Adapted Multi-Strategy Fractional-Order Relative Pufferfish Optimization Algorithm for Feature Selection
Abstract
1. Introduction
- An adaptive exploration strategy is advanced, which effectively augments the algorithm’s GE capability and improves the CA of feature subsets.
- A three-swarm search strategy is introduced to ensure balance during the algorithm’s operation and enhance the metric trade-off when resolving FS problems.
- A Fractional-Order Bernstein exploitation strategy is presented, which improves the algorithm’s LE capability when addressing FS problems, enabling effective elimination of RF.
- By amalgamating the aforementioned three improvement strategies, an enhanced version of the POA, namely AMFPOA, is advanced, which boosts the algorithm’s FS efficacy.
- Applying AMFPOA to resolve 23 real-world FS problems confirms that AMFPOA is a promising FS method.
2. Mathematical Model of the POA
2.1. Swarm Initialization Stage
2.2. GE Stage
2.3. LE Stage
2.4. Implementation of the POA
Algorithm 1: Pseudo code for POA |
Input: Parameters , , , , . |
Output: Best solution (). |
|
3. Mathematical Model of the AMFPOA
3.1. Adaptive Exploration Strategy
3.2. Three-Swarm Search Strategy
3.3. Fractional-Order Bernstein Exploitation Strategy
3.4. Implementation of the AMFPOA
- Step 1:
- Set the operational parameters, namely the swarm size and the MN of iterations . Initialize the current member index i = 1, iteration counter , and index j = 1.
- Step 2:
- Update the ideal solution based on the current state of the swarm.
- Step 3:
- If , update the member’s position using Equation (4). Otherwise, update it using Equation (13). Here, represents a randomly produced number within the range [0, 1].
- Step 4:
- Preserve the member’s knowledge using either Equation (6) or Equation (14), depending on specific criteria or predefined rules.
- Step 5:
- Calculate the member’s position knowledge using Equations (15) through (17).
- Step 6:
- If , update the member’s position using Equation (7). Otherwise, update it using Equation (23).
- Step 7:
- Preserve the member’s knowledge again, this time using either Equation (8) or Equation (14), as appropriate.
- Step 8:
- Increment the iteration counter: t = t + 1. Check if is equal to . If , save the ideal solution obtained during the current iteration. Then, check if where is the MN of iterations. If , reset i = 1 and j = 1, and jump back to Step 2. If , terminate the algorithm iteration and output the ideal solution. If the pre-condition holds, increment i = i + 1 and reset j = 1, then jump back to Step 3.
3.5. Time Complexity
4. Results and Discussion
- Detailed description of the comparison algorithm:
- (1)
- POA [73]: A novel swarm-based optimization algorithm advanced in 2024 demonstrated superior efficacy by being compared with 12 state-of-the-art optimization algorithms on the CEC 2017 test suite and 26 real-world problems. Its execution logic framework for resolving optimization problems remains consistent with that of AMFPOA.
- (2)
- ALSHADE [80]: An improved swarm-based optimization algorithm introduced in 2022 attained better efficacy through comparison with six champion algorithms on the CEC 2014, CEC 2018, and unmanned aerial vehicle resource allocation problems. Its execution logic framework for optimization problem-resolving is in line with that of AMFPOA.
- (3)
- PLO [81]: A new swarm-based optimization algorithm put forward in 2024 outperformed 17 optimization algorithms on the CEC 2022 and multi-threshold image segmentation problems. Its execution logic framework for resolving optimization problems is consistent with that of AMFPOA.
- (4)
- LSHADE [82]: An improved swarm-based optimization algorithm advanced in 2014, which was the champion algorithm of the 2014 CEC competition, showed better efficacy by being compared with multiple champion algorithms on the CEC 2014 problems. Its execution logic framework for optimization problem-resolving is the same as that of AMFPOA.
- (5)
- BEGJO [83]: An improved binary swarm-based optimization algorithm introduced in 2024 attained better efficacy through comparison with various optimization algorithms on the FS problem. Its execution logic framework for resolving optimization problems is consistent with that of AMFPOA.
- (6)
- IPOA [84]: An improved swarm-based optimization algorithm advanced in 2024 attained better efficacy by being compared with multiple optimization algorithms on the CEC 2017 and scheduling problems. Its execution logic framework for optimization problem-resolving is in line with that of AMFPOA.
- (7)
- MCOA [85]: An improved swarm-based optimization algorithm put forward in 2024 outperformed various algorithms on the CEC 2020 problems and the FS problem. Its execution logic framework for resolving optimization problems is consistent with that of AMFPOA.
- (8)
- QHDBO [86]: An improved swarm-based optimization algorithm introduced in 2024 demonstrated better efficacy through comparison with multiple algorithms on 37 optimization problems. Its execution logic framework for optimization problem-resolving remains consistent with that of AMFPOA.
4.1. Establishment of the FS Problem Model
- Step 1:
- Randomly sample 80% of the data from the primordial dataset to serve as the instruction set, while designating the remaining 20% of the data as the test set.
- Step 2:
- Convert the continuous real-valued member into a discrete member using Equation (25). Here, indicates that the feature element is selected in the feature subset combination, while signifies its exclusion.
- Step 3:
- Select feature subset elements from the primordial dataset based on the discrete member derived from the continuous-to-discrete conversion.
- Step 4:
- Compute the CA of the selected feature subset using the K-Nearest Neighbors (KNN) classifier. In this study, is set to 5 for the KNN algorithm. Simultaneously, 5-fold cross-validation is employed for cross-validation.
- Step 5:
- Calculate the FFV of the selected feature subset combination using Equation (24).
4.2. Sensitivity Analysis
4.3. Swarm Diversity Analysis
4.4. Exploration/Exploitation Balance Analysis
4.5. Ablation Analysis of Strategy Effectiveness
- Step 1:
- Suppose we have algorithms undergoing efficacy comparison, with each algorithm undergoing independent and non-repetitive experiments (in this case, and ). Record the FFV of each algorithm in each experiment.
- Step 2:
- For each algorithm , calculate its average rank across all experiments, as explicated in Equation (31).
- Step 3:
- Calculate the Friedman statistic . The statistic in the Friedman test is used to assess whether the differences among the algorithms are significant. It is computed as shown in Equation (32).
- Step 4:
- Compare the statistic with the critical value to determine whether there are significant differences among the algorithms.
- Step 5:
- Output the Friedman average ranks corresponding to each algorithm and determine whether significant differences exist among the algorithms.
