On the Autonomic Control of Heart Rate Variability: How the Mean Heart Rate Affects Spectral and Complexity Analysis and a Way to Mitigate Its Influence
Abstract
1. Introduction
2. Materials and Methods
2.1. Generation of Synthesized CL Series
2.2. Autonomic Modulation of Synthesized CL Series
2.3. HRV Measures
2.4. From CL(n) to DDR(n) Series
2.5. Real Heart Rate Series
3. Results
3.1. Synthesized Series
3.2. Real Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Severe | Mild | Light | Reference | Light | Mild | Severe | |
---|---|---|---|---|---|---|---|
Bradycardia | Normocardia | Tachycardia | |||||
SDNN | 13 | 15 | 15 | N/A | −6 | −16 | −20 |
RMSSD | 14 | 21 | 23 | N/A | −16 | −49 | −56 |
Spectral Indices | |||||||
Total | 20 | 20 | 31 | N/A | −5 | −24 | −20 |
VLF | 12 | 14 | 15 | N/A | −3 | −15 | −56 |
LF | 21 | 15 | 18 | N/A | −4 | −17 | −77 |
HF | 17 | 23 | 24 | N/A | −19 | −83 | −51 |
LF/HF | 4 | 2 | 1.0 | N/A | −0.7 | −1.5 | −43 |
LFnu | 3 | 2 | 1.0 | N/A | −0.7 | −1.5 | −388 |
HFnu | −7 | −2 | −1.0 | N/A | 0.7 | 1.5 | −0.8 |
β-slope | 0.6 | 0.4 | −0.1 | N/A | −0.2 | −0.1 | −0.8 |
Entropy Indices (Beat Scales) | |||||||
SE | 4 | 5 | 7 | N/A | −2 | −8 | −19 |
SE5 | −10 | −8 | −3 | N/A | 1 | −2 | 3 |
CIS | −5 | −6 | −3 | N/A | −3 | −5 | −11 |
CIL | −1 | −2 | −2 | N/A | 1 | 4 | 7 |
Entropy Indices (Temporal Scales) | |||||||
MSE7 | 0.5 | 0.7 | 0.7 | N/A | −0.8 | −0.1 | −0.4 |
MSEHF | 0.0 | −0.4 | 0.2 | N/A | −0.6 | −0.8 | −0.4 |
MSELF | 0.9 | 0.4 | 1.2 | N/A | −0.4 | −0.1 | −0.1 |
Fractal Indices (Beat Scales) | |||||||
α1 | −25 | −12 | −4 | N/A | 0.1 | 1 | 28 |
α2 | 7 | 5 | 4 | N/A | −3 | 1 | 5 |
Fractal Indices (Temporal Scale) | |||||||
αS | 1 | 0.6 | 0.4 | N/A | −0.9 | −0.9 | −0.9 |
αL | 0.9 | 0.5 | 0.8 | N/A | 0.2 | 0.2 | −0.1 |
Severe | Mild | Light | Reference | Light | Mild | Severe | |
---|---|---|---|---|---|---|---|
Bradycardia | Normocardia | Tachycardia | |||||
SDNN | −0.6 | −0.3 | −1.6 | N/A | −0.4 | −0.7 | −0.1 |
RMSSD | 20 | 20 | 21 | N/A | −7 | −32 | −59 |
Spectral Indices | |||||||
Total | −1.4 | −0.8 | −2.0 | N/A | −0.3 | −0.6 | −0.1 |
VLF | −0.5 | −0.3 | −0.4 | N/A | −0.3 | −0.5 | −0.4 |
LF | −1.0 | −0.6 | −2.0 | N/A | −0.3 | −0.7 | 0.0 |
HF | −12 | −8 | −0.4 | N/A | 0.8 | 0.8 | 0.7 |
LF/HF | 1.3 | 0.1 | −1.8 | N/A | −0.4 | −0.8 | 0.0 |
LFnu | 1.2 | 0.1 | −1.7 | N/A | −0.4 | −0.8 | −0.1 |
HFnu | −1.3 | −0.1 | 1.8 | N/A | 0.4 | 0.8 | 0.1 |
β-slope | 0.8 | 0.5 | −0.1 | N/A | −0.2 | −0.1 | −0.2 |
Entropy Indices (Beat Scales) | |||||||
SE | 10 | 9 | 7 | N/A | −2 | −10 | −23 |
SE5 | −11 | −9 | −4 | N/A | 1 | −2 | 4 |
CIS | −9 | −7 | −3 | N/A | −3 | −9 | −15 |
CIL | −3 | −3 | −2 | N/A | 1 | 4 | 7 |
Entropy Indices (Temporal Scales) | |||||||
