Modeling of Soliton Behavior in Nonlinear Transmission Line Systems
Abstract
1. Introduction
- It can be applied to a wide range of nonlinear evolution equations.
- It reduces complex nonlinear equations into simpler algebraic forms.
- It provides exact solutions in an efficient and straightforward manner.
- It yields diverse types of solutions, such as solitons and periodic waves.
- It offers closed-form expressions that facilitate qualitative analysis and comparison with numerical results.
2. Analytical Wave Solutions of Equation (3)
- Case 1: If and , then
- Case 2: If and , then
- Case 3: If , and , then
- Case 4: If , and , then
- Case 5: If , , and , then
- Case 6: If , , and , then
- Case 7: If and , then
- Case 10: If , and , then
- Case 11: If and , then
- Case 12: If , , and , then
3. Graphical Explanation
4. Stability Analysis
- If , the denominator is real and is purely imaginary. In this case, the perturbation is oscillatory in time, corresponding to marginal (neutral) stability.
- If , the expression becomes singular, indicating a threshold or bifurcation point.
- If , the denominator is imaginary and is real. One of the roots is positive, leading to exponential growth. Hence, the system is unstable.
5. Comparison of Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NPDEs | Nonlinear partial differential equations |
LWE | Lonngren wave equation |
EDAM | Extended direct algebraic method |
Appendix A. Methodology
- Step 1: Consider a general nth-order PDE:
- Case 1: If and , then.....
- Case 2: If and , then.....
- Case 3: If and , then.....
- Case 4: If and , then.....
- Case 5: If and , then.....
- Case 6: If and , then.....
- Case 7: If , then.
- Case 8: If , and , then.
- Case 9: If , then
- Case 10: If , then
- Case 11: If and , then..
- Case 12: If , and , then.Here,
References
- AL-Essa, L.A.; ur Rahman, M. Analysis of Lie symmetry, bifurcations with phase portraits, sensitivity and diverse W − M-shape soliton solutions for the (2 + 1)-dimensional evolution equation. Phys. Lett. A 2024, 525, 129928. [Google Scholar] [CrossRef]
- Farooq, K.; Tedjani, A.H.; Li, Z.; Hussain, E. Soliton Dynamics of the Nonlinear Kodama Equation with M-Truncated Derivative via Two Innovative Schemes: The Generalized Arnous Method and the Kudryashov Method. Fractal Fract. 2025, 9, 436. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, A.; Zhang, L.; Cui, R.; Lv, B.; Xiao, Z.; Xu, X. Light modulated magnetism and spin–orbit torque in a heavy metal/ferromagnet heterostructure based on van der Waals-layered ferroelectric materials. Appl. Phys. Lett. 2023, 123, 092406. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, T.; Lin, X.; Bao, Y.; Chang, S.; Sun, J.; Yuan, K. Unveiling causal relationship between white matter tracts and psychiatric disorders. Commun. Biol. 2025, 8, 1221. [Google Scholar] [CrossRef]
- Yan, H.; Yang, B.; Zhou, X.; Qiu, X.; Zhu, D.; Wu, H.; Qiu, T. Adsorption mechanism of hydrated Lu(OH)2+ and Al(OH)2+ ions on the surface of kaolinite. Powder Technol. 2022, 407, 117611. [Google Scholar] [CrossRef]
- Cao, J.; Liu, Y.; Wang, Z.; Liu, L. Arylgermylation of alkenes by a cooperative photoactivation and hydrogen atom transfer strategy. Org. Chem. Front. 2024, 11, 7098–7106. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, Y.; Xu, Y.; Liu, C.; Xiao, X.; Li, J.; Guo, H. Design and fabrication of a chalcogenide hollow-core anti-resonant fiber for mid-infrared applications. Opt. Express 2023, 31, 7659–7670. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, T.; ur Rahman, M. Lump, breathing inelastic collision phenomena and rogue wave solutions for a extended KP hierarchy-type equation by neural network-based method. Ain Shams Eng. J. 2025, 16, 103657. [Google Scholar] [CrossRef]
- ur Rahman, M.; Boulaaras, S.; Tabassum, S.; Baleanu, D. A deep neural network analysis of fractional omicron mathematical model with vaccination and booster dose. Alex. Eng. J. 2025, 118, 435–448. [Google Scholar] [CrossRef]
- San, S.; Beenish; Alshammari, F.S. Analytical and Dynamical Study of Solitary Waves in a Fractional Magneto-Electro-Elastic System. Fractal Fract. 2025, 9, 309. [Google Scholar] [CrossRef]
- Kopçasız, B.; Sağlam, F.N.K.; Emadifar, H.; Ahmed, K.K. Exploration of soliton solutions of the nonlinear Kraenkel-Manna-Merle system using innovative methods in ferromagnetic materials. Sci. Rep. 2025, 15, 27617. [Google Scholar] [CrossRef]