4.6. Fitness Function Value Analysis
4.7. Wilcoxon Rank Sum Test Analysis
4.8. CA Analysis
4.9. Feature Subset Size Analysis
4.10. Convergence Analysis
4.11. Comprehensive Metric Analysis
4.12. Extended Experimental Analysis
5. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes, B.; Ashley, E.A. Artificial intelligence in molecular medicine. N. Engl. J. Med. 2023, 388, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Cai, J.R.; Zhang, W.; Bai, J.W.; Li, Z.Q.; Tan, B.; Sun, L. Detection of citrus Huanglongbing (HLB) based on the HLB-induced leaf starch accumulation using a home-made computer vision system. Biosyst. Eng. 2022, 218, 163–174. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, H.; Zeng, T.; Dong, Y. An adaptive fused domain-cycling variational generative adversarial network for machine fault diagnosis under data scarcity. Knowl. Fusion 2025, 126, 103616. [Google Scholar] [CrossRef]
- Wu, Q.; Gu, J. Design and research of robot visual servo system based on artificial intelligence. Agro Food Ind. Hi-Tech 2017, 28, 125–128. [Google Scholar]
- Chen, J.; Zhang, M.; Xu, B.; Sun, J.; Mujumdar, A.S. Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review. Trends Food Sci. Technol. 2020, 105, 251–260. [Google Scholar] [CrossRef]
- Zhu, C.; Hao, S.; Liu, C.; Wang, Y.; Jia, X.; Xu, J.; Wang, W. An Efficient Computer Vision-Based Dual-Face Target Precision Variable Spraying Robotic System for Foliar Fertilisers. Agronomy 2024, 14, 2770. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, B.; Liu, D.; Jiang, Q.; Sun, Q. Artificial Intelligence empowered evolution in medicine food homology: Innovations, Challenges, and Future Prospects. Food Biosci. 2025, 69, 106928. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Hassan, M.M.; Zuo, M.; Wei, W.; Wu, X.; Ouyang, Q.; Chen, Q. Rapid detection of chloramphenicol in food using SERS flexible sensor coupled artificial intelligent tools. Food Control 2021, 128, 108186. [Google Scholar] [CrossRef]
- El-Mesery, H.S.; Qenawy, M.; Ali, M.; Hu, Z.; Adelusi, O.A.; Njobeh, P.B. Artificial intelligence as a tool for predicting the quality attributes of garlic (Allium sativum L.) slices during continuous infrared-assisted hot air drying. J. Food Sci. 2024, 89, 7693–7712. [Google Scholar] [CrossRef] [PubMed]
- El-Mesery, H.S.; Qenawy, M.; Ali, M.; Rostom, M.; Elbeltagi, A.; Salem, A.; Elwakeel, A.E. Optimization of dried garlic physicochemical properties using a self-organizing map and the development of an artificial intelligence prediction model. Sci. Rep. 2025, 15, 3105. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, W.; Su, J.; Li, H.; Ouyang, Q.; Zhao, J. Nondestructively sensing of total viable count (TVC) in chicken using an artificial olfaction system based colorimetric sensor array. J. Food Eng. 2016, 168, 259–266. [Google Scholar] [CrossRef]
- Li, H.; Kutsanedzie, F.; Zhao, J.; Chen, Q. Quantifying total viable count in pork meat using combined hyperspectral imaging and artificial olfaction techniques. Food Anal. Methods 2016, 9, 3015–3024. [Google Scholar] [CrossRef]
- Li, L.; Xie, S.; Zhu, F.; Ning, J.; Chen, Q.; Zhang, Z. Colorimetric sensor array-based artificial olfactory system for sensing Chinese green tea’s quality: A method of fabrication. Int. J. Food Prop. 2017, 20 (Suppl. 2), 1762–1773. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Hu, W.; Liu, Y.; Dong, C.; Chen, Q. Monitoring black tea fermentation using a colorimetric sensor array-based artificial olfaction system. J. Food Process. Preserv. 2018, 42, e13348. [Google Scholar] [CrossRef]
- Bai, J.W.; Xiao, H.W.; Ma, H.L.; Zhou, C.S. Artificial neural network modeling of drying kinetics and color changes of ginkgo biloba seeds during microwave drying process. J. Food Qual. 2018, 2018, 3278595. [Google Scholar] [CrossRef]
- Dai, C.; Huang, X.; Huang, D.; Lv, R.; Sun, J.; Zhang, Z.; Aheto, J.H. Real-time detection of saponin content during the fermentation process of Tremella aurantialba using a homemade artificial olfaction system. J. Food Process Eng. 2019, 42, e13101. [Google Scholar] [CrossRef]
- Yunfeng, X.; Xiliang, Z.; Xiaojia, S.; Jizhang, W.; Jizhan, L.; Zhiguo, L.; Pingping, L. Tensile mechanical properties of greenhouse cucumber cane. Int. J. Agric. Biol. Eng. 2016, 9, 1–8. [Google Scholar]
- Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development status and trend of agricultural robot technology. Int. J. Agric. Biol. Eng. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Yüksel, N.; Börklü, H.R.; Sezer, H.K.; Canyurt, O.E. Review of artificial intelligence applications in engineering design perspective. Eng. Appl. Artif. Intell. 2023, 118, 105697. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Hassan, M.M.; Ali, S.; Chen, Q. SERS based artificial peroxidase enzyme regulated multiple signal amplified system for quantitative detection of foodborne pathogens. Food Control 2021, 123, 107733. [Google Scholar] [CrossRef]
- Zareef, M.; Arslan, M.; Hassan, M.M.; Ahmad, W.; Ali, S.; Li, H.; Ouyang, Q.; Wu, X.; Hashim, M.M.; Chen, Q. Recent advances in assessing qualitative and quantitative aspects of cereals using nondestructive techniques: A review. Trends Food Sci. Technol. 2021, 116, 815–828. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.M.; Sharma, A.S.; Li, H.; Chen, Q. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Crit. Rev. Food Sci. Nutr. 2023, 63, 486–504. [Google Scholar] [CrossRef]