MSE7 | 0.1 | 0.3 | 0.3 | N/A | −0.7 | 0.1 | 0.0 |
MSEHF | −0.4 | −0.7 | 0.0 | N/A | −0.4 | −0.4 | 0.0 |
MSELF | 0.2 | −0.1 | 0.6 | N/A | −0.2 | 0.2 | 0.4 |
Fractal Indices (Beat Scales) | |||||||
α1 | −27 | −13 | −5 | N/A | 0.2 | 2 | 30 |
α2 | 6 | 6 | 4 | N/A | −3 | 1 | 5 |
Fractal Indices (Temporal Scale) | |||||||
αS | −0.5 | −0.4 | 0 | N/A | −0.6 | −0.4 | −0.2 |
αL | −0.3 | 0 | 0.6 | N/A | 0.5 | 0.4 | 0.1 |
References
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Malik, M. Task Force of the European Society of Cardiology; The North American Society of Pacing Electrophysiology. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Billman, G.E. Heart Rate Variability—A Historical Perspective. Front. Physiol. 2011, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Mccraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-Regulatory Capacity, and Health Risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J.M.; Schouten, E.G.; Klootwijk, P.; Pool, J.; Swenne, C.A.; Kromhout, D. Heart Rate Variability from Short Electrocardiographic Recordings Predicts Mortality from All Causes in Middle-Aged and Elderly Men: The Zutphen Study. Am. J. Epidemiol. 1997, 145, 899–908. [Google Scholar] [CrossRef]
- Jarczok, M.N.; Weimer, K.; Braun, C.; Williams, D.P.; Thayer, J.F.; Gündel, H.O.; Balint, E.M. Heart Rate Variability in the Prediction of Mortality: A Systematic Review and Meta-Analysis of Healthy and Patient Populations. Neurosci. Biobehav. Rev. 2022, 143, 104907. [Google Scholar] [CrossRef]
- Jelinek, H.F.; Md Imam, H.; Al-Aubaidy, H.; Khandoker, A.H. Association of Cardiovascular Risk Using Non-Linear Heart Rate Variability Measures with the Framingham Risk Score in a Rural Population. Front. Physiol. 2013, 4, 52475. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Stein, P.K. Heart Rate Variability in Risk Stratification of Cardiac Patients. Prog. Cardiovasc. Dis. 2013, 56, 153–159. [Google Scholar] [CrossRef]
- Voss, A.; Schroeder, R.; Vallverdú, M.; Schulz, S.; Cygankiewicz, I.; Vázquez, R.; Bayés De Luna, A.; Caminal, P. Short-Term vs. Long-Term Heart Rate Variability in Ischemic Cardiomyopathy Risk Stratification. Front. Physiol. 2013, 4, 364. [Google Scholar] [CrossRef]
- Rocchetti, M.; Malfatto, G.; Lombardi, F.; Zaza, A. Role of the Input/Output Relation of Sinoatrial Myocytes in Cholinergic Modulation of Heart Rate Variability. J. Cardiovasc. Electrophysiol. 2000, 11, 522–530. [Google Scholar] [CrossRef]
