An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa
Abstract
1. Introduction
2. Literature Review
2.1. Agriculture and Its Role in East African Development
2.2. Application of MCDM in Agricultural Development Analysis
- Objectivity: Reduces dependence on expert judgments for weighting.
- Comprehensiveness: Considers expectation-versus-reality ranking gaps.
- Sensitivity: Better distinguishes cases where development performance is imbalanced.
- Transparency: Offers a replicable, data-driven structure for decision-making.
2.3. Research Gaps and Approaches of the Paper
3. Research Methodology
3.1. General Research Framework
3.2. Selection of Evaluation Criteria
3.3. Using the Entropy–MAIRCA Integrated Model in Assessing and Classifying Agricultural Development Capacity Among Countries in the Region
3.4. Scope of the Study and Data
4. Numerical Results
4.1. Case Study Description
4.2. Countries Classification by Proposed Approach
4.3. Results of Technical Clustering and Ranking by Strategy
4.4. Model Validation and Robustness Check
5. Discussion
5.1. Interpretation of Results and Strategic Implications
5.2. Links to Governance Theory and Models
5.3. Comparison with Previous Studies
5.4. Contribution to Regional Engineering Management
6. Theoretical and Managerial Implications
- This study proposes an MCDM framework that incorporates a comprehensive set of multi-dimensional indicators—encompassing both internal (e.g., arable land, production capacity) and external (e.g., trade and political stability) factors—to assess agricultural development capacity. A four-tier strategic grouping model was developed, offering flexibility for replication and practical application in other regional contexts to support resource-based policy planning.
- Unlike most previous studies, this research includes institutional indicators—particularly political stability and governance—within the MCDM model. These findings reveal that political stability carries a high weight, demonstrating its significant influence on agricultural performance. Additionally, this study shows that market access (exports) has a more decisive role than simply owning extensive arable land, emphasizing the importance of trade conditions and institutional capacity in achieving food security.
- By integrating entropy and MAIRCA, the study presents a model that ensures greater objectivity than subjective methods such as AHP and better accounts for data distribution compared to methods like TOPSIS or VIKOR. This combination provides more realistic and replicable ranking results, affirming its academic relevance and practical utility for regional policy assessment and decision making.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ba, M.N. Strategic agricultural commodity value chains in Africa for increased food: The regional approach for food security. Agric. Sci. 2016, 7, 549. [Google Scholar]
- World Bank. Seizing the Agri-Food Opportunity in Eastern and Southern Africa. 2022. Available online: https://blogs.worldbank.org/en/africacan/seizing-agri-food-opportunity-eastern-and-southern-africa (accessed on 20 July 2024).
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Warui, H.; Gatwiri, C. Soil Degradation A Silent Crisis in East Africa. 2025. Available online: https://ke.boell.org/en/2025/02/27/soil-degradation-silent-crisis-east-africa (accessed on 11 May 2024).