- Wang, H.; Gu, J.; Wang, M. A review on the application of computer vision and machine learning in the tea industry. Front. Sustain. Food Syst. 2023, 7, 1172543. [Google Scholar] [CrossRef]
- Liang, Z.; Wada, M.E. Development of cleaning systems for combine harvesters: A review. Biosyst. Eng. 2023, 236, 79–102. [Google Scholar] [CrossRef]
- El-Mesery, H.S.; Qenawy, M.; Li, J.; El-Sharkawy, M.; Du, D. Predictive modeling of garlic quality in hybrid infrared-convective drying using artificial neural networks. Food Bioprod. Process. 2024, 145, 226–238. [Google Scholar] [CrossRef]
- Jing, T.; Tang, Z.; Hao, S.; Shen, C.; Wang, T.; Wang, M. Structure design and rice threshing efficacy of the variable-speed inertial pulley for simulating artificial threshing. Int. J. Agric. Biol. Eng. 2024, 17, 33–40. [Google Scholar]
- Ngolong Ngea, G.L.; Yang, Q.; Xu, M.; Ianiri, G.; Dhanasekaran, S.; Zhang, X.; Bi, Y.; Zhang, H. Revisiting the current and emerging concepts of postharvest fresh fruit and vegetable pathology for next-generation antifungal technologies. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13397. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Rakibuzzaman, M.; et al. A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Cao, Y.; Tang, Z.; Lu, D.; Lin, S. Efficacy Test of Artificial Defoliating Broccoli Conveyor Line and Analysis of Defoliating Broccoli Inflorescences. Agronomy 2024, 14, 1925. [Google Scholar] [CrossRef]
- Zhao, S.; Adade, S.Y.S.S.; Wang, Z.; Jiao, T.; Ouyang, Q.; Li, H.; Chen, Q. Deep learning and feature reconstruction assisted vis-NIR calibration method for on-line monitoring of key growth indicators during kombucha production. Food Chem. 2025, 463, 141411. [Google Scholar] [CrossRef]
- Ji, T.; Liaqat, F.; Khazi, M.I.; Liaqat, N.; Nawaz, M.Z.; Zhu, D. Lignin biotransformation: Advances in enzymatic valorization and bioproduction strategies. Ind. Crops Prod. 2024, 216, 118759. [Google Scholar] [CrossRef]
- Bai, J.; Mujumdar, A.S.; Xiao, H. Ethical and strategic challenges of AI weapons: A call for global action. Int. J. Agric. Biol. Eng. 2024, 17, 293–294. [Google Scholar] [CrossRef]
- Wu, P.; Lei, X.; Zeng, J.; Qi, Y.; Yuan, Q.; Huang, W.; Ma, Z.; Shen, Q.; Lyu, X. Research progress in mechanized and intelligent zed pollination technologies for fruit and vegetable crops. Int. J. Agric. Biol. Eng. 2024, 17, 11–21. [Google Scholar]
- Deng, J.; Jiang, H.; Chen, Q. Enhancing Fourier Transform Near-infrared Spectroscopy with Explainable Ensemble Learning Methods for Detecting Mineral Oil Contamination in Corn Oil. J. Food Compos. Anal. 2025, 143, 107594. [Google Scholar] [CrossRef]
- Jan, Z.; Ahamed, F.; Mayer, W.; Patel, N.; Grossmann, G.; Stumptner, M.; Kuusk, A. Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Syst. Appl. 2023, 216, 119456. [Google Scholar] [CrossRef]
- Taha, M.F.; Mao, H.; Zhang, Z.; Elmasry, G.; Awad, M.A.; Abdalla, A.; Mousa, S.; Elwakeel, A.E.; Elsherbiny, O. Emerging technologies for precision crop management towards agriculture 5.0: A comprehensive overview. Agriculture 2025, 15, 582. [Google Scholar] [CrossRef]
- Jayan, H.; Min, W.; Guo, Z. Applications of Artificial Intelligence in Food Industry. Foods 2025, 14, 1241. [Google Scholar] [CrossRef]
- Li, D.; Chen, Q.; Ouyang, Q.; Liu, Z. Advances of Vis/NIRS and imaging techniques assisted by AI for tea processing. Crit. Rev. Food Sci. Nutr. 2025, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Jia, W.; Ou, M.; Dong, X.; Dai, S. A review of environmental sensing technologies for targeted spraying in orchards. Horticulturae 2025, 11, 551. [Google Scholar] [CrossRef]
- Guan, B.; Zhao, J.; Jin, H.; Lin, H. Determination of rice storage time with colorimetric sensor array. Food Analytical Methods. 2017, 10, 1054–1062. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.M.; Kutsanedzie, F.Y.H.; Li, H.H.; Chen, Q.S. Evaluation of extra-virgin olive oil adulteration using FTIR spectroscopy combined with multivariate algorithms. Qual. Assur. Saf. Crops Foods 2018, 10, 411–421. [Google Scholar] [CrossRef]
- Zhao, Z.; Jin, M.; Tian, C.; Yang, S.X. Prediction of seed distribution in rectangular vibrating tray using grey model and artificial neural network. Biosyst. Eng. 2018, 175, 194–205. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Q.; Liu, Y.; Sun, X.; Huang, Q.; Ouyang, Q.; Zhao, J. A novel hyperspectral microscopic imaging system for evaluating fresh degree of pork. Korean J. Food Sci. Anim. Resour. 2018, 38, 362. [Google Scholar]
- Chen, H.; Chen, B.; Lu, D. A novel method for detection of camellia oil adulteration based on time-resolved emission fluorescence. Sci. Rep. 2018, 8, 13784. [Google Scholar] [CrossRef]
- Jia, W.; Zheng, Y.; Zhao, D.A.; Yin, X.; Liu, X.; Du, R. Preprocessing method of night vision image application in apple harvesting robot. Int. J. Agric. Biol. Eng. 2018, 11, 158–163. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Wu, X.; Lu, B.; Wu, M.; Dai, C. Grade identification of tieguanyin tea using fluorescence hyperspectra and different statistical algorithms. J. Food Sci. 2019, 84, 2234–2241. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Wu, X.; Chen, Q.; Lu, B.; Dai, C. Detection of viability of soybean seed based on fluorescence hyperspectra and CARS-SVM-AdaBoost model. J. Food Process. Preserv. 2019, 43, e14238. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, J.; Wu, B.; Zhao, C.; Sun, J.; Dai, C. Discrimination of Chinese liquors based on electronic nose and fuzzy discriminant principal component analysis. Foods 2019, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Entezari, A.; Aslani, A.; Zahedi, R.; Noorollahi, Y. Artificial intelligence and machine learning in energy systems: A bibliographic perspective. Energy Strategy Rev. 2023, 45, 101017. [Google Scholar] [CrossRef]