- Zaza, A.; Lombardi, F. Autonomic Indexes Based on the Analysis of Heart Rate Variability: A View from the Sinus Node. Cardiovasc. Res. 2001, 50, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Dias Da Silva, V.J.; Tobaldini, E.; Rocchetti, M.; Wu, M.A.; Malfatto, G.; Montano, N.; Zaza, A. Modulation of Sympathetic Activity and Heart Rate Variability by Ivabradine. Cardiovasc. Res. 2015, 108, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Monfredi, O.; Lyashkov, A.E.; Johnsen, A.-B.; Inada, S.; Schneider, H.; Wang, R.; Nirmalan, M.; Wisloff, U.; Maltsev, V.A.; Lakatta, E.G.; et al. Biophysical Characterization of the Underappreciated and Important Relationship Between Heart Rate Variability and Heart Rate. Hypertension 2014, 64, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Whelton, S.P.; Narla, V.; Blaha, M.J.; Nasir, K.; Blumenthal, R.S.; Jenny, N.S.; Al-Mallah, M.H.; Michos, E.D. Association Between Resting Heart Rate and Inflammatory Biomarkers (High-Sensitivity C-Reactive Protein, Interleukin-6, and Fibrinogen) (from the Multi-Ethnic Study of Atherosclerosis). Am. J. Cardiol. 2014, 113, 644–649. [Google Scholar] [CrossRef]
- Cooper, T.M.; McKinley, P.S.; Seeman, T.E.; Choo, T.-H.; Lee, S.; Sloan, R.P. Heart Rate Variability Predicts Levels of Inflammatory Markers: Evidence for the Vagal Anti-Inflammatory Pathway. Brain Behav. Immun. 2015, 49, 94–100. [Google Scholar] [CrossRef]
- Olivieri, F.; Biscetti, L.; Pimpini, L.; Pelliccioni, G.; Sabbatinelli, J.; Giunta, S. Heart Rate Variability and Autonomic Nervous System Imbalance: Potential Biomarkers and Detectable Hallmarks of Aging and Inflammaging. Ageing Res. Rev. 2024, 101, 102521. [Google Scholar] [CrossRef]
- Santos, M.A.A.; Sousa, A.C.S.; Reis, F.P.; Santos, T.R.; Lima, S.O.; Barreto-Filho, J.A. Does the Aging Process Significantly Modify the Mean Heart Rate? Arq. Bras. Cardiol. 2013, 101, 388–398. [Google Scholar] [CrossRef]
- Krüger, C. The Bradycardic Agent Zatebradine Enhances Baroreflex Sensitivity and Heart Rate Variability in Rats Early after Myocardial Infarction. Cardiovasc. Res. 2000, 45, 900–912. [Google Scholar] [CrossRef]
- D’Souza, A.; Bucchi, A.; Johnsen, A.B.; Logantha, S.J.R.J.; Monfredi, O.; Yanni, J.; Prehar, S.; Hart, G.; Cartwright, E.; Wisloff, U.; et al. Exercise Training Reduces Resting Heart Rate via Downregulation of the Funny Channel HCN4. Nat. Commun. 2014, 5, 3775. [Google Scholar] [CrossRef]
- Sen, J.; McGill, D. Fractal Analysis of Heart Rate Variability as a Predictor of Mortality: A Systematic Review and Meta-Analysis. Chaos: Interdiscip. J. Nonlinear Sci. 2018, 28, 072101. [Google Scholar] [CrossRef]
- Hu, M.; Liang, H. Multiscale Entropy: Recent Advances. In Complexity and Nonlinearity in Cardiovascular Signals; Barbieri, R., Scilingo, E.P., Valenza, G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 115–138. ISBN 978-3-319-58708-0. [Google Scholar] [CrossRef]
