 10−5 | 4.4941 × 10−3 | 4.5320 × 10−3 | 4.5358 × 10−3 | 4.5446 × 10−3 | 4.5636 × 10−3 | 4.5909 × 10−3 | 4.6052 × 10−3 |
| MORTCOUNT_num | 2.4084 × 10−3 | 1.1715 × 10−5 | 1.6576 × 10−5 | 2.3745 × 10−3 | 2.3904 × 10−3 | 2.3994 × 10−3 | 2.4074 × 10−3 | 2.4159 × 10−3 | 2.4270 × 10−3 | 2.4408 × 10−3 |
| HMRACCESS_cat | 1.8264 × 10−3 | 8.5206 × 10−6 | 9.8094 × 10−6 | 1.8055 × 10−3 | 1.8162 × 10−3 | 1.8202 × 10−3 | 1.8254 × 10−3 | 1.8300 × 10−3 | 1.8461 × 10−3 | 1.8447 × 10−3 |
| INTRATE_num | 1.2436 × 10−3 | 6.8325 × 10−6 | 7.8518 × 10−6 | 1.2286 × 10−3 | 1.2333 × 10−3 | 1.2404 × 10−3 | 1.2425 × 10−3 | 1.2482 × 10−3 | 1.2545 × 10−3 | 1.2600 × 10−3 |
| PAP_cat | 1.6980 × 10−4 | 1.9427 × 10−6 | 2.3997 × 10−6 | 1.6498 × 10−4 | 1.6599 × 10−4 | 1.6858 × 10−4 | 1.7024 × 10−4 | 1.7098 × 10−4 | 1.7253 × 10−4 | 1.7458 × 10−4 |
| HHGRAD_cat | 1.4866 × 10−4 | 2.1808 × 10−6 | 3.1728 × 10−6 | 1.4242 × 10−4 | 1.4536 × 10−4 | 1.4718 × 10−4 | 1.4910 × 10−4 | 1.5036 × 10−4 | 1.5161 × 10−4 | 1.5512 × 10−4 |
| SEMP_num | 1.2901 × 10−4 | 1.9629 × 10−6 | 3.0794 × 10−6 | 1.2255 × 10−4 | 1.2623 × 10−4 | 1.2716 × 10−4 | 1.2962 × 10−4 | 1.3024 × 10−4 | 1.3207 × 10−4 | 1.3486 × 10−4 |
| RPRU_num | 1.0460 × 10−4 | 3.0894 × 10−6 | 3.1769 × 10−6 | 9.8615 × 10−5 | 9.8843 × 10−5 | 1.0338 × 10−4 | 1.0433 × 10−4 | 1.0656 × 10−4 | 1.0960 × 10−4 | 1.1132 × 10−4 |
| ELECAMT_cat | 6.5075 × 10−5 | 1.8838 × 10−6 | 2.7801 × 10−6 | 5.9679 × 10−5 | 6.1670 × 10−5 | 6.3849 × 10−5 | 6.5069 × 10−5 | 6.6629 × 10−5 | 6.7491 × 10−5 | 7.0799 × 10−5 |
| JOBTYPE_cat | 4.9196 × 10−5 | 1.4215 × 10−6 | 1.6417 × 10−6 | 4.6201 × 10−5 | 4.7056 × 10−5 | 4.8664 × 10−5 | 4.9158 × 10−5 | 5.0305 × 10−5 | 5.1193 × 10−5 | 5.2768 × 10−5 |
| SSIP_num | 3.7936 × 10−5 | 1.6298 × 10−6 | 2.5522 × 10−6 | 3.2853 × 10−5 | 3.5381 × 10−5 | 3.6681 × 10−5 | 3.7930 × 10−5 | 3.9234 × 10−5 | 4.0287 × 10−5 | 4.3062 × 10−5 |
| HHAGE_num | 3.2663 × 10−5 | 1.6689 × 10−6 | 2.3447 × 10−6 | 2.7765 × 10−5 | 3.0611 × 10−5 | 3.1283 × 10−5 | 3.2422 × 10−5 | 3.3627 × 10−5 | 3.5305 × 10−5 | 3.7144 × 10−5 |
| SUNZ_num | 2.4944 × 10−5 | 7.1299 × 10−7 | 5.1139 × 10−7 | 2.4017 × 10−5 | 2.3553 × 10−5 | 2.4784 × 10−5 | 2.5001 × 10−5 | 2.5295 × 10−5 | 2.5995 × 10−5 | 2.6062 × 10−5 |
| PERPOVLVL_cat | 2.4583 × 10−5 | 8.3054 × 10−7 | 1.2848 × 10−6 | 2.2017 × 10−5 | 2.3368 × 10−5 | 2.3944 × 10−5 | 2.4736 × 10−5 | 2.5229 × 10−5 | 2.5720 × 10−5 | 2.7156 × 10−5 |
| SSP_num | 2.3864 × 10−5 | 7.2174 × 10−7 | 1.0146 × 10−6 | 2.1844 × 10−5 | 2.2687 × 10−5 | 2.3366 × 10−5 | 2.3946 × 10−5 | 2.4380 × 10−5 | 2.4821 × 10−5 | 2.5902 × 10−5 |
| GTOC_num | 2.2744 × 10−5 | 1.3107 × 10−6 | 1.8559 × 10−6 | 1.9071 × 10−5 | 2.0626 × 10−5 | 2.1855 × 10−5 | 2.3014 × 10−5 | 2.3711 × 10−5 | 2.4435 × 10−5 | 2.6495 × 10−5 |
| FOUNDTYPE_cat | 2.2585 × 10−5 | 1.6076 × 10−6 | 2.2696 × 10−6 | 1.8195 × 10−5 | 1.9605 × 10−5 | 2.1599 × 10−5 | 2.2554 × 10−5 | 2.3868 × 10−5 | 2.4795 × 10−5 | 2.7273 × 10−5 |
| RETP_num | 2.2422 × 10−5 | 8.7867 × 10−7 | 1.1676 × 10−6 | 2.0156 × 10−5 | 2.1000 × 10−5 | 2.1907 × 10−5 | 2.2470 × 10−5 | 2.3075 × 10−5 | 2.3698 × 10−5 | 2.4826 × 10−5 |
| FINCP_num | 1.9917 × 10−5 | 9.2646 × 10−7 | 7.1909 × 10−7 | 1.8257 × 10−5 | 1.8835 × 10−5 | 1.9335 × 10−5 | 1.9793 × 10−5 | 2.0054 × 10−5 | 2.1980 × 10−5 | 2.1133 × 10−5 |
| OCCYRRND_cat | 1.9304 × 10−5 | 6.7672 × 10−7 | 6.7805 × 10−7 | 1.7842 × 10−5 | 1.8593 × 10−5 | 1.8859 × 10−5 | 1.9114 × 10−5 | 1.9537 × 10−5 | 2.0951 × 10−5 | 2.0555 × 10−5 |
| GDTGZ_num | 1.7247 × 10−5 | 9.6872 × 10−7 | 1.0691 × 10−6 | 1.5317 × 10−5 | 1.5503 × 10−5 | 1.6921 × 10−5 | 1.7247 × 10−5 | 1.7990 × 10−5 | 1.8482 × 10−5 | 1.9594 × 10−5 |
| ROOFHOLE_cat | 1.6390 × 10−5 | 6.7528 × 10−7 | 2.4815 × 10−7 | 1.5900 × 10−5 | 1.5025 × 10−5 | 1.6273 × 10−5 | 1.6338 × 10−5 | 1.6521 × 10−5 | 1.7587 × 10−5 | 1.6893 × 10−5 |
| WINBROKE_cat | 1.3977 × 10−5 | 4.6753 × 10−7 | 7.4940 × 10−7 | 1.2460 × 10−5 | 1.3161 × 10−5 | 1.3584 × 10−5 | 1.4159 × 10−5 | 1.4334 × 10−5 | 1.4502 × 10−5 | 1.5458 × 10−5 |
| FNDCRUMB_cat | 1.3796 × 10−5 | 8.5335 × 10−7 | 9.7688 × 10−7 | 1.1832 × 10−5 | 1.2109 × 10−5 | 1.3297 × 10−5 | 1.3840 × 10−5 | 1.4274 × 10−5 | 1.5148 × 10−5 | 1.5739 × 10−5 |
| PROTAXAMT_num | 1.2540 × 10−5 | 5.4993 × 10−7 | 7.1874 × 10−7 | 1.1042 × 10−5 | 1.1619 × 10−5 | 1.2120 × 10−5 | 1.2662 × 10−5 | 1.2838 × 10−5 | 1.3347 × 10−5 | 1.3917 × 10−5 |
| HHAGE_cat | 8.8253 × 10−6 | 5.8762 × 10−7 | 3.3938 × 10−7 | 7.9885 × 10−6 | 8.4434 × 10−6 | 8.4976 × 10−6 | 8.6129 × 10−6 | 8.8369 × 10−6 | 1.0392 × 10−5 | 9.3460 × 10−6 |
| BEDROOMS_num | 8.0924 × 10−6 | 5.7926 × 10−7 | 4.3420 × 10−7 | 7.2542 × 10−6 | 7.2123 × 10−6 | 7.9055 × 10−6 | 8.1196 × 10−6 | 8.3397 × 10−6 | 9.2823 × 10−6 | 8.9910 × 10−6 |