- Jia, W.; Sun, M.; Lian, J.; Hou, S. Feature dimensionality reduction: A review. Complex Intell. Syst. 2022, 8, 2663–2693. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Tao, D. Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans. Image Process. 2018, 27, 2420–2432. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzadeh, B.; Gharehchopogh, F.S. A multi-objective optimization algorithm for FS problems. Eng. Comput. 2022, 38, 1845–1863. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242, 108320. [Google Scholar] [CrossRef]
- Zervoudakis, K.; Tsafarakis, S. A global optimizer inspired from the survival strategies of flying foxes. Eng. Comput. 2023, 39, 1583–1616. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Braik, M.; Ryalat, M.H.; Al-Zoubi, H. A novel meta-heuristic algorithm for resolving numerical optimization problems: Ali Baba and the forty thieves. Neural Comput. Appl. 2022, 34, 409–455. [Google Scholar] [CrossRef]
- Matoušová, I.; Trojovský, P.; Dehghani, M.; Trojovská, E.; Kostra, J. Mother optimization algorithm: A new human-based metaheuristic approach for resolving engineering optimization. Sci. Rep. 2023, 13, 10312. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Teamwork Optimization Algorithm: A New Optimization Approach for Function Minimization/Maximization. Sensors 2021, 21, 4567. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for resolving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Reynolds, R.G. An Introduction to Cultural Algorithms. In Proceedings of the Third Annual Conference on Evolutionary Programming, San Diego, CA, USA, 24–26 February 1994; World Scientific: Singapore, 1994; pp. 131–139. [Google Scholar]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Hichem, H.; Elkamel, M.; Rafik, M.; Mesaaoud, M.T.; Ouahiba, C. A new binary grasshopper optimization algorithm for FS problem. J. King Saud Univ.-Comput. Knowl. Sci. 2022, 34, 316–328. [Google Scholar] [CrossRef]
- Allam, M.; Nandhini, M. Bestl FS using binary teaching learning based optimization algorithm. J. King Saud Univ.-Comput. Knowl. Sci. 2022, 34, 329–341. [Google Scholar] [CrossRef]
- Alweshah, M.; Khalaileh, S.A.; Gupta, B.B.; Almomani, A.; Hammouri, A.I.; Al-Betar, M.A. The monarch butterfly optimization algorithm for resolving FS problems. Neural Comput. Appl. 2022, 34, 11267–11281. [Google Scholar] [CrossRef]
- Hu, G.; Du, B.; Wang, X.; Wei, G. An enhanced black widow optimization algorithm for FS. Knowl.-Based Syst. 2022, 235, 107638. [Google Scholar] [CrossRef]
- Ewees, A.A.; Mostafa, R.R.; Ghoniem, R.M.; Gaheen, M.A. Improved seagull optimization algorithm using Lévy flight and mutation operator for FS. Neural Comput. Appl. 2022, 34, 7437–7472. [Google Scholar] [CrossRef]
- Awadallah, M.A.; Hammouri, A.I.; Al-Betar, M.A.; Braik, M.S.; Abd Elaziz, M. Binary Horse herd optimization algorithm with crossover operators for FS. Comput. Biol. Med. 2022, 141, 105152. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Chen, S.; Xiong, H. A high-dimensional FS method based on modified Gray Wolf Optimization. Appl. Soft Comput. 2023, 135, 110031. [Google Scholar] [CrossRef]
- Al-Baik, O.; Alomari, S.; Alssayed, O.; Gochhait, S.; Leonova, I.; Dutta, U.; Dehghani, M. Pufferfish optimization algorithm: A new bio-inspired metaheuristic algorithm for resolving optimization problems. Biomimetics 2024, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gao, H.; Zhan, Z.H.; Li, J.; Zhang, H. Growth Optimizer: A powerful metaheuristic algorithm for resolving continuous and discrete global optimization problems. Knowl.-Based Syst. 2023, 261, 110206. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, C.; Gharehchopogh, F.S.; Mirjalili, S. An improved whale optimization algorithm based on multi-swarm evolution for global optimization and engineering design problems. Expert Syst. Appl. 2023, 215, 119269. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Chen, F.; Ye, S.; Wang, J.; Luo, J. Multi-Strategy Improved Binary Secretarial Bird Optimization Algorithm for FS. Mathematics 2025, 13, 668. [Google Scholar] [CrossRef]
- Wang, J.; Bao, Z.; Dong, H. An Improved Northern Goshawk Optimization Algorithm for Mural Image Segmentation. Biomimetics 2025, 10, 373. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Q. Three-learning strategy particle swarm algorithm for global optimization problems. Knowl. Sci. 2022, 593, 289–313. [Google Scholar] [CrossRef]
- Li, Y.; Han, T.; Zhou, H. A novel adaptive L-SHADE algorithm and its application in UAV swarm resource configuration problem. Knowl. Sci. 2022, 606, 350–367. [Google Scholar] [CrossRef]
- Yuan, C.; Zhao, D.; Heidari, A.A. Polar lights optimizer: Algorithm and applications in image segmentation and FS. Neurocomputing 2024, 607, 128427–128472. [Google Scholar] [CrossRef]
- Tanabe, R.; Fukunaga, A.S. Improving the search efficacy of SHADE using linear swarm size reduction. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; IEEE: New Yor, NY, USA, 2014; pp. 1658–1665. [Google Scholar]
- Askr, H.; Abdel-Salam, M.; Hassanien, A.E. Copula entropy-based golden jackal optimization algorithm for high-dimensional FS problems. Expert Syst. Appl. 2024, 238, 121582–121607. [Google Scholar] [CrossRef]