- Henriques, T.; Ribeiro, M.; Teixeira, A.; Castro, L.; Antunes, L.; Costa-Santos, C. Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review. Entropy 2020, 22, 309. [Google Scholar] [CrossRef] [PubMed]
- Huikuri, H.V.; Perkiömäki, J.S.; Maestri, R.; Pinna, G.D. Clinical Impact of Evaluation of Cardiovascular Control by Novel Methods of Heart Rate Dynamics. Philos. Transact. A Math. Phys. Eng. Sci. 2009, 367, 1223–1238. [Google Scholar] [CrossRef] [PubMed]
- Voss, A.; Schulz, S.; Schroeder, R.; Baumert, M.; Caminal, P. Methods Derived from Nonlinear Dynamics for Analysing Heart Rate Variability. Phil. Trans. R. Soc. A. 2009, 367, 277–296. [Google Scholar] [CrossRef] [PubMed]
- Sassi, R.; Cerutti, S.; Lombardi, F.; Malik, M.; Huikuri, H.V.; Peng, C.K.; Schmidt, G.; Yamamoto, Y. Advances in Heart Rate Variability Signal Analysis: Joint Position Statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association Co-Endorsed by the Asia Pacific Heart Rhythm Society. Europace 2015, 17, 1341–1353. [Google Scholar] [CrossRef]
- Kobayashi, M.; Musha, T. 1/f Fluctuation of Heartbeat Period. IEEE Trans. Biomed. Eng. 1982, 29, 456–457. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Hausdorff, J.M.; Mietus, J.E.; Stanley, H.E.; Goldberger, A.L. Fractal Mechanisms and Heart Rate Dynamics. Long-Range Correlations and Their Breakdown with Disease. J. Electrocardiol. 1995, 28 (Suppl. S1), 59–65. [Google Scholar] [CrossRef]
- Julien, C. The Enigma of Mayer Waves: Facts and Models. Cardiovasc. Res. 2006, 70, 12–21. [Google Scholar] [CrossRef]
- Di Rienzo, M.; Castiglioni, P.; Parati, G.; Mancia, G.; Pedotti, A. Effects of Sino-Aortic Denervation on Spectral Characteristics of Blood Pressure and Pulse Interval Variability: A Wide-Band Approach. Med. Biol. Eng. Comput. 1996, 34, 133–141. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef]
- Valencia, J.F.; Porta, A.; Vallverdu, M.; Claria, F.; Baranowski, R.; Orlowska-Baranowska, E.; Caminal, P. Refined Multiscale Entropy: Application to 24-h Holter Recordings of Heart Period Variability in Healthy and Aortic Stenosis Subjects. IEEE Trans. Biomed. Eng. 2009, 56, 2202–2213. [Google Scholar] [CrossRef]
- Tang, S.-Y.; Ma, H.-P.; Lin, C.; Lo, M.-T.; Lin, L.-Y.; Chen, T.-Y.; Wu, C.-K.; Chiang, J.-Y.; Lee, J.-K.; Hung, C.-S.; et al. Heart Rhythm Complexity Analysis in Patients with Inferior ST-Elevation Myocardial Infarction. Sci. Rep. 2023, 13, 20861. [Google Scholar] [CrossRef] [PubMed]
- Faini, A.; Caravita, S.; Parati, G.; Castiglioni, P. Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach. Entropy 2019, 21, 1224. [Google Scholar] [CrossRef]