- Ansari, A.R.; Jhangeer, A.; Imran, M.; Talafha, A.M. Exploring the dynamics of multiplicative noise on the fractional stochastic Fokas-Lenells equation. Partial. Differ. Equ. Appl. Math. 2025, 14, 101232. [Google Scholar] [CrossRef]
- Gao, Z.; Wei, Z.; Liu, W.; Zhang, L.; Wen, S.; Guo, G. Global Prescribed Performance Control for 2-D Plane Vehicular Platoons With Small Overshoot: A Fixed-Time Composite Sliding Mode Control Approach. IEEE Trans. Intell. Transp. Syst. 2025. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, C.; Li, M.; Qi, Z.; Yang, X.; Lin, Y.; Cao, S. A review on curve edge based architectures under lateral loads. Thin-Walled Struct. 2025, 217, 113849. [Google Scholar] [CrossRef]
- Ma, C.; Huang, S.; Li, M.; He, J.; Totis, G.; Hua, C.; Weng, S. Highly efficient heat dissipation method of grooved heat pipe for thermal behavior regulation for spindle system working in low rotational speed. Int. Commun. Heat Mass Transf. 2025, 169, 109575. [Google Scholar] [CrossRef]
- Ma, C.; Li, M.; Liu, J.; Li, M.; He, J.; Totis, G.; Weng, S. High-efficiency topology optimization method for thermal-fluid problems in cooling jacket of high-speed motorized spindle. Int. Commun. Heat Mass Transf. 2025, 169, 109533. [Google Scholar] [CrossRef]
- Samreen, M. Bifurcation, Multistability, and Soliton Dynamics in the Stochastic Potential Korteweg-de Vries Equation. Int. J. Theor. Phys. 2025, 64, 1–22. [Google Scholar] [CrossRef]
- Samreen, M. Qualitative Behavior and Travelling Wave Solutions of the (n+ 1)-Dimensional Camassa-Holm Kadomtsev-Petviashvili Equation. Int. J. Geom. Methods Mod. Phys. 2025, 31, 2550275. [Google Scholar]
- Jhangeer, A.; Talafha, A.M.; Ansari, A.R. Analytical solutions and dynamical behaviors of the extended Bogoyavlensky-Konopelchenko equation in deep water dynamics. Phys. Scr. 2024, 100, 015279. [Google Scholar] [CrossRef]
- Beenish; Asim, M.; Boulaaras, S.; Rahman, M.U. Dynamical behaviour and solutions in the fractional Gross–Pitaevskii model. Math. Comput. Model. Dyn. Syst. 2025, 31, 2529190. [Google Scholar] [CrossRef]
- Samreen, M. Exploring quasi-periodic behavior, bifurcation, and traveling wave solutions in the double-chain DNA model. Chaos Solitons Fractals 2025, 192, 116052. [Google Scholar]
- Hussain, E.; Tedjani, A.H.; Farooq, K.; Beenish. Modeling and Exploration of Localized Wave Phenomena in Optical Fibers Using the Generalized Kundu–Eckhaus Equation for Femtosecond Pulse Transmission. Axioms 2025, 14, 513. [Google Scholar] [CrossRef]
- Lonngren, K.; Landt, D.; Burde, C.; Kolosick, J. Observation of shocks on a nonlinear dispersive transmission line. IEEE Trans. Circuits Syst. 1975, 22, 376–378. [Google Scholar] [CrossRef]
- Jhangeer, A.; Ansari, A.R.; Imran, M.; Riaz, M.B. Lie symmetry analysis, and traveling wave patterns arising the model of transmission lines. AIMS Math. 2024, 9, 18013–18033. [Google Scholar] [CrossRef]
- Lonngren, K.E.; Hsuan, H.C.S.; Ames, W.F. On the soliton, invariant, and shock solutions of a fourth-order nonlinear equation. J. Math. Anal. Appl. 1975, 52, 538–545. [Google Scholar] [CrossRef]
- Akçaği, Ş.; Aydemir, T. Comparison between the (G′G)-expansion method and the modified extended tanh method. Open Phys. 2016, 14, 88–94. [Google Scholar] [CrossRef]
- Someda, C.G. Electromagnetic Waves; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Drazin, P.G.; Johnson, R.S. Solitons: An Introduction; Cambridge University Press: Cambridge, UK, 1989; Volume 2. [Google Scholar]
- Guan, Y.; Cui, Z.; Zhou, W. Reconstruction in off-axis digital holography based on hybrid clustering and the fractional Fourier transform. Opt. Laser Technol. 2025, 186, 112622. [Google Scholar] [CrossRef]
- Xu, J.; Fan, L.; Chen, C.; Lu, G.; Li, B.; Tu, T. Study on fuel injection stability improvement in marine low-speed dual-fuel engines. Appl. Therm. Eng. 2024, 253, 123729. [Google Scholar] [CrossRef]
- Zhang, D.; Li, B.; Wei, Y.; Zhang, H.; Lu, G.; Fan, L.; Xu, J. Investigation of injection and flow characteristics in an electronic injector featuring a novel control valve. Energy Convers. Manag. 2025, 327, 119609. [Google Scholar] [CrossRef]
- He, Q.; Rahman, M.U.; Hu, J.; Cui, J. Dynamic link between carbon trading resilience and low-carbon stock returns: A time-varying Granger causality test. Fractals 2025, 2540181, 15. [Google Scholar]