- Kimenyi, M.; Adibe, J.; Djiré, M.; Jirgi, A.J.; Kergna, A.; Deressa, T.; Pugliese, J.; Westbury, A. The impact of conflict and political instability on agricultural investments in Mali and Nigeria. Brook. Afr. Growth Initiat. Work. Pap 2014, 17. [Google Scholar]
- Brigham, A.M. Agricultural Exports and Food Insecurity in Sub-Saharan Africa: A Qualititative Configurational Analysis. Dev. Policy Rev. 2011, 29, 729–748. [Google Scholar] [CrossRef]
- Mango, N.; Makate, C.; Mapemba, L.; Sopo, M. The role of crop diversification in improving household food security in central Malawi. Agric. Food Secur. 2018, 7, 1–10. [Google Scholar] [CrossRef]
- De Silva, L.; Jayamaha, N.; Garnevska, E. Sustainable farmer development for Agri-food supply chains in developing countries. Sustainability 2023, 15, 15099. [Google Scholar] [CrossRef]
- Arinloye, A.D.D.; Degrande, A.; Fassinou Hotegni, V.N.; Asaah, E.; Bockarie, R.; Nyemeck, J.B.; Bayala, J.; Kalinganire, A. Value chain development for mango (Mangifera indica) around Outamba Kilimi National Park in Sierra Leone: Constraints and opportunities for smallholders. Agric. Food Secur. 2017, 6, 14. [Google Scholar] [CrossRef]
- Appiah-Twumasi, M.; Asale, M.A. Crop diversification and farm household food and nutrition security in Northern Ghana. Environ. Dev. Sustain. 2024, 26, 157–185. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and food systems in sub-Saharan Africa in a 4 C+ world. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 117–136. [Google Scholar] [CrossRef]
- Seife, T. The impact of climate change on agriculture and food security in the greater horn of Africa. Politikon 2021, 48, 98–114. [Google Scholar] [CrossRef]
- Ritzema, R.S.; Frelat, R.; Douxchamps, S.; Silvestri, S.; Rufino, M.C.; Herrero, M.; Giller, K.E.; López-Ridaura, S.; Teufel, N.; Paul, B.K.; et al. Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa. Food Secur. 2017, 9, 115–131. [Google Scholar] [CrossRef]
- Bedasa, Y.; Bedemo, A. The effect of climate change on food insecurity in the Horn of Africa. GeoJournal 2023, 88, 1829–1839. [Google Scholar] [CrossRef]
- Kassaye, A.Y.; Shao, G.; Wang, X.; Shifaw, E.; Wu, S. Impact of climate change on the staple food crops yield in Ethiopia: Implications for food security. Theor. Appl. Climatol. 2021, 145, 327–343. [Google Scholar] [CrossRef]
- Kadi, H.A.; Njau, L.N.; Mwikya, J.; Kamga, A. The State of Climate Information Services for Agriculture and Food Security in East African Countries; CCAFS Working Paper No. 5; CCAFS: Copenhagen, Denmark, 2011. [Google Scholar]
- Karume, K.; Mondo, J.M.; Kiyala, J.C.K. Drought, the War in Europe and Its Impacts on Food Insecurity in Sub-Saharan Africa, East Africa. In Climate Change and Socio-Political Violence in Sub-Saharan Africa in the Anthropocene: Perspectives from Peace Ecology and Sustainable Development; Springer Nature: Amsterdam, The Netherlands, 2024; pp. 91–111. [Google Scholar]
- Balma, L.; Heidland, T.; Jävervall, S.; Mahlkow, H.; Mukasa, A.N.; Woldemichael, A. Long-Run Impacts of the Conflict in Ukraine on Food Security in Africa; Kiel Policy Brief: Kiel, Germany, 2022. [Google Scholar]
- Miruka, M.K.; Okello, J.J.; Kirigua, V.O.; Murithi, F.M. The role of the Kenya Agricultural Research Institute (KARI) in the attainment of household food security in Kenya: A policy and organizational review. Food Secur. 2012, 4, 341–354. [Google Scholar] [CrossRef]
- Ngango, J.; Hong, S. Improving farm productivity through the reduction of managerial and technology gaps among farmers in Rwanda. Agric. Food Secur. 2021, 10, 11. [Google Scholar] [CrossRef]
- Mahgoub, F. Current Status of Agriculture and Future Challenges in Sudan; Nordiska Afrikainstitutet: Uppsala, Sweden, 2014. [Google Scholar]