| WAGP_cat | 7.3443 × 10−6 | 3.7602 × 10−7 | 1.9176 × 10−7 | 6.8737 × 10−6 | 6.7365 × 10−6 | 7.1613 × 10−6 | 7.2871 × 10−6 | 7.3530 × 10−6 | 8.0098 × 10−6 | 7.6407 × 10−6 |
| HHADLTKIDS_cat | 6.0821 × 10−6 | 2.4197 × 10−7 | 2.3109 × 10−7 | 5.6096 × 10−6 | 5.6862 × 10−6 | 5.9562 × 10−6 | 6.0797 × 10−6 | 6.1873 × 10−6 | 6.4681 × 10−6 | 6.5339 × 10−6 |
| TVSCW_num | 5.9457 × 10−6 | 3.1834 × 10−7 | 4.7452 × 10−7 | 5.0031 × 10−6 | 5.5119 × 10−6 | 5.7149 × 10−6 | 5.8881 × 10−6 | 6.1894 × 10−6 | 6.5026 × 10−6 | 6.9012 × 10−6 |
| TVTC_num | 5.6936 × 10−6 | 6.1051 × 10−7 | 5.7298 × 10−7 | 4.4774 × 10−6 | 4.6006 × 10−6 | 5.3368 × 10−6 | 5.8044 × 10−6 | 5.9098 × 10−6 | 6.6340 × 10−6 | 6.7693 × 10−6 |
| ROOFSHIN_cat | 5.3893 × 10−6 | 3.0865 × 10−7 | 2.9296 × 10−7 | 4.7537 × 10−6 | 5.0579 × 10−6 | 5.1932 × 10−6 | 5.3036 × 10−6 | 5.4861 × 10−6 | 6.0915 × 10−6 | 5.9256 × 10−6 |
| WALLSLOPE_cat | 4.8879 × 10−6 | 2.2034 × 10−7 | 2.6910 × 10−7 | 4.4016 × 10−6 | 4.4921 × 10−6 | 4.8052 × 10−6 | 4.8865 × 10−6 | 5.0743 × 10−6 | 5.1501 × 10−6 | 5.4780 × 10−6 |
| INTRATE_cat | 4.7215 × 10−6 | 4.4358 × 10−7 | 6.0808 × 10−7 | 3.5137 × 10−6 | 4.0055 × 10−6 | 4.4258 × 10−6 | 4.8474 × 10−6 | 5.0339 × 10−6 | 5.2419 × 10−6 | 5.9460 × 10−6 |
| WINBOARD_cat | 4.5849 × 10−6 | 1.7117 × 10−7 | 2.1778 × 10−7 | 4.1099 × 10−6 | 4.3978 × 10−6 | 4.4365 × 10−6 | 4.5875 × 10−6 | 4.6543 × 10−6 | 4.9362 × 10−6 | 4.9810 × 10−6 |
| ROOFSAG_cat | 3.4710 × 10−6 | 4.5306 × 10−7 | 5.3561 × 10−7 | 2.3998 × 10−6 | 2.7205 × 10−6 | 3.2032 × 10−6 | 3.5595 × 10−6 | 3.7388 × 10−6 | 4.0613 × 10−6 | 4.5422 × 10−6 |
| AYCK_num | 3.1664 × 10−6 | 2.5263 × 10−7 | 2.5879 × 10−7 | 2.6909 × 10−6 | 2.5651 × 10−6 | 3.0791 × 10−6 | 3.1889 × 10−6 | 3.3379 × 10−6 | 3.4352 × 10−6 | 3.7261 × 10−6 |
| WALLSIDE_cat | 2.9624 × 10−6 | 2.1181 × 10−7 | 2.7161 × 10−7 | 2.3828 × 10−6 | 2.7262 × 10−6 | 2.7903 × 10−6 | 2.9579 × 10−6 | 3.0619 × 10−6 | 3.4184 × 10−6 | 3.4693 × 10−6 |
| OIP_cat | 2.6708 × 10−6 | 2.9016 × 10−7 | 1.6380 × 10−7 | 2.3299 × 10−6 | 2.2560 × 10−6 | 2.5756 × 10−6 | 2.6148 × 10−6 | 2.7394 × 10−6 | 3.1882 × 10−6 | 2.9851 × 10−6 |
| WAGP_num | 2.4458 × 10−6 | 2.5718 × 10−7 | 3.4190 × 10−7 | 1.7637 × 10−6 | 1.9962 × 10−6 | 2.2766 × 10−6 | 2.4620 × 10−6 | 2.6185 × 10−6 | 2.8511 × 10−6 | 3.1313 × 10−6 |
| RATINGNH_cat | 2.3834 × 10−6 | 1.8494 × 10−7 | 1.6443 × 10−7 | 2.0391 × 10−6 | 2.0399 × 10−6 | 2.2858 × 10−6 | 2.3990 × 10−6 | 2.4502 × 10−6 | 2.6972 × 10−6 | 2.6968 × 10−6 |
| DINING_num | 2.3575 × 10−6 | 3.5084 × 10−7 | 5.2785 × 10−7 | 1.2801 × 10−6 | 1.8059 × 10−6 | 2.0718 × 10−6 | 2.4314 × 10−6 | 2.5997 × 10−6 | 2.8539 × 10−6 | 3.3915 × 10−6 |
| SEMP_cat | 2.2709 × 10−6 | 2.1841 × 10−7 | 3.1044 × 10−7 | 1.6387 × 10−6 | 1.9452 × 10−6 | 2.1043 × 10−6 | 2.2743 × 10−6 | 2.4148 × 10−6 | 2.5899 × 10−6 | 2.8804 × 10−6 |
| NHQRISK_cat | 2.0150 × 10−6 | 3.6724 × 10−7 | 5.3090 × 10−7 | 1.0395 × 10−6 | 1.4547 × 10−6 | 1.8359 × 10−6 | 1.9820 × 10−6 | 2.3668 × 10−6 | 2.4739 × 10−6 | 3.1631 × 10−6 |
| NTNC_num | 1.9806 × 10−6 | 2.2827 × 10−7 | 2.7550 × 10−7 | 1.4440 × 10−6 | 1.6586 × 10−6 | 1.8572 × 10−6 | 1.9345 × 10−6 | 2.1327 × 10−6 | 2.3559 × 10−6 | 2.5460 × 10−6 |
| MAINTAMT_num | 1.7089 × 10−6 | 2.2427 × 10−7 | 3.6945 × 10−7 | 9.6226 × 10−7 | 1.3209 × 10−6 | 1.5164 × 10−6 | 1.7965 × 10−6 | 1.8859 × 10−6 | 1.9656 × 10−6 | 2.4400 × 10−6 |
| ELECAMT_num | 1.3577 × 10−6 | 2.0445 × 10−7 | 2.2986 × 10−7 | 9.3825 × 10−7 | 9.4472 × 10−7 | 1.2830 × 10−6 | 1.4223 × 10−6 | 1.5129 × 10−6 | 1.5545 × 10−6 | 1.8577 × 10−6 |
| HMRENEFF_cat | 1.3081 × 10−6 | 1.4607 × 10−7 | 1.2274 × 10−7 | 1.0555 × 10−6 | 1.1394 × 10−6 | 1.2396 × 10−6 | 1.2655 × 10−6 | 1.3624 × 10−6 | 1.6604 × 10−6 | 1.5465 × 10−6 |
| NHQSCHOOL_cat | 1.1976 × 10−6 | 1.4224 × 10−7 | 1.6314 × 10−7 | 8.9456 × 10−7 | 9.5640 × 10−7 | 1.1393 × 10−6 | 1.2103 × 10−6 | 1.3024 × 10−6 | 1.3874 × 10−6 | 1.5471 × 10−6 |
| NHQPCRIME_cat | 1.0078 × 10−6 | 3.0596 × 10−7 | 3.2841 × 10−7 | 3.3299 × 10−7 | 5.4539 × 10−7 | 8.2561 × 10−7 | 9.4359 × 10−7 | 1.1540 × 10−6 | 1.6366 × 10−6 | 1.6466 × 10−6 |
| BATHROOMS_cat | 8.1963 × 10−7 | 1.4276 × 10−7 | 1.7572 × 10−7 | 4.5566 × 10−7 | 5.9923 × 10−7 | 7.1924 × 10−7 | 8.1252 × 10−7 | 8.9495 × 10−7 | 1.0826 × 10−6 | 1.1585 × 10−6 |
| ALCH_num | 8.0017 × 10−7 | 1.3833 × 10−7 | 2.1399 × 10−7 | 3.6593 × 10−7 | 5.4314 × 10−7 | 6.8692 × 10−7 | 8.5658 × 10−7 | 9.0090 × 10−7 | 9.5655 × 10−7 | 1.2219 × 10−6 |
| INTP_num | 7.6079 × 10−7 | 1.7862 × 10−7 | 1.2852 × 10−7 | 4.4682 × 10−7 | 5.8932 × 10−7 | 6.3960 × 10−7 | 7.1540 × 10−7 | 7.6812 × 10−7 | 1.1102 × 10−6 | 9.6090 × 10−7 |
| DWNPAYPCT_cat | 6.9451 × 10−7 | 2.0950 × 10−7 | 3.2724 × 10−7 | 2.7424 × 10−8 | 3.7388 × 10−7 | 5.1829 × 10−7 | 7.2166 × 10−7 | 8.4553 × 10−7 | 1.0322 × 10−6 | 1.3364 × 10−6 |