- Eke, A.; Herman, P.; Kocsis, L.; Kozak, L.R. Fractal Characterization of Complexity in Temporal Physiological Signals. Physiol. Meas. 2002, 23, R1–R38. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart Rate Variability Analysis Software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Castiglioni, P.; Parati, G.; Di Rienzo, M.; Carabalona, R.; Cividjian, A.; Quintin, L. Scale Exponents of Blood Pressure and Heart Rate during Autonomic Blockade as Assessed by Detrended Fluctuation Analysis. J. Physiol. 2011, 589, 355–369. [Google Scholar] [CrossRef]
- Watanabe, N.; Reece, J.; Polus, B.I. Effects of Body Position on Autonomic Regulation of Cardiovascular Function in Young, Healthy Adults. Chiropr. Man. Ther. 2007, 15, 19. [Google Scholar] [CrossRef]
- Zuttin, R.S.; Moreno, M.A.; César, M.C.; Martins, L.E.B.; Catai, A.M. Evaluation of Autonomic Heart Rate Modulation among Sedentary Uoung Men, in Sitting and Supine Postures. Rev. Bras. Fisioter. 2008, 12, 7–12. [Google Scholar]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Kerby, D.S. The Simple Difference Formula: An Approach to Teaching Nonparametric Correlation. Compr. Psychol. 2014, 3, 11.IT.3.1. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-1-134-74270-7. [Google Scholar]
- Tsuji, H.; Venditti, F.J.; Manders, E.S.; Evans, J.C.; Larson, M.G.; Feldman, C.L.; Levy, D. Determinants of Heart Rate Variability. J. Am. Coll. Cardiol. 1996, 28, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Sacha, J. Why Should One Normalize Heart Rate Variability with Respect to Average Heart Rate. Front. Physiol. 2013, 4, 68271. [Google Scholar] [CrossRef] [PubMed]
- Sacha, J.; Pluta, W. Alterations of an Average Heart Rate Change Heart Rate Variability Due to Mathematical Reasons. Int. J. Cardiol. 2008, 128, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Sacha, J.; Sobon, J.; Sacha, K.; Barabach, S. Heart Rate Impact on the Reproducibility of Heart Rate Variability Analysis. Int. J. Cardiol. 2013, 168, 4257–4259. [Google Scholar] [CrossRef]
- Poehling, C.P. The Effects of Submaximal and Maximal Exercise on Heart Rate Variability. Int. J. Exerc. Sci. 2019, 12, 9–14. [Google Scholar] [CrossRef]
- Leite, A.S.; Rocha, A.P.; Silva, M.E.; Costa, O. Modelling Long-Term Heart Rate Variability: An ARFIMA Approach. Biomed. Technol./Biomed. Eng. 2006, 51, 215–219. [Google Scholar] [CrossRef]
- Castiglioni, P.; Parati, G.; Lombardi, C.; Quintin, L.; Di Rienzo, M. Assessing the Fractal Structure of Heart Rate by the Temporal Spectrum of Scale Exponents: A New Approach for Detrended Fluctuation Analysis of Heart Rate Variability. Biomed. Technol. 2011, 56, 175–183. [Google Scholar] [CrossRef]
- Kazmi, S.Z.H.; Zhang, H.; Aziz, W.; Monfredi, O.; Abbas, S.A.; Shah, S.A.; Kazmi, S.S.H.; Butt, W.H. Inverse Correlation between Heart Rate Variability and Heart Rate Demonstrated by Linear and Nonlinear Analysis. PLoS ONE 2016, 11, e0157557. [Google Scholar] [CrossRef]