- SeyedGarmroudi, S.D.; Kayakutlu, G.; Kayalica, M.O. Improved pelican optimization algorithm for resolving load dispatch problems. Energy 2024, 289, 129811–129826. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, X.; Zhang, J. Modified crayfish optimization algorithm for resolving multiple engineering application problems. Artif. Intell. Rev. 2024, 57, 127–183. [Google Scholar] [CrossRef]
- Zhu, F.; Li, G.; Tang, H. Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for resolving engineering problems. Expert Syst. Appl. 2024, 236, 121219–121236. [Google Scholar] [CrossRef]
- Wu, B.; Luo, J. A Novel Improved Binary Optimization Algorithm and Its Application in FS Problems. Mathematics 2025, 13, 675. [Google Scholar] [CrossRef]
- Cao, Q.; Yuan, S.; Fang, Y. Three Strategies Enhance the Bionic Coati Optimization Algorithm for Global Optimization and FS Problems. Biomimetics 2025, 10, 380. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Zamani, H. DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimization. Expert Syst. Appl. 2022, 198, 116895. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zeng, H.; Dong, Z.; An, Z.; Xu, Y.; Wu, H. Frequency-Aligned Knowledge Distillation for Lightweight Spatiotemporal Forecasting. arXiv 2025, arXiv:2507.02939. [Google Scholar]
- Li, Y.; Dong, J.; Dong, Z.; Yang, C.; An, Z.; Xu, Y. SRKD: Towards Efficient 3D Point Cloud Segmentation via Structure-and Relation-aware Knowledge Distillation. arXiv 2025, arXiv:2506.17290. [Google Scholar]
Technology | Efficacy | Limitations |
---|---|---|
Binary grasshopper optimization FS algorithm | Success rate with feature subset size exceeding 95% | There are limitations in calculating costs |
Binary teaching–learning-based optimization FS algorithm | Effectively distinguished malignant tumors from benign tumors | Lack of universality for FS problems |
Monarch butterfly optimization FS algorithm | The average CA reaches 93% | There are limitations in resolving high-dimensional FS problems |
Black widow optimization FS algorithm | Reduction in RF has been attained | High-dimensional FS problems have limitations |
Improved sine–cosine FS algorithm | High CA of feature subsets | The reduction in RF is not obvious |
Binary Horse herd Optimization FS Algorithm | Effectively reduce RF in the primordial dataset | It is difficult to overcome the challenges posed by high-dimensional FS problems |
Improved grey wolf optimization FS algorithm | It effectively reduces RF | Not widely applicable |
No. | Full Name | Abbreviation |
---|---|---|
1 | Pufferfish Optimization Algorithm | POA |
2 | FS | FS |
3 | Artificial Intelligence | AI |
4 | Flying Fox Optimization | FFO |
5 | Grey Wolf Optimizer | GWO |
6 | African Vulture Optimization Algorithm | AVOA |
7 | War Strategy Optimization | WSO |
8 | Mother Optimization Algorithm | MOA |
9 | Teamwork Optimization Algorithm | TOA |
10 | Equilibrium Optimizer | EO |
11 | Archimedes Optimization Algorithm | AOA |
12 | Black Hole Algorithm | BHA |
13 | Genetic Algorithm | GA |
14 | Cultural Algorithm | CA |
15 | Differential Evolution | DE |
Type | Name | Feature Number | Instance Size |
---|---|---|---|
Low | Banana | 2 | 5300 |
Aggregation | 2 | 788 | |
Iris | 4 | 150 | |
Bupa | 6 | 345 | |
Breastcancer | 9 | 699 | |
Glass | 9 | 214 | |
Lipid | 10 | 583 | |
HeartEW | 13 | 270 | |
Congress | 16 | 435 | |
Vote | 16 | 435 | |
Zoo | 16 | 101 | |
Vehicle | 18 | 846 | |
Lymphography | 18 | 148 | |
BreastEW | 30 | 569 | |
WDBC | 30 | 569 | |
SonarEW | 60 | 208 | |
High | Libras | 90 | 360 |
Hillvalley | 100 | 606 | |
Musk | 166 | 476 | |
Clean | 167 | 476 | |
Semeion | 256 | 1593 | |
Madelon | 500 | 2600 | |
Isolet | 617 | 1559 |
Algorithms | Time | Parameter Settings |
---|---|---|
POA [73] | 2024 | |
ALSHADE [80] | 2022 | |
PLO [81] | 2024 | |
LSHADE [82] | 2014 | |
BEGJO [83] | 2024 | |
IPOA [84] | 2024 | |
MCOA [85] | 2024 | |
QHDBO [86] | 2024 |
Datasets | POA | FPOA | Percentage | Datasets | POA | APOA | Percentage | Datasets | POA | MPOA | Percentage |
---|---|---|---|---|---|---|---|---|---|---|---|
Aggregation | 0.100 | 0.100 | 0.00% | Zoo | 0.052 | 0.048 | 7.02% | Libras | 0.170 | 0.142 | 16.48% |
Banana | 0.190 | 0.189 | 0.53% | Vote | 0.048 | 0.038 | 21.32% | Hillvalley | 0.374 | 0.306 | 18.18% |
Iris | 0.055 | 0.038 | 30.91% | Congress | 0.037 | 0.023 | 38.31% | Musk | 0.084 | 0.063 | 24.59% |
Bupa | 0.324 | 0.293 | 9.54% | Lymphography | 0.107 | 0.087 | 18.64% | Clean | 0.072 | 0.038 | 47.34% |
Glass | 0.222 | 0.187 | 15.74% | Vehicle | 0.291 | 0.253 | 13.04% | Semeion | 0.139 | 0.076 | 45.17% |
Breastcancer | 0.061 | 0.052 | 14.85% | WDBC | 0.027 | 0.021 | 22.55% | Madelon | 0.218 | 0.075 | 65.64% |
Lipid | 0.256 | 0.245 | 4.17% | BreastEW | 0.049 | 0.035 | 28.66% | Isolet | 0.215 | 0.093 | 56.71% |
HeartEW | 0.164 | 0.098 | 40.23% | SonarEW | 0.132 | 0.043 | 67.42% | ||||
Mean increase | 14.50% | 27.12% | 39.16% |
Datasets | Metrics | POA | ALSHADE | PLO | LSHADE | BEGJO | IPOA | MCOA | QHDBO | AMFPOA |
---|---|---|---|---|---|---|---|---|---|---|
Aggregation | MIN | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.106 | 0.106 | 0.100 | 0.100 |
AVG | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.106 | 0.106 | 0.100 | 0.100 | |
MAX | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.106 | 0.106 | 0.100 | 0.100 | |
Banana | MIN | 0.190 | 0.193 | 0.200 | 0.198 | 0.195 | 0.204 | 0.200 | 0.193 | 0.187 |
AVG | 0.190 | 0.193 | 0.200 | 0.198 | 0.195 | 0.204 | 0.200 | 0.193 | 0.187 | |
MAX | 0.190 | 0.193 | 0.200 | 0.198 | 0.195 | 0.204 | 0.200 | 0.193 | 0.187 | |
Iris | MIN | 0.055 | 0.055 | 0.055 | 0.080 | 0.055 | 0.055 | 0.080 | 0.080 | 0.025 |