| PERSCOUNT_num | 6.8701 × 10−7 | 1.1315 × 10−7 | 1.5837 × 10−7 | 3.7143 × 10−7 | 4.7794 × 10−7 | 6.0898 × 10−7 | 7.2346 × 10−7 | 7.6735 × 10−7 | 8.2583 × 10−7 | 1.0049 × 10−6 |
| MARKETVAL_num | 6.2241 × 10−7 | 2.2507 × 10−7 | 3.4516 × 10−7 | −6.4848 × 10−8 | 2.8550 × 10−7 | 4.5289 × 10−7 | 6.4287 × 10−7 | 7.9805 × 10−7 | 9.3473 × 10−7 | 1.3158 × 10−6 |
| NHQPUBTRN_cat | 5.7073 × 10−7 | 8.5731 × 10−8 | 8.8970 × 10−8 | 3.7795 × 10−7 | 4.8061 × 10−7 | 5.1141 × 10−7 | 5.5015 × 10−7 | 6.0038 × 10−7 | 7.5936 × 10−7 | 7.3383 × 10−7 |
| INSURAMT_num | 5.4674 × 10−7 | 7.4946 × 10−8 | 7.7160 × 10−8 | 3.9022 × 10−7 | 4.2881 × 10−7 | 5.0596 × 10−7 | 5.4660 × 10−7 | 5.8312 × 10−7 | 6.6777 × 10−7 | 6.9886 × 10−7 |
| PMTAMT_num | 5.0193 × 10−7 | 1.4464 × 10−7 | 1.8815 × 10−7 | 1.3823 × 10−7 | 3.2527 × 10−7 | 4.2045 × 10−7 | 4.3880 × 10−7 | 6.0860 × 10−7 | 7.6110 × 10−7 | 8.9083 × 10−7 |
| LOTAMT_num | 3.9068 × 10−7 | 9.7713 × 10−8 | 7.7404 × 10−8 | 2.5281 × 10−7 | 1.9698 × 10−7 | 3.6891 × 10−7 | 4.2069 × 10−7 | 4.4632 × 10−7 | 5.0062 × 10−7 | 5.6243 × 10−7 |
| LOTAMT_cat | 2.5582 × 10−7 | 9.1438 × 10−8 | 8.4240 × 10−8 | 6.8055 × 10−8 | 1.7221 × 10−7 | 1.9442 × 10−7 | 2.2515 × 10−7 | 2.7866 × 10−7 | 4.3035 × 10−7 | 4.0502 × 10−7 |
| HHCITSHP_cat | 2.5200 × 10−7 | 2.1585 × 10−7 | 3.2997 × 10−7 | −4.0444 × 10−7 | −4.6536 × 10−8 | 9.0514 × 10−8 | 2.4341 × 10−7 | 4.2049 × 10−7 | 6.1876 × 10−7 | 9.1544 × 10−7 |
| PAP_num | 1.4968 × 10−7 | 3.8820 × 10−8 | 6.4923 × 10−8 | 1.9782 × 10−8 | 9.1534 × 10−8 | 1.1717 × 10−7 | 1.5258 × 10−7 | 1.8209 × 10−7 | 2.0287 × 10−7 | 2.7947 × 10−7 |
| REMODAMT_num | 1.1855 × 10−7 | 8.0960 × 10−8 | 7.2556 × 10−8 | −2.6722 × 10−8 | −1.2060 × 10−8 | 8.2111 × 10−8 | 1.2022 × 10−7 | 1.5467 × 10−7 | 2.6794 × 10−7 | 2.6350 × 10−7 |
| OILAMT_num | 2.7468 × 10−8 | 4.9592 × 10−8 | 6.6567 × 10−8 | −1.0204 × 10−7 | −5.2424 × 10−8 | −2.1913 × 10−9 | 2.9388 × 10−8 | 6.4375 × 10−8 | 9.1455 × 10−8 | 1.6423 × 10−7 |
| NORC_cat | 2.0183 × 10−8 | 2.2419 × 10−8 | 2.8139 × 10−8 | −3.8758 × 10−8 | −2.9385 × 10−9 | 3.4507 × 10−9 | 1.4656 × 10−8 | 3.1590 × 10−8 | 7.0700 × 10−8 | 7.3798 × 10−8 |
| OIP_num | 1.8323 × 10−8 | 3.4456 × 10−8 | 2.8966 × 10−8 | −3.3347 × 10−8 | −4.2213 × 10−8 | 1.0101 × 10−8 | 2.3333 × 10−8 | 3.9067 × 10−8 | 7.1728 × 10−8 | 8.2515 × 10−8 |
| NRATE_cat | 1.7879 × 10−8 | 2.5657 × 10−8 | 2.6064 × 10−8 | −3.2322 × 10−8 | −2.4876 × 10−8 | 6.7745 × 10−9 | 2.0142 × 10−8 | 3.2839 × 10−8 | 6.1141 × 10−8 | 7.1935 × 10−8 |
| UNITSIZE_cat | 1.6510 × 10−8 | 1.4456 × 10−8 | 1.5831 × 10−8 | −1.5849 × 10−8 | −2.8481 × 10−9 | 7.8977 × 10−9 | 1.7444 × 10−8 | 2.3729 × 10−8 | 4.6357 × 10−8 | 4.7476 × 10−8 |
| OILAMT_cat | 1.1498 × 10−8 | 8.3436 × 10−9 | 7.0515 × 10−9 | −3.6145 × 10−9 | −1.2536 × 10−9 | 6.9628 × 10−9 | 1.0992 × 10−8 | 1.4014 × 10−8 | 3.0942 × 10−8 | 2.4592 × 10−8 |
| HMRSALE_cat | 6.4073 × 10−9 | 1.7714 × 10−7 | 2.0140 × 10−7 | −3.6279 × 10−7 | −3.0100 × 10−7 | −6.0680 × 10−8 | 4.5779 × 10−8 | 1.4072 × 10−7 | 2.2210 × 10−7 | 4.4283 × 10−7 |
| OTHERAMT_cat | 1.9437 × 10−9 | 2.3974 × 10−8 | 2.2963 × 10−8 | −3.7071 × 10−8 | −4.5917 × 10−8 | −2.6272 × 10−9 | 3.7037 × 10−9 | 2.0335 × 10−8 | 3.0788 × 10−8 | 5.4779 × 10−8 |
| OTHERAMT_num | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 |
| INTP_cat | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 |
| HRATE_cat | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 |
| WATERAMT_num | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 |
| RATINGHS_cat | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 | 0.0000 × 100 |
| PERPOVLVL_num | −1.1307 × 10−8 | 1.4370 × 10−8 | 2.2563 × 10−8 | −5.4344 × 10−8 | −3.1154 × 10−8 | −2.0500 × 10−8 | −1.4418 × 10−8 | 2.0629 × 10−9 | 1.0106 × 10−8 | 3.5907 × 10−8 |
| NGMC_num | −1.2913 × 10−8 | 4.3127 × 10−8 | 5.0949 × 10−8 | −1.1308 × 10−7 | −9.7798 × 10−8 | −3.6658 × 10−8 | −8.6012 × 10−9 | 1.4291 × 10−8 | 4.7631 × 10−8 | 9.0715 × 10−8 |
| HOAAMT_num | −1.6028 × 10−8 | 2.9945 × 10−8 | 3.0678 × 10−8 | −7.2057 × 10−8 | −9.0396 × 10−8 | −2.6041 × 10−8 | −5.6709 × 10−9 | 4.6370 × 10−9 | 9.0618 × 10−9 | 5.0654 × 10−8 |
| INSURAMT_cat | −3.5158 × 10−8 | 8.8795 × 10−8 | 1.1344 × 10−7 | −2.5230 × 10−7 | −2.2321 × 10−7 | −8.2137 × 10−8 | −1.5712 × 10−8 | 3.1304 × 10−8 | 7.0192 × 10−8 | 2.0146 × 10−7 |


References
- Choy, L.H.T.; Ho, W.K.O. The Use of Machine Learning in Real Estate Research. Land 2023, 12, 740. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X. AI-Enhanced Remote Sensing of Land Transformations for Climate-Related Financial Risk Assessment in Housing Markets: A Review. Land 2025, 14, 1672. [Google Scholar] [CrossRef]
- Stamate, E.; Piraianu, A.I.; Ciobotaru, O.R.; Crassas, R.; Duca, O.; Fulga, A.; Grigore, I.; Vintila, V.; Fulga, I.; Ciobotaru, O.C. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics 2024, 14, 1103. [Google Scholar] [CrossRef]