- Malfatto, G.; Rocchetti, M.; Zaza, A. The Role of the Autonomic System in Rate-Dependent Repolarization Changes. Heart Rhythm. 2010, 7, 1700–1703. [Google Scholar] [CrossRef]
- Li, G.-R.; Lau, C.-P.; Leung, T.-K.; Nattel, S. Ionic Current Abnormalities Associated with Prolonged Action Potentials in Cardiomyocytes from Diseased Human Right Ventricles. Heart Rhythm. 2004, 1, 460–468. [Google Scholar] [CrossRef]
- Pollard, C.E.; Abi Gerges, N.; Bridgland-Taylor, M.H.; Easter, A.; Hammond, T.G.; Valentin, J.-P. An Introduction to QT Interval Prolongation and Non-Clinical Approaches to Assessing and Reducing Risk. Br. J. Pharmacol. 2010, 159, 12–21. [Google Scholar] [CrossRef]
HR0 (bpm) | CL0 (s) | DDR0 (mV/s) | Significance |
---|---|---|---|
40 | 1.500 | 12.3 | Severe bradycardia |
48 | 1.250 | 15.3 | Mild bradycardia |
60 | 1.000 | 20.2 | Light bradycardia |
68.6 | 0.875 | 24.0 | Reference normocardia |
80 | 0.750 | 29.6 | Light tachycardia |
120 | 0.500 | 55.9 | Mild tachycardia |
240 | 0.250 | 492.8 | Severe tachycardia |
Severe | Mild | Light | Reference | Light | Mild | Severe | |
---|---|---|---|---|---|---|---|
Bradycardia | Normocardia | Tachycardia | |||||
HR0 (bpm) | 40 | 48 | 60 | 68.6 | 80 | 120 | 240 |
SDNN (ms) | 137 [3.6] | 92 [2.4] | 53 [1.4] | 38 [1] | 24 [0.6] | 6.7 [0.2] | 0.10 [0.003] |
RMSSD (ms) | 130 [5.0] | 79 [3.0] | 40 [1.5] | 26 [1] | 15 [0.6] | 3.0 [0.1] | 0.02 [0.001] |
Spectral Indices | |||||||
Total (ms2) | 18,281 [12.8] | 8181 [5.7] | 2768 [1.9] | 1431 [1] | 596 [0.4] | 46 [0.03] | 8 × 10−3 [6 × 10−6] |
VLF (ms2) | 7158 [14.5] | 3090 [6.2] | 988 [2.0] | 495 [1] | 198 [0.4] | 15 [0.03] | 3 × 10−3 [6 × 10−6] |
LF (ms2) | 8420 [13.5] | 3636 [5.8] | 1193 [1.9] | 622 [1] | 253 [0.4] | 19 [0.03] | 3 × 10−3 [5 × 10−6] |
HF (ms2) | 2573 [8.2] | 1451 [4.6] | 587 [1.9] | 313 [1] | 143 [0.5] | 13 [0.04] | 2 × 10−3 [7 × 10−6] |
LF/HF | 3.3 [1.7] | 2.5 [1.3] | 2.0 [1.0] | 2.0 [1] | 1.8 [0.9] | 1.5 [0.7] | 1.6 [0.8] |
LFnu (%) | 76 [1.1] | 71 [1.1] | 67 [1.0] | 66 [1] | 63 [1.0] | 59 [0.9] | 61 [0.9] |
HFnu (%) | 23 [0.7] | 29 [0.9] | 33 [1.0] | 33 [1] | 37 [1.1] | 41 [1.2] | 39 [1.2] |
β-slope | 0.94 [1.0] | 0.94 [1.0] | 0.95 [1.0] | 0.95 [1] | 0.95 [1.0] | 0.95 [1.0] | 0.95 [1.0] |
Entropy Indices (Beat Scales) | |||||||
SE | 1.98 [1.1] | 1.94 [1.1] | 1.85 [1.0] | 1.78 [1] | 1.70 [1.0] | 1.42 [0.8] | 0.85 [0.5] |
SE5 | 1.34 [0.7] | 1.59 [0.8] | 1.89 [1.0] | 1.98 [1] | 2.00 [1.0] | 1.87 [0.9] | 2.06 [1.0] |
CIS | 8.90 [0.9] | 9.28 [1.0] | 9.58 [1.0] | 9.77 [1] | 9.63 [1.0] | 9.25 [0.9] | 7.99 [0.8] |
CIL | 19.9 [1.0] | 19.6 [1.0] | 20.1 [1.0] | 20.4 [1] | 20.9 [1.0] | 23.7 [1.2] | 29.4 [1.4] |
Entropy Indices (Temporal Scales) | |||||||