AVG | 0.055 | 0.055 | 0.055 | 0.081 | 0.055 | 0.055 | 0.081 | 0.080 | 0.025 | |
MAX | 0.055 | 0.055 | 0.055 | 0.085 | 0.055 | 0.055 | 0.085 | 0.080 | 0.025 | |
Bupa | MIN | 0.324 | 0.298 | 0.346 | 0.307 | 0.288 | 0.333 | 0.307 | 0.307 | 0.281 |
AVG | 0.324 | 0.309 | 0.347 | 0.310 | 0.289 | 0.340 | 0.309 | 0.307 | 0.284 | |
MAX | 0.324 | 0.346 | 0.356 | 0.337 | 0.298 | 0.367 | 0.320 | 0.307 | 0.298 | |
Glass | MIN | 0.216 | 0.302 | 0.291 | 0.259 | 0.237 | 0.248 | 0.312 | 0.215 | 0.173 |
AVG | 0.222 | 0.325 | 0.293 | 0.262 | 0.257 | 0.251 | 0.321 | 0.222 | 0.173 | |
MAX | 0.237 | 0.344 | 0.302 | 0.270 | 0.323 | 0.258 | 0.355 | 0.279 | 0.173 | |
Breastcancer | MIN | 0.061 | 0.035 | 0.042 | 0.046 | 0.048 | 0.042 | 0.053 | 0.053 | 0.040 |
AVG | 0.061 | 0.050 | 0.042 | 0.047 | 0.052 | 0.045 | 0.058 | 0.053 | 0.040 | |
MAX | 0.061 | 0.055 | 0.042 | 0.053 | 0.059 | 0.059 | 0.068 | 0.055 | 0.046 | |
Lipid | MIN | 0.249 | 0.224 | 0.247 | 0.245 | 0.255 | 0.266 | 0.253 | 0.261 | 0.235 |
AVG | 0.256 | 0.248 | 0.249 | 0.259 | 0.264 | 0.274 | 0.259 | 0.264 | 0.241 | |
MAX | 0.274 | 0.271 | 0.261 | 0.276 | 0.286 | 0.289 | 0.271 | 0.274 | 0.253 | |
HeartEW | MIN | 0.146 | 0.190 | 0.123 | 0.156 | 0.114 | 0.088 | 0.156 | 0.081 | 0.056 |
AVG | 0.164 | 0.212 | 0.133 | 0.165 | 0.127 | 0.103 | 0.169 | 0.114 | 0.080 | |
MAX | 0.208 | 0.240 | 0.155 | 0.190 | 0.155 | 0.156 | 0.214 | 0.191 | 0.140 | |
Zoo | MIN | 0.038 | 0.038 | 0.076 | 0.083 | 0.038 | 0.038 | 0.038 | 0.044 | 0.031 |
AVG | 0.052 | 0.053 | 0.076 | 0.094 | 0.061 | 0.061 | 0.048 | 0.071 | 0.046 | |
MAX | 0.076 | 0.076 | 0.076 | 0.128 | 0.095 | 0.108 | 0.063 | 0.115 | 0.076 | |
Vote | MIN | 0.042 | 0.054 | 0.035 | 0.048 | 0.066 | 0.037 | 0.050 | 0.037 | 0.033 |
AVG | 0.048 | 0.064 | 0.036 | 0.048 | 0.068 | 0.039 | 0.060 | 0.037 | 0.034 | |
MAX | 0.054 | 0.077 | 0.039 | 0.048 | 0.079 | 0.044 | 0.070 | 0.037 | 0.037 | |
Congress | MIN | 0.037 | 0.027 | 0.058 | 0.037 | 0.046 | 0.035 | 0.027 | 0.058 | 0.017 |
AVG | 0.037 | 0.041 | 0.063 | 0.037 | 0.058 | 0.042 | 0.027 | 0.058 | 0.017 | |
MAX | 0.037 | 0.060 | 0.068 | 0.037 | 0.079 | 0.050 | 0.027 | 0.058 | 0.017 | |
Lymphography | MIN | 0.090 | 0.157 | 0.101 | 0.081 | 0.126 | 0.115 | 0.141 | 0.146 | 0.059 |
AVG | 0.107 | 0.200 | 0.142 | 0.089 | 0.136 | 0.128 | 0.159 | 0.162 | 0.066 | |
MAX | 0.126 | 0.228 | 0.166 | 0.110 | 0.163 | 0.163 | 0.220 | 0.189 | 0.079 | |
Vehicle | MIN | 0.257 | 0.279 | 0.236 | 0.252 | 0.251 | 0.225 | 0.257 | 0.241 | 0.230 |
AVG | 0.291 | 0.296 | 0.247 | 0.271 | 0.275 | 0.249 | 0.284 | 0.255 | 0.241 | |
MAX | 0.310 | 0.315 | 0.263 | 0.294 | 0.311 | 0.263 | 0.305 | 0.273 | 0.257 | |
WDBC | MIN | 0.023 | 0.056 | 0.037 | 0.042 | 0.058 | 0.053 | 0.046 | 0.039 | 0.015 |
AVG | 0.027 | 0.065 | 0.051 | 0.067 | 0.072 | 0.064 | 0.062 | 0.040 | 0.017 | |
MAX | 0.031 | 0.072 | 0.059 | 0.078 | 0.090 | 0.074 | 0.083 | 0.054 | 0.039 | |
BreastEW | MIN | 0.036 | 0.062 | 0.036 | 0.029 | 0.035 | 0.046 | 0.044 | 0.028 | 0.021 |
AVG | 0.049 | 0.069 | 0.039 | 0.034 | 0.053 | 0.058 | 0.062 | 0.036 | 0.031 | |
MAX | 0.059 | 0.080 | 0.046 | 0.041 | 0.071 | 0.070 | 0.084 | 0.048 | 0.044 | |
SonarEW | MIN | 0.089 | 0.106 | 0.030 | 0.013 | 0.028 | 0.025 | 0.012 | 0.054 | 0.010 |
AVG | 0.132 | 0.146 | 0.043 | 0.042 | 0.052 | 0.047 | 0.095 | 0.073 | 0.020 | |
MAX | 0.156 | 0.170 | 0.074 | 0.062 | 0.082 | 0.071 | 0.131 | 0.099 | 0.042 | |
Libras | MIN | 0.147 | 0.154 | 0.141 | 0.109 | 0.134 | 0.200 | 0.242 | 0.174 | 0.109 |
AVG | 0.170 | 0.176 | 0.158 | 0.135 | 0.156 | 0.229 | 0.273 | 0.191 | 0.132 | |
MAX | 0.187 | 0.187 | 0.180 | 0.152 | 0.173 | 0.263 | 0.324 | 0.208 | 0.146 | |
Hillvalley | MIN | 0.347 | 0.360 | 0.301 | 0.312 | 0.344 | 0.321 | 0.319 | 0.298 | 0.276 |
AVG | 0.374 | 0.376 | 0.315 | 0.342 | 0.364 | 0.338 | 0.338 | 0.310 | 0.299 | |
MAX | 0.389 | 0.384 | 0.334 | 0.383 | 0.373 | 0.363 | 0.356 | 0.323 | 0.317 | |
Musk | MIN | 0.062 | 0.080 | 0.047 | 0.021 | 0.043 | 0.063 | 0.097 | 0.022 | 0.020 |
AVG | 0.084 | 0.104 | 0.065 | 0.045 | 0.059 | 0.077 | 0.123 | 0.052 | 0.035 | |
MAX | 0.098 | 0.119 | 0.090 | 0.063 | 0.084 | 0.111 | 0.149 | 0.083 | 0.048 | |
Clean | MIN | 0.057 | 0.089 | 0.040 | 0.023 | 0.047 | 0.047 | 0.056 | 0.032 | 0.020 |
AVG | 0.072 | 0.109 | 0.054 | 0.033 | 0.088 | 0.063 | 0.075 | 0.053 | 0.030 | |
MAX | 0.091 | 0.127 | 0.068 | 0.045 | 0.109 | 0.088 | 0.101 | 0.067 | 0.053 | |
Semeion | MIN | 0.134 | 0.122 | 0.072 | 0.059 | 0.109 | 0.081 | 0.124 | 0.069 | 0.070 |
AVG | 0.139 | 0.127 | 0.082 | 0.078 | 0.115 | 0.087 | 0.137 | 0.078 | 0.078 | |
MAX | 0.143 | 0.134 | 0.091 | 0.090 | 0.126 | 0.095 | 0.147 | 0.086 | 0.090 | |
Madelon | MIN | 0.186 | 0.228 | 0.102 | 0.107 | 0.189 | 0.184 | 0.123 | 0.099 | 0.060 |
AVG | 0.218 | 0.241 | 0.144 | 0.126 | 0.203 | 0.202 | 0.199 | 0.127 | 0.079 | |
MAX | 0.265 | 0.261 | 0.191 | 0.141 | 0.221 | 0.243 | 0.257 | 0.172 | 0.095 | |
Isolet | MIN | 0.198 | 0.151 | 0.085 | 0.075 | 0.124 | 0.130 | 0.138 | 0.112 | 0.070 |
AVG | 0.215 | 0.173 | 0.108 | 0.093 | 0.146 | 0.143 | 0.176 | 0.126 | 0.080 | |
MAX | 0.228 | 0.186 | 0.130 | 0.105 | 0.165 | 0.161 | 0.204 | 0.145 | 0.099 | |
Mean Rank | MIN | 5.391 | 6.087 | 4.522 | 4.087 | 5.043 | 5.391 | 6.348 | 4.391 | 1.217 |
AVG | 5.391 | 6.565 | 4.391 | 4.261 | 5.478 | 5.348 | 6.696 | 4.391 | 1.000 | |
MAX | 5.174 | 6.348 | 3.826 | 4.043 | 5.522 | 5.565 | 6.826 | 4.217 | 1.261 | |
Final Rank | MIN | 6 | 8 | 4 | 2 | 5 | 6 | 9 | 3 | 1 |
AVG | 6 | 8 | 3 | 2 | 7 | 5 | 9 | 3 | 1 | |
MAX | 5 | 8 | 2 | 3 | 6 | 7 | 9 | 4 | 1 |