- Mazni, M.; Husain, A.R.; Shapiai, M.I.; Ibrahim, I.S.; Anggara, D.W.; Zulkifli, R. An investigation into real-time surface crack classification and measurement for structural health monitoring using transfer learning convolutional neural networks and Otsu method. Alex. Eng. J. 2024, 92, 310–320. [Google Scholar] [CrossRef]
- Ying, C.; Wang, W.; Yu, J.; Li, Q.; Yu, D.; Liu, J. Deep learning for renewable energy forecasting: A literature and bibliometric review. J. Clean. Prod. 2023, 384, 135414. [Google Scholar] [CrossRef]
- Lendvai, G.F.; Gosztonyi, G. Algorithmic bias as a core legal dilemma in the age of artificial intelligence: Conceptual basis and the current state of regulation. Laws 2025, 14, 41. [Google Scholar] [CrossRef]
- Zekos, G.I. Political, Economic and Legal Effects of Artificial Intelligence: Governance, Digital Economy and Society; Springer: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Susskind, R. Online Courts and the Future of Justice; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Peppet, S.R. Unraveling privacy: The personal prospectus and the threat of a full-disclosure future. N. Univ. Law. Rev. 2011, 105, 1153. [Google Scholar]
- Seagraves, P. Real Estate Insights The clash of politics and economics in the UK property market–the case of leaseholds. J. Prop. Invest. Fin. 2023, 41, 629–635. [Google Scholar] [CrossRef]
- Wang, F.; Yang, Q.; Wu, F.; Zhang, Y.; Sun, S.; Wang, X.; Gui, Y.; Li, Q. Identification of a 42-bp heart-specific enhancer of the notch1b gene in zebrafish embryos. Dev. Dyn. 2019, 248, 426–436. [Google Scholar] [CrossRef]
- Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M. A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl. 2018, 9, 16. [Google Scholar] [CrossRef]
- Olutimehin, A.T.; Ajayi, A.J.; Metibemu, O.C.; Balogun, A.Y.; Oladoyinbo, T.O.; Olaniyi, O.O. Adversarial threats to AI-driven systems: Exploring the attack surface of machine learning models and countermeasures. J. Eng. Res. Rep. 2025, 27, 341–362. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26. [Google Scholar] [CrossRef]
- Goodman, B.; Flaxman, S. EU regulations on algorithmic decision-making and a “right to explanation”. In Proceedings of the ICML Workshop on Human Interpretability in Machine Learning (WHI 2016), New York, NY, USA, 23 June 2016. [Google Scholar]
- Akinrinola, O.; Addy, W.A.; Ajayi-Nifise, A.O.; Odeyemi, O.; Falaiye, T. Predicting stock market movements using neural networks: A review and application study. GSC Adv. Res. Rev. 2024, 18, 297–311. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Armitage, G. A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv. Tutor. 2008, 10, 56–76. [Google Scholar] [CrossRef]
- Adeyeye, A. Certified B corps: An examination of a standard based approach to stakeholder governance. Eur. Bus. Law. Rev. 2024, 35, 755–778. [Google Scholar] [CrossRef]
- Haimes, Y.Y.; Kaplan, S.; Lambert, J.H. Risk filtering, ranking, and management (RFRM) framework using hierarchical holographic modeling. Risk Anal. 2002, 22, 383–397. [Google Scholar] [CrossRef]
- Campbell, C.; Sands, S.; Ferraro, C.; Tsao, H.Y.; Mavrommatis, A. From data to action: How marketers can leverage AI. Bus. Horiz. 2020, 63, 227–243. [Google Scholar] [CrossRef]
- Floridi, L.; Cowls, J.; Beltrametti MFloridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; et al. AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds Mach. 2018, 28, 689–707. [Google Scholar] [CrossRef]
- Walz, A.; Firth-Butterfield, K. Implementing ethics into artificial intelligence: A contribution, from a legal perspective to the development of an AI governance regime. Duke Law. Technol. Rev. 2019, 18, 176. [Google Scholar]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Olatoye, F.O.; Awonuga, K.F.; Mhlongo, N.Z.; Ibeh, C.V.; Elufioye, O.A.; Ndubuisi, N.L. AI and ethics in business: A comprehensive review of responsible AI practices and corporate responsibility. Int. J. Sci. Res. Arch. 2024, 11, 1433–1443. [Google Scholar] [CrossRef]
- Nannini, L.; Alonso-Moral, J.M.; Catalá, A.; Lama, M.; Barro, S. Operationalizing explainable artificial intelligence in the European Union regulatory ecosystem. IEEE Intell. Syst. 2024, 39, 37–48. [Google Scholar] [CrossRef]
- Koshiyama, A.; Kazim, E.; Treleaven, P.; Rai, P.; Szpruch, L.; Pavey, G.; Ahamat, G.; Leutner, F.; Goebel, R.; Knight, A.; et al. Towards algorithm auditing: Managing legal, ethical and technological risks of AI, ML and associated algorithms. R. Soc. Open Sci. 2024, 11, 230859. [Google Scholar] [CrossRef]