MSE7 | 1.45 [1.0] | 1.44 [1.0] | 1.42 [1.0] | 1.41 [1] | 1.39 [1.0] | 1.40 [1.0] | 1.39 [1.0] |
MSEHF | 1.88 [1.0] | 1.87 [1.0] | 1.89 [1.0] | 1.88 [1] | 1.87 [1.0] | 1.86 [1.0] | 1.87 [1.0] |
MSELF | 1.33 [1.0] | 1.30 [1.0] | 1.30 [1.0] | 1.29 [1] | 1.27 [1.0] | 1.28 [1.0] | 1.28 [1.0] |
Fractal Indices (Beat Scales) | |||||||
α1 | 0.62 [0.6] | 0.81 [0.7] | 1.01 [0.9] | 1.08 [1] | 1.08 [1.0] | 1.16 [1.1] | 1.74 [1.6] |
α2 | 0.77 [1.4] | 0.70 [1.3] | 0.61 [1.1] | 0.54 [1] | 0.50 [0.9] | 0.57 [1.0] | 0.99 [1.8] |
Fractal Indices (Temporal Scale) | |||||||
αS | 0.87 [1.1] | 0.84 [1.0] | 0.83 [1.0] | 0.82 [1] | 0.80 [1.0] | 0.80 [1.0] | 0.79 [1.0] |
αL | 0.63 [1.0] | 0.63 [1.0] | 0.62 [1.0] | 0.61 [1] | 0.61 [1.0] | 0.62 [1.0] | 0.61 [1.0] |
Severe | Mild Bradycardia | Light | Reference Normocardia | Light | Mild Tachycardia | Severe | |
---|---|---|---|---|---|---|---|
DDR0′ (mV/s) | 12.2 | 15.1 | 20.0 | 23.8 | 29.5 | 55.6 | 492.4 |
SDNN (mV/s) | 1.35 [1.0] | 1.38 [1.0] | 1.38 [1.0] | 1.40 [1] | 1.36 [1.0] | 1.34 [1.0] | 1.39 [1.0] |
RMSSD (mV/s) | 1.52 [1.5] | 1.36 [1.3] | 1.15 [1.1] | 1.03 [1] | 0.90 [0.9] | 0.61 [0.6] | 0.32 [0.3] |
Spectral Indices | |||||||
Total (mV/s)2 | 1.68 [0.9] | 1.81 [0.9] | 1.87 [1.0] | 1.92 [1] | 1.86 [1.0] | 1.78 [0.9] | 1.90 [1.0] |
VLF (mV/s)2 | 0.56 [0.9] | 0.59 [1.0] | 0.60 [1.0] | 0.61 [1] | 0.58 [0.9] | 0.55 [0.9] | 0.56 [0.9] |
LF (mV/s)2 | 0.72 [0.9] | 0.75 [0.9] | 0.76 [1.0] | 0.80 [1] | 0.76 [1.0] | 0.71 [0.9] | 0.82 [1.0] |
HF (mV/s)2 | 0.40 [0.8] | 0.47 [0.9] | 0.50 [1.0] | 0.51 [1] | 0.52 [1.0] | 0.52 [1.0] | 0.51 [1.0] |
LF/HF | 1.8 [1.2] | 1.6 [1.0] | 1.5 [1.0] | 1.6 [1] | 1.5 [0.9] | 1.4 [0.9] | 1.6 [1.0] |
LFnu (%) | 64 [1.0] | 61 [1.0] | 60 [1.0] | 61 [1] | 59 [1.0] | 57 [0.9] | 61 [1.0] |
HFnu (%) | 36 [0.9] | 39 [1.0] | 40 [1.0] | 39 [1] | 41 [1.0] | 42 [1.1] | 39 [1.0] |
β-slope | 0.94 [1.0] | 0.94 [1.0] | 0.95 [1.0] | 0.95 [1] | 0.95 [1.0] | 0.95 [1.0] | 0.95 [1.0] |
Entropy Indices (Beat Scales) | |||||||
SE | 2.14 [1.2] | 2.07 [1.1] | 1.94 [1.0] | 1.85 [1] | 1.76 [1.0] | 1.44 [0.8] | 0.86 [0.5] |
SE5 | 1.29 [0.7] | 1.55 [0.8] | 1.86 [1.0] | 1.96 [1] | 1.99 [1.0] | 1.86 [1.0] | 2.06 [1.1] |
CIS | 8.92 [0.9] | 9.31 [0.9] | 9.62 [1.0] | 9.83 [1] | 9.68 [1.0] | 9.31 [0.9] | 8.02 [0.8] |
CIL | 18.8 [0.9] | 18.8 [0.9] | 19.5 [1.0] | 19.9 [1] | 20.6 [1.0] | 23.5 [1.2] | 29.4 [1.5] |
Entropy Indices (Temporal Scales) | |||||||
MSE7 | 1.39 [1.0] | 1.40 [1.0] | 1.39 [1.0] | 1.39 [1] | 1.36 [1.0] | 1.39 [1.0] | 1.39 [1.0] |
MSEHF | 1.85 [1.0] | 1.85 [1.0] | 1.86 [1.0] | 1.86 [1] | 1.85 [1.0] | 1.85 [1.0] | 1.86 [1.0] |
MSELF | 1.27 [1.0] | 1.26 [1.0] | 1.27 [1.0] | 1.26 [1] | 1.25 [1.0] | 1.27 [1.0] | 1.28 [1.0] |
Fractal Indices (Beat Scales) | |||||||