- Zhang, X.; Yang, X.; He, Q. Multi-scale systemic risk and spillover networks of commodity markets in the bullish and bearish regimes. N. Am. J. Econ. Financ. 2022, 62, 101766. [Google Scholar] [CrossRef]
- Tian, A.; Zhang, W.; Hei, J.; Hua, Y.; Liu, X.; Wang, J.; Gao, R. Resistance reduction method for building transmission and distribution systems based on an improved random forest model: A tee case study. Build. Environ. 2025, 282, 113256. [Google Scholar] [CrossRef]
- Li, B.; Liang, H.; He, Q. Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model. Chaos Solitons Fractals 2021, 146, 110856. [Google Scholar] [CrossRef]
- Li, B.; Liang, H.; Shi, L.; He, Q. Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solitons Fractals 2022, 156, 111860. [Google Scholar] [CrossRef]
- Sha, X.; Si, X.; Zhu, Y.; Wang, S.; Zhao, Y. Automatic three-dimensional reconstruction of transparent objects with multiple optimization strategies under limited constraints. Image Vis. Comput. 2025, 160, 105580. [Google Scholar] [CrossRef]
- Yue, T. Some results on the nonuniform polynomial dichotomy of discrete evolution families. Hiroshima Math. J. 2025, 55, 183–201. [Google Scholar] [CrossRef]
- Jhangeer, A. Ferroelectric frontiers: Navigating phase portraits, chaos, multistability and sensitivity in thin-film dynamics. Chaos Solitons Fractals 2024, 188, 115540. [Google Scholar] [CrossRef]
- Liu, J.; Ma, C.; Li, M.; He, J.; Totis, G.; Hua, C.; Weng, S. A compressed tensor-based edge-deployable framework for multi-source thermal error compensation in face gear machining. Adv. Eng. Inform. 2025, 68, 103802. [Google Scholar] [CrossRef]
- Fang, Q.; Sun, Q.; Ge, J.; Wang, H.; Qi, J. Multidimensional Engineering of Nanoconfined Catalysis: Frontiers in Carbon-Based Energy Conversion and Utilization. Catalysts 2025, 15, 477. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, B.; Chen, L.; Tian, F.; Xu, J.; Liu, J.; Zhu, B. Effect of lateral stress and loading paths on direct shear strength and fracture of granite under true triaxial stress state by a self-developed device. Eng. Fract. Mech. 2025, 318, 110952. [Google Scholar] [CrossRef]
- Ren, F.; Liu, X.; Charles, V.; Zhao, X.; Balsalobre-Lorente, D. Integrated efficiency and influencing factors analysis of ESG and market performance in thermal power enterprises in China: A hybrid perspective based on parallel DEA and a benchmark model. Energy Econ. 2025, 141, 108138. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, M.; Li, D.; Wu, R.; Lin, R.; Yang, C. An AUV-enabled dockable platform for long-term dynamic and static monitoring of marine pastures. IEEE J. Ocean. Eng. 2024, 50, 276–293. [Google Scholar] [CrossRef]
Reference | Work |
---|---|
[26] | The authors work on soliton solutions using the method and the modified extended tanh method, but without providing any graphical explanation, which is a limitation of this study. |
[24] | The authors work on soliton solutions using the tanh method. They obtain only two types of solitons: kink and anti-kink. Moreover, the soliton solution is derived solely in the tanh form. In addition, they study the dynamical behavior of the model. |
Current study | In this study, the extended algebraic method is applied to obtain soliton solutions. Unlike other approaches, this method provides all types of solutions and allows a detailed discussion of their graphical behavior. An additional advantage of the extended algebraic method is its simplicity, effectiveness, and ability to generate diverse solution structures that highlight the physical characteristics of the model. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medhit, S.; Beenish; Alshammari, F.S.; Bukhar, I. Modeling of Soliton Behavior in Nonlinear Transmission Line Systems. Mathematics 2025, 13, 2997. https://doi.org/10.3390/math13182997
Medhit S, Beenish, Alshammari FS, Bukhar I. Modeling of Soliton Behavior in Nonlinear Transmission Line Systems. Mathematics. 2025; 13(18):2997. https://doi.org/10.3390/math13182997
Chicago/Turabian StyleMedhit, Sadia, Beenish, Fehaid Salem Alshammari, and Isha Bukhar. 2025. "Modeling of Soliton Behavior in Nonlinear Transmission Line Systems" Mathematics 13, no. 18: 2997. https://doi.org/10.3390/math13182997
APA StyleMedhit, S., Beenish, Alshammari, F. S., & Bukhar, I. (2025). Modeling of Soliton Behavior in Nonlinear Transmission Line Systems. Mathematics, 13(18), 2997. https://doi.org/10.3390/math13182997