- Hohma, E.; Boch, A.; Trauth, R.; Lütge, C. Investigating accountability for Artificial Intelligence through risk governance: A workshop-based exploratory study. Front. Psychol. 2023, 14, 1073686. [Google Scholar] [CrossRef] [PubMed]
- Micci-Barreca, D. A preprocessing scheme for high-cardinality categorical attributes in classification and prediction problems. ACM SIGKDD Explor. Newsl. 2001, 3, 27–32. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Jaggi, M. An equivalence between the Lasso and support vector machines. In Regularization, Optimization, Kernels, and Support Vector Machines; Suykens, J.A.K., Signoretto, M., Argyriou, A., Eds.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2014; pp. 1–26. [Google Scholar] [CrossRef]
- Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann. Stat. 2004, 32, 407–499. [Google Scholar] [CrossRef]
- Adão, T.; Chojka, A.; Pascoal, D.; Silva, N.; Morais, R.; Peres, E. Synthetic Data-Driven Methods to Accelerate the Deployment of Deep Learning Models: A Case Study on Pest and Disease Detection in Precision Viticulture. Computers 2025, 14, 327. [Google Scholar] [CrossRef]
- Hast, A.; Nysjö, J.; Marchetti, A. Optimal RANSAC—Towards a repeatable algorithm for finding the optimal set. J. WSCG 2013, 21, 21–30. [Google Scholar]
- Silverman, B.W.; Jones, M.C.E. Fix and J. L. Hodges (1951): An important contribution to nonparametric discriminant analysis and density estimation (Commentary). Int. Stat. Rev. 1989, 57, 233–247. [Google Scholar] [CrossRef]
- Rokach, L.; Maimon, O. Data Mining with Decision Trees, 2nd ed.; World Scientific: Singapore, 2014. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Approximating XGBoost with an interpretable decision tree. Inf. Sci. 2021, 572, 522–542. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999; ISBN 81-7808-300-0. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
























| Year | Flat File | Detailed Files | |||
|---|---|---|---|---|---|
| Household | Person | Project | Mortgage | ||
| 2015 | 69,493 | 69,493 | 149,532 | 59,034 | 23,582 |
| 2017 | 66,752 | 66,752 | 145,320 | 50,575 | 22,820 |
| 2019 | 63,185 | 63,185 | 134,160 | 47,125 | 20,998 |
| 2021 | 64,141 | 64,141 | 135,926 | 51,476 | 19,155 |
| 2023 | 55,669 | 55,669 | 114,476 | 44,689 | 16,834 |
| Total | 319,240 | 319,240 | 679,414 | 252,899 | 103,389 |
| Year | Mini Codebooks | Flat File | Detailed Files | ||||
|---|---|---|---|---|---|---|---|
| Household | Person | Project | Mortgage | Subtotal | |||
| 2015 | 485 | 391 | 326 | 49 | 8 | 11 | 394 |
| 2017 | 479 | 379 | 314 | 49 | 8 | 11 | 382 |
| 2019 | 482 | 385 | 313 | 56 | 8 | 11 | 388 |
| 2021 | 462 | 381 | 308 | 49 | 8 | 19 | 384 |
| 2023 | 515 | 435 | 356 | 55 | 8 | 19 | 438 |
| Total | 2423 | 1971 | 1617 | 258 | 40 | 41 | 1986 |
| Common PUF Variables | 321 | 321 | 261 | 47 | 8 | 8 | 324 |
| Detailed Files | Total | |||
|---|---|---|---|---|
| Household | Person | Project | Mortgage | |
| 98 | 17 | 2 | 8 | 125 |
| Data | No. Features | No. Records |
|---|---|---|
| Explicative variables by type | ||
| Categoricals | 83 | |
| Numericals | 114 | |
| Variables by source | ||
| CONTROL | 2 | |
| TRS (housing) | 1 | |
| AHS | 125 | |
| WDI | 72 | |
| Final Dataset | 200 | 319,240 |
| Category | Count |
|---|---|
| Explicative Variables—Categorical | 83 |
| Explicative Variables—Numerical | 114 |
| Control Variables (e.g., IDs) | 2 |
| TRS Target Variable (TRS_housing) | 1 |
| Total Variables | 200 |
| Total Records | 319,240 |
| Technique | Abbr. | Affected | |
|---|---|---|---|
| No. Features | No. Records | ||
| Null values filtering | NVF | 0 | 0 |
| Missing value ratio filtering | MVR | 0 | |
| Impute missing values | IMV | 53 | |
| Low variance filtering | LVF | 0 | |
| High correlation filtering | HCF | 3 | |
| Total | 3 | ||
| Original | Reduced | |
|---|---|---|
| Records | 319,240 | 319,240 |
| Features | 200 | 90 |
| Case identification | 2 | 2 |
| Independent/ | 197 | 87 |
| Dependent | 1 | 1 |
| Model Type | Name | Hyperparameters |
|---|---|---|
| Linear Models | Elastic Net Regression | α = 0.05, l1_ratio = 0.25, max_iter = 1 × 105, fit_intercept = True, random_state = 42 |
| Lars Regression | eps = 1 × 10−4, fit_intercept = True, random_state = 42, verbose = False | |
| Robust Models | RANSAC Regression | random_state = 42 |
| Nearest Neighbors | K-Nearest Neighbors Regression | n_neighbors = 10 |
| Decision Trees | Decision Tree Regression | max_depth = 3, min_samples_split = 2, random_state = 42, |
| Ensembles | Hist. Gradient Boosting Regression | max_iter = 30, random_state = 42, verbose = 0, |
| Random Forest Regression | n_estimators = 50, random_state = 42, verbose = 0, | |
| Neural Networks | MLP Regression | hidden_layer_sizes = (64, 32), learning_rate = ‘adaptive’, early_stopping = True, random_state = 42, verbose = False, |