α1 | 0.56 [0.6] | 0.75 [0.7] | 0.95 [0.9] | 1.02 [1] | 1.03 [1.0] | 1.14 [1.1] | 1.73 [1.7] |
α2 | 0.73 [1.4] | 0.67 [1.3] | 0.59 [1.1] | 0.53 [1] | 0.49 [0.9] | 0.56 [1.1] | 0.99 [1.9] |
Fractal Indices (Temporal Scale) | |||||||
αS | 0.79 [1.0] | 0.79 [1.0] | 0.80 [1.0] | 0.80 [1] | 0.78 [1.0] | 0.79 [1.0] | 0.79 [1.0] |
αL | 0.59 [1.0] | 0.60 [1.0] | 0.60 [1.0] | 0.60 [1] | 0.60 [1.0] | 0.61 [1.0] | 0.60 [1.0] |
Supine | Sitting | p-Value | r Effect Size (Meaning) | |
---|---|---|---|---|
RRI | ||||
mean (ms) | 951 [152] | 843 [144] | 2 × 10−6 | −0.89 (large) |
SDNN (ms) | 67 [37] | 66 [30] | 0.28 | 0.23 (small) |
RMSSD (ms) | 52 [37] | 42 [17] | 2 × 10−4 | −0.73 (large) |
VLF power (ms2) | 850 [1217] | 1149 [1098] | 0.11 | 0.34 (medium) |
LF power (ms2) | 1056 [628] | 1292 [857] | 0.12 | 0.32 (medium) |
HF power (ms2) | 1095 [1827] | 596 [471] | 8 × 10−4 | −0.67 (large) |
LF/HF | 0.86 [0.65] | 2.14 [2.11] | 4 × 10−8 | 0.97 (large) |
LFnu (%) | 46 [18] | 68 [22] | 6 × 10−8 | 0.96 (large) |
DDR′ | ||||
mean (mV/s) | 21.8 [4.1] | 25.5 [5.4] | 10−5 | 0.84 (large) |
SDNN (mV/s) | 2.1 [1.4] | 2.7 [1.1] | 1 × 10−4 | 0.75 (large) |
RMSSD (mV/s) | 2.0 [1.0] | 1.8 [0.8] | 0.12 | −0.33 (medium) |
VLF power (mV/s)2 | 0.76 [0.89] | 1.99 [2.38] | 7 × 10−5 | 0.78 (large) |
LF power (mV/s)2 | 0.91 [0.98] | 2.31 [2.22] | 1 × 10−5 | 0.84 (large) |
HF power (mV/s)2 | 1.39 [1.11] | 1.19 [0.96] | 0.43 | −0.17 (small) |
LF/HF | 0.70 [0.63] | 1.72 [1.92] | 5 × 10−8 | 0.97 (large) |
LFnu (%) | 41 [21] | 63 [24] | 2 × 10−8 | 0.98 (large) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castiglioni, P.; Zaza, A.; Merati, G.; Faini, A. On the Autonomic Control of Heart Rate Variability: How the Mean Heart Rate Affects Spectral and Complexity Analysis and a Way to Mitigate Its Influence. Mathematics 2025, 13, 2955. https://doi.org/10.3390/math13182955
Castiglioni P, Zaza A, Merati G, Faini A. On the Autonomic Control of Heart Rate Variability: How the Mean Heart Rate Affects Spectral and Complexity Analysis and a Way to Mitigate Its Influence. Mathematics. 2025; 13(18):2955. https://doi.org/10.3390/math13182955
Chicago/Turabian StyleCastiglioni, Paolo, Antonio Zaza, Giampiero Merati, and Andrea Faini. 2025. "On the Autonomic Control of Heart Rate Variability: How the Mean Heart Rate Affects Spectral and Complexity Analysis and a Way to Mitigate Its Influence" Mathematics 13, no. 18: 2955. https://doi.org/10.3390/math13182955
APA StyleCastiglioni, P., Zaza, A., Merati, G., & Faini, A. (2025). On the Autonomic Control of Heart Rate Variability: How the Mean Heart Rate Affects Spectral and Complexity Analysis and a Way to Mitigate Its Influence. Mathematics, 13(18), 2955. https://doi.org/10.3390/math13182955