- Dorward, A.; Chirwa, E. The Malawi agricultural input subsidy programme: 2005/06 to 2008/09. In Sustainable Intensification: Increasing Productivity in African Food and Agricultural Systems; Routledge: London, UK, 2012; pp. 232–247. [Google Scholar]
- Agrawal, N. Multi-criteria decision-making toward supplier selection: Exploration of PROMETHEE II method. Benchmarking Int. J. 2022, 29, 2122–2146. [Google Scholar] [CrossRef]
- Cai, Y.; Jin, F.; Liu, J.; Zhou, L.; Tao, Z. A survey of collaborative decision-making: Bibliometrics, preliminaries, methodologies, applications and future directions. Eng. Appl. Artif. Intell. 2023, 122, 106064. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, N.-A.-T.; Dang, T.-T. Sustainable evaluation of major third-party logistics providers: A framework of an MCDM-based entropy objective weighting method. Mathematics 2023, 11, 4203. [Google Scholar] [CrossRef]
- Wang, C.-N.; Le, T.Q.; Chang, K.-H.; Dang, T.-T. Measuring road transport sustainability using MCDM-based entropy objective weighting method. Symmetry 2022, 14, 1033. [Google Scholar] [CrossRef]
- Supriya, Y.; Gadekallu, T.R. A Survey on Soft Computing Techniques for Federated Learning—Applications, Challenges and Future Directions. ACM J. Data Inf. Qual. 2023, 15, 1–28. [Google Scholar] [CrossRef]
- Sharma, M.; Sehrawat, R. A hybrid multi-criteria decision-making method for cloud adoption: Evidence from the healthcare sector. Technol. Soc. 2020, 61, 101258. [Google Scholar] [CrossRef]
- Vatankhah, S.; Darvishmotevali, M.; Rahimi, R.; Jamali, S.M.; Ebrahim, N.A. Assessing the application of multi-criteria decision making techniques in hospitality and tourism research: A bibliometric study. Int. J. Contemp. Hosp. Manag. 2023, 35, 2590–2623. [Google Scholar] [CrossRef]
- Yenugula, M.; Sahoo, S.; Goswami, S. Cloud computing in supply chain management: Exploring the relationship. Manag. Sci. Lett. 2023, 13, 193–210. [Google Scholar] [CrossRef]
- Goswami, S.S.; Behera, D.K.; Mitra, S. A comprehensive study of weighted product model for selecting the best product in our daily life. Braz. J. Oper. Prod. Manag. 2020, 17, 1–18. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Wątróbski, J.; Sałabun, W. Multi-criteria decision support system for the evaluation of UAV intelligent agricultural sensors. Artif. Intell. Rev. 2025, 58, 194. [Google Scholar] [CrossRef]
- Atlı, H.F. Safety of agricultural machinery and tractor maintenance planning with fuzzy logic and MCDM for agricultural productivity. Int. J. Agric. Environ. Food Sci. 2024, 8, 25–43. [Google Scholar] [CrossRef]
- Tuncel, G.; Gunturk, B. A Fuzzy Multi-Criteria Decision-Making Approach for Agricultural Land Selection. Sustainability 2024, 16, 10509. [Google Scholar] [CrossRef]
- Dere, S.; Günay, E.E.; Kula, U.; Kremer, G.E. Assessing agrivoltaics potential in Türkiye–A geographical information system (GIS)-based fuzzy multi-criteria decision making (MCDM) approach. Comput. Ind. Eng. 2024, 197, 110598. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, S.; Zhang, W.; Yu, D.; Chen, K. A hybrid approach combining an extended BBO algorithm with an intuitionistic fuzzy entropy weight method for QoS-aware manufacturing service supply chain optimization. Neurocomputing 2018, 272, 439–452. [Google Scholar] [CrossRef]
- Zhao, D.-Y.; Ma, Y.-Y.; Lin, H.-L. Using the entropy and TOPSIS models to evaluate sustainable development of islands: A case in China. Sustainability 2022, 14, 3707. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, Q.; Yang, D.; Liu, S. Extended multicriteria group decision making with a novel aggregation operator for emergency material supplier selection. Entropy 2023, 25, 702. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Milićević, M. The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability 2016, 8, 372. [Google Scholar] [CrossRef]