| ID | Model | Mean R2 | Dev. Std. R2 | Mean NMSE | Dev. Std. NMSE | Mean Fit Time (s) | Mean Score Time (s) | Mean Elapsed Time (s) |
|---|---|---|---|---|---|---|---|---|
| ElaN | Elastic Net Regression | 9.43 × 10−1 | 1.87 × 10−4 | −5.68 × 10−3 | 6.01 × 10−5 | 1.59 | 0.07 | 4.94 |
| Lars | Lars Regression | 9.98 × 10−1 | 6.96 × 10−5 | −2.33 × 10−4 | 6.80 × 10−6 | 0.91 | 0.06 | 6.73 |
| RscR | RANSAC Regression | 9.98 × 10−1 | 3.30 × 10−5 | −2.20 × 10−4 | 2.68 × 10−6 | 7.18 | 0.12 | 17.10 |
| KnnR | K-Nearest Neighbors Regression | 7.65 × 10−1 | 4.67 × 10−3 | −2.34 × 10−2 | 5.46 × 10−4 | 1.59 | 15.27 | 294.61 |
| DTRg | Decision Tree Regression | 9.87 × 10−1 | 1.85 × 10−4 | −1.27 × 10−3 | 1.53 × 10−5 | 2.21 | 0.06 | 6.20 |
| HGBRg | Hist. Gradient Boosting | 9.97 × 10−1 | 3.01 × 10−5 | −3.34 × 10−4 | 3.63 × 10−6 | 6.84 | 0.09 | 15.37 |
| RFRg | Random Forest Regression | 9.99 × 10−1 | 2.08 × 10−5 | −1.30 × 10−4 | 1.92 × 10−6 | 119.96 | 0.87 | 254.71 |
| MlpR | MLP Regression | 8.77 × 10−1 | 4.88 × 10−2 | −1.22 × 10−2 | 4.94 × 10−3 | 63.90 | 0.14 | 136.95 |
| Model Type | Name | Hyperparameters |
|---|---|---|
| Linear Models | Lars (Least Angle Regression) | eps = [1 × 10−4, 1 × 10−3]; n_nonzero_coefs = [5, 10, 15, 25]; fit_intercept = True |
| Tree-Based Models | Decision Tree | max_depth = [2, 5, 10, 20]; min_samples_leaf = [2, 5] |
| Ensemble Models | Hist. Gradient Boosting | max_iter = [30, 100, 300] learning_rate = [0.05, 0.1] min_sample_leaf = 20 |
| Metrics | General: Adjusted R-Squared for Train and Test Data | |
| General: Adjusted R2 for Train and Test Data. Specific: Bias, Mean Absolute Error, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Root Mean Absolute Error (RMAE), Pearson correlation, R2, Normal Deviation | ||
| Model Type | Name | Optimized Parameters |
|---|---|---|
| Linear Models | Lars (Least Angle Regression) | eps = 1 × 10−4; n_nonzero_coefs = 25; fit_intercept = True |
| Tree-Based Models | Decision Tree | max_depth = 10 min_samples_leaf = 2 |
| Ensemble Models | Hist. Gradient Boosting | max_iter = 300 learning_rate = 0.1 min_sample_leaf = 20 |
| Metric | Lars | DTRg | HGBRg | |
|---|---|---|---|---|
| Adjusted R2 | Train | 9.9610 × 10−1 | 9.9866 × 10−1 | 9.9882 × 10−1 |
| Test | 9.9610 × 10−1 | 9.9858 × 10−1 | 9.9875 × 10−1 | |
| R2 | Train | 9.9610 × 10−1 | 9.9866 × 10−1 | 9.9882 × 10−1 |
| Test | 9.9610 × 10−1 | 9.9858 × 10−1 | 9.9875 × 10−1 | |
| BIAS | Train | 1.7764 × 10−15 | 5.4794 × 10−6 | 1.5891 × 10−5 |
| Test | −2.4422 × 10−6 | −1.1798 × 10−4 | −2.4791 × 10−5 | |
| MAE | Train | 1.5181 × 10−2 | 8.5193 × 10−3 | 7.9635 × 10−3 |
| Test | 1.5108 × 10−2 | 8.7370 × 10−3 | 8.0814 × 10−3 | |
| MSE | Train | 3.8764 × 10−4 | 1.3306 × 10−4 | 1.1777 × 10−4 |
| Test | 3.8561 × 10−4 | 1.4047 × 10−4 | 1.2348 × 10−4 | |
| RMSE | Train | 1.9689 × 10−2 | 1.1535 × 10−2 | 1.0852 × 10−2 |
| Test | 1.9637 × 10−2 | 1.1852 × 10−2 | 1.1112 × 10−2 | |
| Pearson | Train | 9.9829 × 10−1 | 9.9933 × 10−1 | 9.9941 × 10−1 |
| Test | 9.9830 × 10−1 | 9.9929 × 10−1 | 9.9938 × 10−1 | |
| Normalized Deviation | Train | 9.7616 × 10−1 | 9.9933 × 10−1 | 9.9911 × 10−1 |
| Test | 9.7615 × 10−1 | 9.9931 × 10−1 | 9.9923 × 10−1 |
| (a) Lars Regression—Mean and Standard Deviation of R2, MSE, RMSE | ||||||
| Fit_Intercept | eps | n_nonzero_coefs | Type | R2 (Mean ± Std. Dev.) | MSE (Mean ± Std. Dev.) | RMSE (Mean ± Std. Dev.) |
| True | 1 × 10−4 | 5 | Train | 9.5953 × 10−1 ± 1.6308 × 10−4 | 4.0243 × 10−3 ± 1.6406 × 10−5 | 6.3437 × 10−2 ± 1.2933 × 10−4 |
| Test | 9.5953 × 10−1 ± 2.9128 × 10−4 | 4.0246 × 10−3 ± 2.4862 × 10−5 | 6.3439 × 10−2 ± 1.9571 × 10−4 | |||
| True | 1 × 10−4 | 10 | Train | 9.7202 × 10−1 ± 3.6733 × 10−4 | 2.7823 × 10−3 ± 3.6300 × 10−5 | 5.2747 × 10−2 ± 3.4370 × 10−4 |
| Test | 9.7202 × 10−1 ± 2.4893 × 10−4 | 2.7825 × 10−3 ± 2.3645 × 10−5 | 5.2749 × 10−2 ± 2.2377 × 10−4 | |||
| True | 1 × 10−4 | 15 | Train | 9.9190 × 10−1 ± 5.7172 × 10−5 | 8.0547 × 10−4 ± 5.8436 × 10−6 | 2.8381 × 10−2 ± 1.0306 × 10−4 |
| Test | 9.9190 × 10−1 ± 1.2183 × 10−4 | 8.0563 × 10−4 ± 1.0107 × 10−5 | 2.8383 × 10−2 ± 1.7815 × 10−4 | |||
| True | 1 × 10−4 | 25 | Train | 9.9610 × 10−1 ± 8.5150 × 10−5 | 3.8784 × 10−4 ± 8.4666 × 10−6 | 1.9692 × 10−2 ± 2.1603 × 10−4 |
| Test | 9.9610 × 10−1 ± 7.9191 × 10−5 | 3.8799 × 10−4 ± 7.2817 × 10−6 | 1.9697 × 10−2 ± 1.8522 × 10−4 | |||
| (b) Decision Tree Regression—Mean and Standard Deviation of R2, MSE, RMSE | ||||||
| max_depth | min_samples_leaf | Type | R2 (Mean ± Std. Dev.) | MSE (Mean ± Std. Dev.) | RMSE (Mean ± Std. Dev.) | |
| 2 | 2 | Train | 9.4179 × 10−1 ± 7.2992 × 10−5 | 5.7885 × 10−3 ± 6.1754 × 10−6 | 7.6082 × 10−2 ± 4.0596 × 10−5 | |
