On a p(x)-Biharmonic Kirchhoff Problem with Logarithmic Nonlinearity
Abstract
1. Introduction
2. Preliminaries
3. Proof of the Result
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rajagopal, K.; Ruzicka, M. Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 2001, 13, 59–78. [Google Scholar] [CrossRef]
- Ružička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef]
- Fragnelli, G. Positive periodic solutions for a system of anisotropic parabolic equations. J. Math. Anal. Appl. 2010, 367, 204–228. [Google Scholar] [CrossRef]
- Barker, B.; Humpherys, J.; Zumbrun, K. One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics. J. Differ. Equ. 2010, 249, 2175–2213. [Google Scholar] [CrossRef]
- Garroni, A.; Kohn, R. Some three-dimensional problems related to dielectric breakdown and polycrystal plasticity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2003, 459, 2613–2625. [Google Scholar] [CrossRef]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Bouaam, H.; Ouaarabi, M.E.; Allalou, C.; Melliani, S. Variable exponent q(m)-Kirchhoff-type problems with nonlocal terms and logarithmic nonlinearity on compact Riemannian manifolds. Bull. Malays. Math. Sci. Soc. 2023, 46, 97. [Google Scholar] [CrossRef]
- Ancona, P.D.; Spagnolo, S. Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 1992, 108, 247–262. [Google Scholar] [CrossRef]
- Ono, K. Blowing up and global existence of solutions for some degenerate nonlinear wave equations with some dissipation. Nonlinear Anal. 1997, 30, 4449–4457. [Google Scholar] [CrossRef]
- Alves, C.; Corrêa, F.; Ma, T. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2003, 459, 2613–2625. [Google Scholar] [CrossRef]
- Avci, M.; Cekic, B.; Mashiyev, R.; Ma, T. Existence and multiplicity of the solutions of the p(x)-Kirchhoff type equation via genus theory. Comput. Math. Appl. 2005, 49, 85–93. [Google Scholar] [CrossRef]
- Cheng, B.; Wu, X.; Liu, J. Multiplicity of nontrivial solutions for Kirchhoff type problems. Bound. Value Probl. 2010, 2010, 268946. [Google Scholar] [CrossRef]
- Dai, G.; Hao, R. Existence of solutions for a p(x)-Kirchhoff-type equation. J. Math. Anal. Appl. 2009, 359, 275–284. [Google Scholar] [CrossRef]
- Júlio, F.; Corrêa, S.; Figueiredo, G. On an elliptic equation ofp-Kirchhoff type via variational methods. Bull. Aust. Math. Soc. 2006, 74, 263–277. [Google Scholar] [CrossRef]
- Liu, D. On a p-Kirchhoff equation via fountain theorem and dual fountain theorem. Nonlinear Anal. Theory Methods Appl. 2010, 72, 302–308. [Google Scholar] [CrossRef]
- Sun, J.; Tang, C. Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinear Anal. Theory Methods Appl. 2011, 74, 1212–1222. [Google Scholar] [CrossRef]
- Yucedag, Z.; Avci, M.; Mashiyev, R. On an elliptic system of p(x)-Kirchhoff-type under Neumann boundary condition. Math. Model. Anal. 2012, 17, 161–170. [Google Scholar] [CrossRef]
- Jaidane, R. On a weighted problem of p biharmonic type in the unit ball of RN with exponential growth non linearity. Topol. Methods Nonlinear Anal. 2025, 65, 535–562. [Google Scholar]
- Jaidane, R. Ground State Solutions for a Kirchhoff Type Equation Involving p-Biharmonic Operator with Exponential Growth non-linearity. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2025, 52, 150–169. [Google Scholar]
- Bouizem, Y.; Boulaaras, S.; Djebbar, B. Some existence results for an elliptic equation of Kirchoff-type with changing sign data and a logarithmic nonlinearity. Math. Methods Appl. Sci. 2019, 42, 2465–2474. [Google Scholar] [CrossRef]
- Chen, S.; Tang, X. Ground state sign-changing solutions for elliptic equations with logarithmic nonlinearity. Acta Math. Hung. 2019, 157, 27–38. [Google Scholar] [CrossRef]
- Tian, S. Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity. J. Math. Anal. Appl. 2017, 454, 816–828. [Google Scholar] [CrossRef]
- Truong, L. The Nehari manifold for a class of Schrödinger equation involving fractional p-Laplacian and sign-changing logarithmic nonlinearity. J. Math. Phys. 2019, 60, 111505. [Google Scholar]
- Truong, L. The Nehari manifold for fractional p-Laplacian equation with logarithmic nonlinearity on whole space. Comput. Math. Appl. 2019, 78, 3931–3940. [Google Scholar] [CrossRef]
- Xiang, M.; Hu, D.; Yang, D. Least energy solutions for fractional Kirchoff problems with logarithmic nonlinearity. Nonlinear Anal. 2020, 198, 111899. [Google Scholar] [CrossRef]
- Xiang, M.; Yang, D.; Zhang, B. Degenerate Kirchoff-type fractional diffusion problem with logarithmic nonlinearity. Asymptot. Anal. 2020, 118, 313–329. [Google Scholar]
- Fan, X.; Zhao, D. On the spaces Lp(x)(Ω) and Wk,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Edmunds, D.; Rakosnik, J. Sobolev embeddings with variable exponent. Stud. Math. 2000, 143, 267–293. [Google Scholar] [CrossRef]
- Fan, X.; Shen, J.; Zhao, D. Sobolev embedding theorems for spaces Wk,p(x)(Ω). J. Math. Anal. Appl. 2001, 262, 749–760. [Google Scholar] [CrossRef]
- Fu, Y.; Zang, A. Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal. 2008, 69, 3629–3636. [Google Scholar]
- Amrouss, A.E.; Ourraoui, A. Existence of solutions for a boundary value problem involving a p(x)-biharmonic operator. Bol. Soc. Parana. Mat. 2013, 31, 179–192. [Google Scholar] [CrossRef]
- Ayoujil, A.; Amrouss, A.E.I. Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent. Electron. J. Differ. Equ. 2011, 2011, 1–12. [Google Scholar]
- Biswas, R.; Bahrouni, A.; Fiscella, A. Fractional double phase Robin problem involving variable-order exponents and logarithm-type nonlinearity. Math. Methods Appl. Sci. 2022, 45, 11272–11296. [Google Scholar] [CrossRef]
- Willem, M. Minimax Theorems; Birkhäuser: Boston, MA, USA, 1996. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, D.; Chu, C. On a p(x)-Biharmonic Kirchhoff Problem with Logarithmic Nonlinearity. Mathematics 2025, 13, 3054. https://doi.org/10.3390/math13183054
Pan D, Chu C. On a p(x)-Biharmonic Kirchhoff Problem with Logarithmic Nonlinearity. Mathematics. 2025; 13(18):3054. https://doi.org/10.3390/math13183054
Chicago/Turabian StylePan, Dongyun, and Changmu Chu. 2025. "On a p(x)-Biharmonic Kirchhoff Problem with Logarithmic Nonlinearity" Mathematics 13, no. 18: 3054. https://doi.org/10.3390/math13183054
APA StylePan, D., & Chu, C. (2025). On a p(x)-Biharmonic Kirchhoff Problem with Logarithmic Nonlinearity. Mathematics, 13(18), 3054. https://doi.org/10.3390/math13183054