Datasets | POA | ALSHADE | PLO | LSHADE | BEGJO | IPOA | MCOA | QHDBO |
---|---|---|---|---|---|---|---|---|
Aggregation | 9.110 × 10−2/= | 6.000 × 10−2/= | 9.200 × 10−2/= | 7.280 × 10−1/= | 8.290 × 10−2/= | 1.892 × 10−10/− | 6.956 × 10−10/− | 7.120 × 10−2/= |
Banana | 4.108 × 10−4/− | 4.574 × 10−10/− | 7.146 × 10−10/− | 2.550 × 10−10/− | 7.087 × 10−10/− | 4.462 × 10−10/− | 6.548 × 10−10/− | 2.392 × 10−10/− |
Iris | 7.930 × 10−5/− | 8.709 × 10−6/− | 8.512 × 10−6/− | 3.301 × 10−7/− | 7.322 × 10−10/− | 4.947 × 10−6/− | 5.880 × 10−8/− | 8.915 × 10−10/− |
Bupa | 4.632 × 10−5/− | 8.900 × 10−6/− | 1.999 × 10−10/− | 9.077 × 10−10/− | 7.419 × 10−10/− | 5.243 × 10−10/− | 7.833 × 10−10/− | 2.413 × 10−10/− |
Glass | 3.759 × 10−5/− | 5.281 × 10−7/− | 3.112 × 10−10/− | 3.862 × 10−10/− | 8.152 × 10−10/− | 1.258 × 10−10/− | 2.422 × 10−10/− | 8.418 × 10−10/− |
Breastcancer | 8.523 × 10−10/− | 4.779 × 10−6/− | 7.172 × 10−5/− | 5.753 × 10−5/− | 7.568 × 10−10/− | 2.606 × 10−5/− | 8.336 × 10−6/− | 6.122 × 10−10/− |
Lipid | 4.106 × 10−10/− | 1.040 × 10−6/− | 5.537 × 10−5/− | 3.546 × 10−5/− | 9.842 × 10−7/− | 8.518 × 10−5/− | 5.125 × 10−5/− | 2.049 × 10−7/− |
HeartEW | 6.135 × 10−10/− | 3.467 × 10−6/− | 4.884 × 10−5/− | 4.749 × 10−5/− | 4.925 × 10−9/− | 7.337 × 10−5/− | 7.799 × 10−5/− | 6.806 × 10−7/− |
Zoo | 8.118 × 10−4/− | 5.376 × 10−5/− | 3.168 × 10−6/− | 6.752 × 10−4/− | 6.953 × 10−7/− | 4.294 × 10−5/− | 9.395 × 10−4/− | 7.198 × 10−7 |
Vote | 8.687 × 10−4/− | 5.312 × 10−5/− | 4.068 × 10−5/− | 6.744 × 10−4/− | 4.834 × 10−7/− | 4.891 × 10−5/− | 8.118 × 10−4/− | 3.323 × 10−7/− |
Congress | 9.206 × 10−5/− | 5.752 × 10−5/− | 4.553 × 10−6/− | 2.470 × 10−4/− | 2.908 × 10−7/− | 2.458 × 10−6/− | 4.939 × 10−4/− | 8.754 × 10−7/− |
Lymphography | 9.863 × 10−4/− | 2.135 × 10−5/− | 4.500 × 10−5/− | 4.351 × 10−5/− | 3.919 × 10−7/− | 4.051 × 10−5/− | 7.508 × 10−5/− | 5.405 × 10−7/− |
Vehicle | 8.115 × 10−4/− | 8.065 × 10−5/− | 4.072 × 10−5/− | 8.227 × 10−4/− | 7.462 × 10−7/− | 8.248 × 10−5/− | 8.966 × 10−4/− | 9.643 × 10−7/− |
WDBC | 5.441 × 10−4/− | 8.676 × 10−6/− | 5.874 × 10−10/− | 8.534 × 10−5/− | 2.194 × 10−7/− | 2.735 × 10−10/− | 8.741 × 10−5/− | 9.746 × 10−7/− |
BreastEW | 4.337 × 10−4/− | 1.552 × 10−5/− | 2.468 × 10−10/− | 5.237 × 10−5/− | 9.608 × 10−7/− | 8.287 × 10−10/− | 6.717 × 10−5/− | 7.761 × 10−7/− |
SonarEW | 7.547 × 10−4/− | 8.412 × 10−5/− | 8.319 × 10−10/− | 3.371 × 10−5/− | 8.322 × 10−7/− | 9.829 × 10−10/− | 3.971 × 10−5/− | 6.279 × 10−7/− |
Libras | 7.958 × 10−4/− | 4.018 × 10−5/− | 8.241 × 10−10/− | 5.606 × 10−5/− | 1.044 × 10−7/− | 4.766 × 10−10/− | 6.978 × 10−5/− | 4.869 × 10−7/− |
Hillvalley | 7.086 × 10−4/− | 8.037 × 10−5/− | 3.034 × 10−10/− | 9.272 × 10−5/− | 6.400 × 10−10/− | 6.108 × 10−10/− | 4.109 × 10−5/− | 1.616 × 10−10/− |
Musk | 8.895 × 10−4/− | 3.520 × 10−5/− | 6.301 × 10−10/− | 8.268 × 10−5/− | 4.725 × 10−10/− | 8.507 × 10−10/− | 3.247 × 10−5/− | 2.298 × 10−10/− |
Clean | 6.316 × 10−4/− | 8.486 × 10−10/− | 2.961 × 10−10/− | 8.470 × 10−5/− | 5.054 × 10−10/− | 8.302 × 10−10/− | 9.154 × 10−5/− | 3.678 × 10−10/− |
Semeion | 3.121 × 10−10/− | 2.848 × 10−10/− | 4.749 × 10−10/− | 2.417 × 10−10/− | 2.158 × 10−10/− | 1.291 × 10−10/− | 5.210 × 10−10/− | 8.495 × 10−10/− |
Madelon | 5.407 × 10−7/− | 7.818 × 10−10/− | 5.090 × 10−10/− | 2.216 × 10−10/− | 8.459 × 10−10/− | 8.813 × 10−10/− | 8.294 × 10−10/− | 8.301 × 10−10/− |
Isolet | 7.445 × 10−10/− | 9.694 × 10−10/− | 1.623 × 10−10/− | 6.925 × 10−5/− | 7.022 × 10−10/− | 9.167 × 10−10/− | 2.646 × 10−5/− | 6.848 × 10−10/− |
+/−/= | 0/22/1 | 0/22/1 | 0/22/1 | 0/22/1 | 0/22/1 | 0/23/0 | 0/23/0 | 0/22/1 |
Datasets | POA | ALSHADE | PLO | LSHADE | BEGJO | IPOA | MCOA | QHDBO | AMFPOA |
---|---|---|---|---|---|---|---|---|---|
Aggregation | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.36 | 99.36 | 100.00 | 100.00 |
Banana | 90.00 | 89.72 | 88.87 | 89.15 | 89.43 | 88.49 | 88.87 | 89.62 | 90.28 |
Iris | 96.67 | 96.67 | 96.67 | 96.33 | 96.67 | 96.67 | 96.00 | 96.67 | 100.00 |
Bupa | 69.57 | 71.01 | 64.93 | 69.42 | 72.46 | 66.52 | 69.42 | 69.57 | 75.07 |
Glass | 79.52 | 69.29 | 73.33 | 75.71 | 76.43 | 75.48 | 67.38 | 77.86 | 85.71 |
Breastcancer | 95.68 | 97.70 | 97.84 | 98.35 | 96.91 | 97.70 | 96.40 | 97.27 | 99.21 |
Lipid | 75.26 | 74.91 | 75.60 | 73.45 | 73.79 | 70.86 | 73.19 | 72.41 | 75.09 |
HeartEW | 85.37 | 78.89 | 88.52 | 84.26 | 90.00 | 92.04 | 83.70 | 90.00 | 93.15 |
Zoo | 98.50 | 99.50 | 95.00 | 94.50 | 98.00 | 98.50 | 100.00 | 96.50 | 98.50 |
Vote | 96.09 | 94.71 | 97.59 | 95.40 | 95.52 | 96.67 | 94.60 | 96.55 | 98.62 |
Congress | 96.55 | 97.36 | 95.17 | 96.55 | 96.67 | 98.74 | 97.70 | 94.25 | 98.85 |
Lymphography | 92.07 | 80.00 | 87.59 | 93.10 | 88.97 | 88.97 | 84.83 | 85.17 | 95.52 |
Vehicle | 70.95 | 70.83 | 76.21 | 73.25 | 73.31 | 75.74 | 72.37 | 75.50 | 77.16 |
WDBC | 97.88 | 95.58 | 95.22 | 93.63 | 94.42 | 94.87 | 94.42 | 96.28 | 98.85 |
BreastEW | 98.14 | 95.58 | 97.70 | 98.05 | 98.05 | 97.17 | 95.04 | 98.32 | 98.32 |
SonarEW | 88.78 | 86.10 | 98.05 | 97.56 | 98.05 | 98.05 | 92.20 | 93.17 | 99.27 |
Libras | 83.75 | 83.06 | 84.72 | 87.64 | 87.22 | 78.75 | 71.81 | 80.28 | 87.64 |
Hillvalley | 59.09 | 59.42 | 66.53 | 64.30 | 63.97 | 66.94 | 63.97 | 66.86 | 67.52 |
Musk | 93.79 | 91.37 | 95.16 | 97.68 | 98.11 | 96.53 | 89.26 | 96.11 | 98.53 |
Clean | 93.58 | 90.95 | 98.63 | 95.89 | 95.16 | 97.68 | 93.79 | 95.68 | 99.26 |
Semeion | 89.59 | 89.81 | 94.72 | 94.47 | 92.48 | 95.50 | 89.69 | 96.73 | 96.67 |
Madelon | 78.62 | 76.17 | 85.81 | 88.19 | 82.79 | 82.83 | 80.17 | 86.98 | 92.37 |