| Test | 9.4179 × 10−1 ± 6.5389 × 10−4 | 5.7887 × 10−3 ± 5.5593 × 10−5 | 7.6082 × 10−2 ± 3.6442 × 10−4 | |||
| 5 | 2 | Train | 9.9648 × 10−1 ± 5.6756 × 10−6 | 3.5035 × 10−4 ± 4.3255 × 10−7 | 1.8718 × 10−2 ± 1.1554 × 10−5 | |
| Test | 9.9647 × 10−1 ± 5.0951 × 10−5 | 3.5056 × 10−4 ± 3.8878 × 10−6 | 1.8723 × 10−2 ± 1.0389 × 10−4 | |||
| 10 | 2 | Train | 9.9866 × 10−1 ± 2.5025 × 10−6 | 1.3287 × 10−4 ± 2.1400 × 10−7 | 1.1527 × 10−2 ± 9.2831 × 10−6 | |
| Test | 9.9859 × 10−1 ± 2.6742 × 10−5 | 1.4065 × 10−4 ± 2.3119 × 10−6 | 1.1859 × 10−2 ± 9.7528 × 10−5 | |||
| 20 | 2 | Train | 9.9919 × 10−1 ± 1.3109 × 10−5 | 8.0722 × 10−5 ± 1.2940 × 10−6 | 8.9842 × 10−3 ± 7.2177 × 10−5 | |
| Test | 9.9803 × 10−1 ± 3.8039 × 10−5 | 1.9548 × 10−4 ± 3.3753 × 10−6 | 1.3981 × 10−2 ± 1.2086 × 10−4 | |||
| (c) Histogram Gradient Boosting Regression—Mean and Standard Deviation of R2, MSE, RMSE | ||||||
| min_samples_leaf | learning_rate | max_iter | Type | R2 (Mean ± Std. Dev.) | MSE (Mean ± Std. Dev.) | RMSE (Mean ± Std. Dev.) |
| 20 | 0.05 | 30 | Train | 9.5214 × 10−1 ± 7.7646 × 10−6 | 4.7593 × 10−3 ± 2.6016 × 10−6 | 6.8988 × 10−2 ± 1.8856 × 10−5 |
| Test | 9.5214 × 10−1 ± 1.1431 × 10−4 | 4.7596 × 10−3 ± 2.3990 × 10−5 | 6.8989 × 10−2 ± 1.7388 × 10−4 | |||
| 20 | 0.05 | 100 | Train | 9.9857 × 10−1 ± 3.1263 × 10−6 | 1.4172 × 10−4 ± 2.8618 × 10−7 | 1.1904 × 10−2 ± 1.2018 × 10−5 |
| Test | 9.9857 × 10−1 ± 2.4338 × 10−5 | 1.4259 × 10−4 ± 2.1444 × 10−6 | 1.1941 × 10−2 ± 8.9868 × 10−5 | |||
| 20 | 0.05 | 300 | Train | 9.9880 × 10−1 ± 4.0015 × 10−6 | 1.1961 × 10−4 ± 3.9764 × 10−7 | 1.0937 × 10−2 ± 1.8166 × 10−5 |
| Test | 9.9876 × 10−1 ± 2.5771 × 10−5 | 1.2294 × 10−4 ± 2.3322 × 10−6 | 1.1087 × 10−2 ± 1.0528 × 10−4 | |||
| 20 | 0.1 | 300 | Train | 9.9881 × 10−1 ± 4.7416 × 10−6 | 1.1828 × 10−4 ± 4.6970 × 10−7 | 1.0875 × 10−2 ± 2.1601 × 10−5 |
| Test | 9.9877 × 10−1 ± 2.6282 × 10−5 | 1.2257 × 10−4 ± 2.3918 × 10−6 | 1.1071 × 10−2 ± 1.0812 × 10−4 | |||
| Model (Best Estimator) | Mean R-Squared | Mean MSE | Mean RMSE | Std. Deviation | Robustness | Complexity |
|---|---|---|---|---|---|---|
| Lars (Least Angle Regression) (eps = 1 × 10−4 n_nonzero_coefs = 25 fit_intercept = True) | 0.9960 | 3.88 × 10−4 | 1.97 × 10−2 | High (slight variability between folds) | Medium | Low |
| Decision Tree (max_depth = 10 min_samples_leaf = 2) | 0.9984 | 1.41 × 10−4 | 1.19 × 10−2 | Very low (flat curves on all folds) | High | Medium |
| Hist. Gradient Boosting (max_iter = 300 learning_rate = 0.1 min_sample_leaf = 20) | 0.9988 | 1.23 × 10−4 | 1.11 × 10−2 | Very low (minimum dispersion in metrics) | Very high | High |
| Metric | Train | Test | Valid |
|---|---|---|---|
| Adjusted R2 | 9.9610 × 10−1 | 9.9610 × 10−1 | 9.9877 × 10−1 |
| R2 | 9.9610 × 10−1 | 9.9610 × 10−1 | 9.9877 × 10−1 |
| BIAS | 0.0000 | −2.4422 × 10−6 | −2.6133 × 10−5 |
| MAE | 1.5181 × 10−2 | 1.5108 × 10−2 | 8.0661 × 10−3 |
| MSE | 3.8764 × 10−4 | 3.8561 × 10−4 | 1.2286 × 10−4 |
| RMSE | 1.9689 × 10−2 | 1.9637 × 10−2 | 1.1084 × 10−2 |
| Pearson | 9.9829 × 10−1 | 9.9830 × 10−1 | 9.9938 × 10−1 |
| Normalized Deviation | 9.7616 × 10−1 | 9.7615 × 10−1 | 9.9925 × 10−1 |
| Group | Predictions (Mean) | Predictions (Std. Dev.) | Actuals (Mean) | Actuals (Std. Dev.) |
|---|---|---|---|---|
| 0 | 6.0578 × 100 | 4.6185 × 10−2 | 6.0577 × 100 | 4.8527 × 10−2 |
| 1 | 6.2502 × 100 | 3.1956 × 10−2 | 6.2502 × 100 | 3.3275 × 10−2 |
| 2 | 6.4538 × 100 | 3.8991 × 10−2 | 6.4540 × 100 | 4.0298 × 10−2 |
| 3 | 6.6260 × 100 | 2.5081 × 10−2 | 6.6261 × 100 | 2.7325 × 10−2 |
| 4 | 6.9703 × 100 | 5.0399 × 10−2 | 6.9702 × 100 | 5.2037 × 10−2 |
| Bar | Range (Min) | Range (Max) | Bin Mean | Frequency |
|---|---|---|---|---|
| 0 | −7.5048 × 10−2 | −4.2252 × 10−2 | −5.8650 × 10−2 | 140 |
| 1 | −4.2252 × 10−2 | −9.4573 × 10−3 | −2.5855 × 10−2 | 9369 |
| 2 | −9.4573 × 10−3 | 2.3338 × 10−2 | 6.9403 × 10−3 | 52,879 |
| 3 | 2.3338 × 10−2 | 5.6133 × 10−2 | 3.9735 × 10−2 | 1444 |
| 4 | 5.6133 × 10−2 | 8.8928 × 10−2 | 7.2531 × 10−2 | 16 |
| Statistic | Theoretical Quantiles | Observed Quantiles | Theoretical Distribution |
|---|---|---|---|
| Mean | 3.4187 × 10−16 | 2.6133 × 10−5 | 2.6133 × 10−5 |
| Std. Dev. | 9.9994 × 10−1 | 1.1084 × 10−2 | 9.8900 × 10−1 |
| Min | −4.2465 × 100 | −7.5048 × 10−2 | −4.1576 × 100 |
| 25% | −6.7447 × 10−1 | −5.7721 × 10−3 | −6.6849 × 10−1 |
| 50% | 0.0000 | −3.7011 × 10−4 | −3.7011 × 10−4 |
| 75% | 6.7447 × 10−1 | 6.7643 × 10−3 | 6.6088 × 10−1 |
| Max | 4.1710 × 100 | 1.5011 × 10−2 | 4.1575 × 100 |
| Statistic/Metric | Mean | Std. Dev. | Skew | Kurtosis | Bias | MAE | MSE | RMSE |
|---|---|---|---|---|---|---|---|---|
| Values | 2.6133 × 10−5 | 1.1084 × 10−2 | −6.7051 × 10−2 | 2.35 | −2.6133 × 10−5 | 8.0661 × 10−3 | 1.2286 × 10−4 | 1.1084 × 10−2 |