- Pamučar, D.; Lukovac, V.; Božanić, D.; Komazec, N. Multi-criteria FUCOM-MAIRCA model for the evaluation of level crossings: Case study in the Republic of Serbia. Oper. Res. Eng. Sci. Theory Appl. 2018, 1, 108–129. [Google Scholar] [CrossRef]
- Günay, F.; Ecer, F. Cash flow based financial performance of Borsa İstanbul tourism companies by Entropy-MAIRCA integrated model. J. Multidiscip. Acad. Tour. 2020, 5, 29–37. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chakraborty, S. A multi-attributive ideal-real comparative analysis-based approach for piston material selection. Opsearch 2022, 59, 207–228. [Google Scholar] [CrossRef]
- Hadian, S.; Shahiri Tabarestani, E.; Pham, Q.B. Multi attributive ideal-real comparative analysis (MAIRCA) method for evaluating flood susceptibility in a temperate Mediterranean climate. Hydrol. Sci. J. 2022, 67, 401–418. [Google Scholar] [CrossRef]
- Rouyendegh, B.D.; Savalan, Ş. An integrated fuzzy MCDM hybrid methodology to analyze agricultural production. Sustainability 2022, 14, 4835. [Google Scholar] [CrossRef]
- Farida, Y.; Firdaus, G.S.; Wibowo, A.T.; Sari, S.K.; Desinaini, L.N. Evaluation of Food Security Area of East Java Province Using Fuzzy C-Means (FCM) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). IJCCS Indones. J. Comput. Cybern. Syst. 2023, 17, 371–382. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Miles, R.E.; Snow, C.C.; Meyer, A.D.; Coleman, H.J., Jr. Organizational strategy, structure, and process. Acad. Manag. Rev. 1978, 3, 546–562. [Google Scholar] [CrossRef]
- Santeramo, F.G.; Jelliffe, J.; Hoekman, B. Agri-food value chains and the global food dollar: The role of trade and services. Food Policy 2024, 127, 102706. [Google Scholar] [CrossRef]
- Uisso, A.M.; Tanrıvermiş, H. Driving factors and assessment of changes in the use of arable land in Tanzania. Land Use Policy 2021, 104, 105359. [Google Scholar] [CrossRef]
- World Bank. Arable Land. Available online: https://data.worldbank.org/indicator/AG.LND.ARBL.ZS (accessed on 20 May 2024).
- Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Wang, X. Internet of things for the future of smart agriculture: A comprehensive survey of emerging technologies. IEEE/CAA J. Autom. Sin. 2021, 8, 718–752. [Google Scholar] [CrossRef]
- Lefe, Y.D.H.; Asare-Nuamah, P.; Njong, A.M.; Kondowe, J.; Musakaruka, R.R. Does climate variability matter in achieving food security in Sub-Saharan Africa? Environ. Chall. 2024, 15, 100870. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges. IEEE Access 2020, 8, 32031–32053. [Google Scholar] [CrossRef]
- Patil, P.; Jadhav, P.; Maiti, M. The impact of new agricultural export policy on Indian agriculture exports. J. Public Aff. 2020, 20, e2303. [Google Scholar] [CrossRef]
- Balié, J.; Del Prete, D.; Magrini, E.; Montalbano, P.; Nenci, S. Does trade policy impact food and agriculture global value chain participation of sub-Saharan African countries? Am. J. Agric. Econ. 2019, 101, 773–789. [Google Scholar] [CrossRef]
- Sandström, V.; Saikku, L.; Antikainen, R.; Sokka, L.; Kauppi, P. Changing impact of import and export on agricultural land use: The case of Finland 1961–2007. Agric. Ecosyst. Environ. 2014, 188, 163–168. [Google Scholar] [CrossRef]
- Gilani, S.W. The impact of agricultural imports and exports on agricultural productivity. J. Econ. Sustain. Dev. 2015, 6, 110–116. [Google Scholar]
- Niforos, M. Beyond FinTech: Leveraging Blockchain for More Sustainable and Inclusive Supply Chains. 2017. Available online: https://openknowledge.worldbank.org/entities/publication/6dd33df2-68f4-56cb-ad64-12bf41c784b0 (accessed on 20 May 2024).