Isolet | 79.42 | 83.92 | 90.29 | 92.03 | 89.07 | 89.39 | 83.83 | 88.30 | 93.41 |
Mean Rank | 5.26 | 6.13 | 4.39 | 4.83 | 4.43 | 4.70 | 7.30 | 4.48 | 1.22 |
Final Rank | 7 | 8 | 2 | 6 | 3 | 5 | 9 | 4 | 1 |
Datasets | POA | ALSHADE | PLO | LSHADE | BEGJO | IPOA | MCOA | QHDBO | AMFPOA |
---|---|---|---|---|---|---|---|---|---|
Aggregation | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Banana | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Iris | 1.00 | 1.00 | 1.00 | 1.90 | 1.00 | 1.00 | 1.80 | 2.00 | 1.00 |
Bupa | 3.00 | 2.90 | 1.95 | 2.10 | 3.90 | 2.30 | 2.00 | 2.00 | 1.90 |
Glass | 3.40 | 4.40 | 4.80 | 3.90 | 4.00 | 2.70 | 2.50 | 2.00 | 2.40 |
Breastcancer | 2.00 | 2.60 | 2.00 | 2.90 | 2.20 | 2.20 | 2.30 | 2.60 | 2.00 |
Lipid | 3.30 | 2.20 | 2.90 | 2.00 | 2.80 | 1.20 | 1.80 | 1.60 | 1.70 |
HeartEW | 4.20 | 2.80 | 3.80 | 3.00 | 4.80 | 4.10 | 2.90 | 3.10 | 2.40 |
Zoo | 6.10 | 7.70 | 5.00 | 7.10 | 6.90 | 7.60 | 7.70 | 6.30 | 5.00 |
Vote | 2.10 | 2.60 | 3.80 | 1.00 | 4.50 | 1.40 | 1.90 | 2.00 | 1.00 |
Congress | 1.00 | 2.80 | 3.10 | 1.00 | 4.40 | 4.90 | 1.00 | 1.00 | 1.00 |
Lymphography | 6.40 | 3.60 | 5.50 | 4.80 | 6.60 | 5.20 | 4.10 | 5.10 | 4.70 |
Vehicle | 5.30 | 6.10 | 6.00 | 5.40 | 6.30 | 5.50 | 6.30 | 6.30 | 6.30 |
WDBC | 2.40 | 7.50 | 2.50 | 2.90 | 6.60 | 5.30 | 3.60 | 2.00 | 2.00 |
BreastEW | 9.70 | 8.70 | 5.50 | 5.80 | 10.70 | 9.90 | 5.10 | 6.20 | 4.10 |
SonarEW | 18.60 | 12.40 | 15.10 | 11.80 | 20.60 | 17.70 | 14.70 | 7.20 | 7.90 |
Libras | 21.40 | 21.00 | 18.40 | 21.00 | 37.00 | 33.80 | 17.20 | 11.80 | 17.10 |
Hillvalley | 5.80 | 10.50 | 14.00 | 21.00 | 39.40 | 40.40 | 14.20 | 12.20 | 6.60 |
Musk | 45.90 | 43.50 | 35.70 | 39.70 | 69.90 | 75.60 | 44.00 | 27.90 | 35.40 |
Clean | 28.10 | 46.40 | 29.30 | 43.80 | 73.60 | 70.10 | 32.00 | 24.20 | 24.00 |
Semeion | 115.00 | 90.10 | 87.70 | 73.30 | 121.40 | 118.80 | 111.80 | 124.00 | 87.00 |
Madelon | 129.10 | 134.00 | 52.90 | 97.40 | 242.90 | 236.20 | 104.30 | 82.90 | 50.30 |
Isolet | 182.70 | 175.60 | 130.50 | 131.10 | 295.10 | 291.00 | 188.90 | 126.90 | 125.10 |
Mean Rank | 4.65 | 5.00 | 4.04 | 4.17 | 7.04 | 5.74 | 4.30 | 3.43 | 1.65 |
Final Rank | 6 | 7 | 3 | 4 | 9 | 8 | 5 | 2 | 1 |
Name | Feature Number | Instance Size | Class |
---|---|---|---|
Lung | 12,533 | 203 | 5 |
MLL | 12,582 | 72 | 3 |
Ovarian | 15,154 | 253 | 2 |
Arcene | 10,000 | 200 | 2 |
RNA-Seq | 20,531 | 801 | 5 |
Dorothea | 100,000 | 800 | 2 |
CNS | 7129 | 60 | 2 |
Datasets | Metrics | POA | ALSHADE | PLO | LSHADE | BEGJO | IPOA | MCOA | QHDBO | AMFPOA |
---|---|---|---|---|---|---|---|---|---|---|
Lung | MIN | 0.120 | 0.152 | 0.097 | 0.138 | 0.151 | 0.141 | 0.151 | 0.159 | 0.094 |
AVG | 0.141 | 0.166 | 0.118 | 0.162 | 0.182 | 0.162 | 0.177 | 0.174 | 0.113 | |
MAX | 0.170 | 0.170 | 0.136 | 0.186 | 0.216 | 0.188 | 0.193 | 0.188 | 0.139 | |
MLL | MIN | 0.344 | 0.333 | 0.336 | 0.310 | 0.293 | 0.372 | 0.316 | 0.292 | 0.270 |
AVG | 0.364 | 0.345 | 0.354 | 0.330 | 0.315 | 0.389 | 0.345 | 0.308 | 0.288 | |
MAX | 0.389 | 0.361 | 0.368 | 0.346 | 0.329 | 0.408 | 0.364 | 0.337 | 0.297 | |
Ovarian | MIN | 0.058 | 0.083 | 0.029 | 0.057 | 0.056 | 0.072 | 0.067 | 0.038 | 0.022 |
AVG | 0.089 | 0.106 | 0.050 | 0.070 | 0.085 | 0.089 | 0.092 | 0.047 | 0.031 | |
MAX | 0.109 | 0.135 | 0.070 | 0.095 | 0.110 | 0.100 | 0.131 | 0.059 | 0.042 | |
Arcene | MIN | 0.048 | 0.089 | 0.034 | 0.046 | 0.085 | 0.054 | 0.050 | 0.036 | 0.017 |
AVG | 0.070 | 0.106 | 0.054 | 0.066 | 0.097 | 0.066 | 0.064 | 0.046 | 0.030 | |
MAX | 0.107 | 0.123 | 0.067 | 0.105 | 0.108 | 0.086 | 0.078 | 0.060 | 0.038 | |
RNA-Seq | MIN | 0.105 | 0.106 | 0.076 | 0.082 | 0.101 | 0.079 | 0.111 | 0.084 | 0.062 |
AVG | 0.109 | 0.116 | 0.089 | 0.089 | 0.111 | 0.089 | 0.124 | 0.091 | 0.069 | |
MAX | 0.115 | 0.125 | 0.098 | 0.098 | 0.126 | 0.107 | 0.132 | 0.100 | 0.083 | |
Dorothea | MIN | 0.195 | 0.204 | 0.096 | 0.096 | 0.191 | 0.181 | 0.154 | 0.096 | 0.082 |
AVG | 0.254 | 0.263 | 0.125 | 0.114 | 0.221 | 0.200 | 0.220 | 0.126 | 0.098 | |
MAX | 0.285 | 0.305 | 0.162 | 0.133 | 0.266 | 0.224 | 0.275 | 0.173 | 0.135 | |
CNS | MIN | 0.143 | 0.163 | 0.091 | 0.083 | 0.139 | 0.137 | 0.159 | 0.111 | 0.069 |
AVG | 0.160 | 0.179 | 0.116 | 0.096 | 0.160 | 0.151 | 0.178 | 0.128 | 0.077 | |
MAX | 0.175 | 0.187 | 0.143 | 0.115 | 0.196 | 0.164 | 0.207 | 0.144 | 0.088 | |
Mean Rank | MIN | 6.286 | 8.286 | 2.857 | 3.857 | 5.857 | 6.143 | 6.571 | 4.143 | 1.000 |
AVG | 6.429 | 8.000 | 3.429 | 3.429 | 6.571 | 5.571 | 6.857 | 3.714 | 1.000 | |
MAX | 6.286 | 7.143 | 3.286 | 3.429 | 6.857 | 5.714 | 7.286 | 3.714 | 1.286 | |
Final Rank | MIN | 7 | 9 | 2 | 3 | 5 | 6 | 8 | 4 | 1 |
AVG | 6 | 9 | 2 | 2 | 7 | 5 | 8 | 4 | 1 | |
MAX | 6 | 8 | 2 | 3 | 7 | 5 | 9 | 4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Lv, J.; Yu, Y. Adapted Multi-Strategy Fractional-Order Relative Pufferfish Optimization Algorithm for Feature Selection. Mathematics 2025, 13, 2799. https://doi.org/10.3390/math13172799
Xu L, Lv J, Yu Y. Adapted Multi-Strategy Fractional-Order Relative Pufferfish Optimization Algorithm for Feature Selection. Mathematics. 2025; 13(17):2799. https://doi.org/10.3390/math13172799
Chicago/Turabian StyleXu, Lukui, Jiajun Lv, and Youling Yu. 2025. "Adapted Multi-Strategy Fractional-Order Relative Pufferfish Optimization Algorithm for Feature Selection" Mathematics 13, no. 17: 2799. https://doi.org/10.3390/math13172799
APA StyleXu, L., Lv, J., & Yu, Y. (2025). Adapted Multi-Strategy Fractional-Order Relative Pufferfish Optimization Algorithm for Feature Selection. Mathematics, 13(17), 2799. https://doi.org/10.3390/math13172799