| Group | Predictions (Mean) | Predictions (Std. Dev.) | Residuals (Mean) | Residuals (Std. Dev.) |
|---|---|---|---|---|
| 0 | 6.0578 × 100 | 4.6185 × 10−2 | −8.7320 × 10−5 | 1.3769 × 10−2 |
| 1 | 6.2502 × 100 | 3.1956 × 10−2 | 4.6723 × 10−5 | 9.8573 × 10−3 |
| 2 | 6.4538 × 100 | 3.8991 × 10−2 | 1.4608 × 10−4 | 9.5342 × 10−3 |
| 3 | 6.6260 × 100 | 2.5081 × 10−2 | 1.1601 × 10−4 | 1.0356 × 10−2 |
| 4 | 6.9703 × 100 | 5.0399 × 10−2 | −7.2560 × 10−5 | 1.0643 × 10−2 |
| Statistic | Mean | Std. Dev. | Lower Bound | Min | 25% | 50% | 75% | Max | Upper Bound |
|---|---|---|---|---|---|---|---|---|---|
| Values | 2.7506 × 10−5 | 1.1239 × 10−2 | −4.4103 × 10−2 | −1.3583 × 10−2 | −1.3583 × 10−2 | −6.6100 × 10−3 | 6.7643 × 10−3 | 1.5011 × 10−2 | 3.7285 × 10−2 |
| Importance | Features | |
|---|---|---|
| High | GASAMT_cat, GASAMT_num | 2.3% |
| Moderate | TOTBALAMT_num, HUDSUB_cat, TRASHAMT_num, NHQSCRIME_cat, UTILAMT_num, MORTCOUNT_num, HMRACCESS_cat, INTRATE_num, PAP_cat, HHGRAD_cat, SEMP_num, RPRU_num | 13.8% |
| Nearly Null Positive | ELECAMT_cat, JOBTYPE_cat, SSIP_num, HHAGE_num, SUNZ_num, PERPOVLVL_cat, SSP_num, GTOC_num, FOUNDTYPE_cat, RETP_num, FINCP_num, OCCYRRND_cat, GDTGZ_num, ROOFHOLE_cat, WINBROKE_cat, FNDCRUMB_cat, PROTAXAMT_num, HHAGE_cat, BEDROOMS_num, WAGP_cat, HHADLTKIDS_cat, TVSCW_num, TVTC_num, ROOFSHIN_cat, WALLSLOPE_cat, INTRATE_cat, WINBOARD_cat, ROOFSAG_cat, AYCK_num, WALLSIDE_cat, OIP_cat, WAGP_num, RATINGNH_cat, DINING_num, SEMP_cat, NHQRISK_cat, NTNC_num, MAINTAMT_num, ELECAMT_num, HMRENEFF_cat, NHQSCHOOL_cat, NHQPCRIME_cat, BATHROOMS_cat, ALCH_num, INTP_num, DWNPAYPCT_cat, PERSCOUNT_num, MARKETVAL_num, NHQPUBTRN_cat, INSURAMT_num, PMTAMT_num, LOTAMT_num, LOTAMT_cat, HHCITSHP_cat, PAP_num, REMODAMT_num, OILAMT_num, NORC_cat, OIP_num, NRATE_cat, UNITSIZE_cat, OILAMT_cat, HMRSALE_cat, OTHERAMT_cat | 73.6% |
| Null | OTHERAMT_num, INTP_cat, HRATE_cat, WATERAMT_num, RATINGHS_cat | 5.7% |
| Nearly Null Negative | PERPOVLVL_num, NGMC_num, HOAAMT_num, INSURAMT_cat | 4.6% |
| Criteria | RECIR (AI-Based Model) | Traditional Risk Models |
|---|---|---|
| Predictive Accuracy | High-leverage machine learning, big data, and real-time updates | Moderate—relies on historical data and static statistical techniques |
| Regulatory Compliance | Integrated AI-driven fairness audits (GDPR, AI Act, Fair Housing) | Limited—requires manual adjustments for regulatory alignment |
| Interpretability | Explainable AI (XAI) enhances transparency | Transparent but less adaptable to complex, multi-dimensional risks |
| Adaptability | Dynamic learning adjusts to new market conditions | Static—fixed parameters based on past trends |
| Risk Factors Considered | Multi-dimensional: legal, economic, environmental, and financial factors | Primarily financial indicators |
| Data Processing Capability | Handles unstructured & high-volume data (IoT, NLP, market feeds) | Limited to structured datasets with predefined variables |
| Computational Efficiency | AI-driven automation enables real-time analysis | Requires manual intervention, slower in processing large datasets |
| Application in Decision-Making | Supports automated, data-driven investment strategies | Relies on analyst interpretation, potentially slower decision-making |
| Fraud Detection & Forensic Risk Assessment | Integrated forensic AI techniques for anomaly detection | Limited forensic capabilities—dependent on retrospective audits |
| Scalability | Highly scalable across different markets and data environments | Requires significant manual adjustments for new datasets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lalum, A.; Caridad López del Río, L.; Ceular Villamandos, N. Multi-Dimensional AI-Based Modeling of Real Estate Investment Risk: A Regulatory and Explainable Framework for Investment Decisions. Mathematics 2025, 13, 3413. https://doi.org/10.3390/math13213413
Lalum A, Caridad López del Río L, Ceular Villamandos N. Multi-Dimensional AI-Based Modeling of Real Estate Investment Risk: A Regulatory and Explainable Framework for Investment Decisions. Mathematics. 2025; 13(21):3413. https://doi.org/10.3390/math13213413
Chicago/Turabian StyleLalum, Avraham, Lorena Caridad López del Río, and Nuria Ceular Villamandos. 2025. "Multi-Dimensional AI-Based Modeling of Real Estate Investment Risk: A Regulatory and Explainable Framework for Investment Decisions" Mathematics 13, no. 21: 3413. https://doi.org/10.3390/math13213413
APA StyleLalum, A., Caridad López del Río, L., & Ceular Villamandos, N. (2025). Multi-Dimensional AI-Based Modeling of Real Estate Investment Risk: A Regulatory and Explainable Framework for Investment Decisions. Mathematics, 13(21), 3413. https://doi.org/10.3390/math13213413