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 2019, 36, 337–352. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. J. Intell. Fuzzy Syst. 2019, 37, 1197–1211. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Assessing the energy security of European Union countries from two perspectives—A new integrated approach based on MCDM methods. Appl. Energy 2023, 347, 121443. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Liu, W.-L. Unveiling the landscape of Fintech in ASEAN: Assessing development, regulations, and economic implications by decision-making approach. Humanit. Soc. Sci. Commun. 2024, 11, 1–16. [Google Scholar] [CrossRef]
- Almeida, V.V.A.; Gomes, C.F.S.; Pinochet, L.H.C.; dos Santos, M. Prioritization of investment order in Brazil among renewable energy sources: An analysis using the SWARA-MOORA-3NAG method. J. Model. Manag. 2025, 20, 620–647. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chatterjee, P.; Das, P.P. Multi-Attributive Ideal-Real Comparative Analysis (MAIRCA) Method. In Multi-Criteria Decision-Making Methods in Manufacturing Environments; Apple Academic Press: Palm Bay, FL, USA, 2024; pp. 289–296. [Google Scholar]
- Worldatlats. East African Countries. Available online: https://www.worldatlas.com/ (accessed on 1 March 2025).
- Barney, J. Firm resources and sustained competitive advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Pervez, S.; McNally, A.; Arsenault, K.; Budde, M.; Rowland, J. Vegetation Monitoring Optimization with Normalized Difference Vegetation Index and Evapotranspiration Using Remote Sensing Measurements and Land Surface Models Over East Africa. Front. Clim. 2021, 3, 589981. [Google Scholar] [CrossRef]
MCDM Method | Subjectivity | Ideal Solution-Based | Handles Distribution | Application Fit |
---|---|---|---|---|
AHP [61] | High | No | No | Policy prioritization |
TOPSIS [62] | Low | Yes | No | Performance benchmarking |
VIKOR [63] | Low | Yes | No | Compromise ranking |
GRA [64] | Low | Yes | No | Small sample, gray systems |
EDAS [65] | Low | Yes | No | Benefit/cost analysis under certainty |
MOORA [66] | Low | Yes | No | Ratio-based performance comparison |
MAIRCA [67] | Low | Yes | Yes | Strategic classification |
Entropy–MAIRCA (Proposed) | None | Yes | Yes | Complex systems with uncertainty |
Country | Code | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|---|
Burundi | BR | 123.700 | 0.098 | 15.400 | 64.098 | 14.216 | −1.360 |
Comoros | CM | 105.820 | 0.082 | 2.700 | 53.007 | 27.668 | −0.230 |
Djibouti | DB | 144.130 | 0.002 | 9.500 | 66.412 | 29.446 | −0.710 |
Eritrea | ER | 104.860 | 0.194 | 1.500 | 0.178 | 0.191 | −1.010 |
Ethiopia | ET | 116.310 | 0.138 | 2.900 | 80.204 | 28.168 | −2.070 |
Kenya | KY | 110.330 | 0.112 | 19.500 | 47.515 | 15.978 | −1.090 |
Madagascar | MD | 103.760 | 0.106 | 4.200 | 38.235 | 21.507 | −0.640 |
Malawi | ML | 141.740 | 0.186 | 16.400 | 89.817 | 10.417 | −0.110 |
Mauritius | MR | 83.230 | 0.059 | 7.400 | 40.883 | 21.361 | 0.860 |
Mozambique | MZ | 139.770 | 0.181 | 16.600 | 11.000 | 11.969 | −1.230 |
Rwanda | RD | 129.240 | 0.088 | 15.700 | 27.237 | 22.444 | 0.170 |
Seychelles | SC | 94.850 | 0.002 | 3.300 | 92.088 | 19.515 | 0.760 |
Somalia | SM | 98.510 | 0.067 | 3.300 | 66.416 | 43.895 | −2.680 |
South Sudan | SS | 113.010 | 0.226 | 3.500 | 3.485 | 28.856 | −2.300 |
Uganda | UD | 122.570 | 0.155 | 9.600 | 37.534 | 11.504 | −0.860 |
Tanzania | TZ | 113.670 | 0.219 | 12.700 | 28.945 | 7.207 | −0.440 |
Zambia | ZB | 128.880 | 0.201 | 15.700 | 7.669 | 8.858 | 0.060 |
Zimbabwe | ZW | 132.040 | 0.255 | 5.600 | 15.882 | 14.202 | −1.030 |
Country | Code | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|---|
Burundi | BR | 0.858 | 0.385 | 0.790 | 0.696 | 0.324 | 0.425 |
Comoros | CM | 0.734 | 0.321 | 0.138 | 0.576 | 0.630 | 0.718 |
Djibouti | DB | 1.000 | 0.007 | 0.487 | 0.721 | 0.671 | 0.593 |
Eritrea | ER | 0.728 | 0.760 | 0.077 | 0.002 | 0.004 | 0.516 |
Ethiopia | ET | 0.807 | 0.541 | 0.149 | 0.871 | 0.642 | 0.241 |
Kenya | KY | 0.765 | 0.437 | 1.000 | 0.516 | 0.364 | 0.495 |
Madagascar | MD | 0.720 | 0.416 | 0.215 | 0.415 | 0.490 | 0.611 |
Malawi | ML | 0.983 | 0.728 | 0.841 | 0.975 | 0.237 | 0.749 |
Mauritius | MR | 0.577 | 0.232 | 0.379 | 0.444 | 0.487 | 1.000 |
Mozambique | MZ | 0.970 | 0.710 | 0.851 | 0.119 | 0.273 | 0.459 |
Rwanda | RD | 0.897 | 0.343 | 0.805 | 0.296 | 0.511 | 0.821 |
Seychelles | SC | 0.658 | 0.006 | 0.169 | 1.000 | 0.445 | 0.974 |
Somalia | SM | 0.683 | 0.261 | 0.169 | 0.721 | 1.000 | 0.083 |
South Sudan | SS | 0.784 | 0.884 | 0.179 | 0.038 | 0.657 | 0.181 |
Uganda | UD | 0.850 | 0.609 | 0.492 | 0.408 | 0.262 | 0.554 |
Tanzania | TZ | 0.789 | 0.857 | 0.651 | 0.314 | 0.164 | 0.663 |
Zambia | ZB | 0.894 | 0.786 | 0.805 | 0.083 | 0.202 | 0.793 |
Zimbabwe | ZW | 0.916 | 1.000 | 0.287 | 0.172 | 0.324 | 0.510 |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
Entropy | 0.99648 | 0.93223 | 0.92404 | 0.91042 | 0.94464 | 0.9646 |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
0.00060 | 0.01149 | 0.01288 | 0.01519 | 0.00939 | 0.00600 |
Country | Code | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|---|
Burundi | BR | 0.00040 | 0.00438 | 0.00995 | 0.01057 | 0.00301 | 0.00224 |
Comoros | CM | 0.00022 | 0.00364 | 0.00086 | 0.00873 | 0.00590 | 0.00415 |
Djibouti | DB | 0.00060 | 0.00001 | 0.00573 | 0.01095 | 0.00628 | 0.00334 |
Eritrea | ER | 0.00021 | 0.00872 | 0.00000 | 0.00000 | 0.00000 | 0.00283 |
Ethiopia | ET | 0.00032 | 0.00619 | 0.00100 | 0.01323 | 0.00601 | 0.00103 |
Kenya | KY | 0.00027 | 0.00498 | 0.01288 | 0.00782 | 0.00339 | 0.00270 |
Madagascar | MD | 0.00020 | 0.00475 | 0.00193 | 0.00629 | 0.00458 | 0.00346 |
Malawi | ML | 0.00057 | 0.00835 | 0.01066 | 0.01482 | 0.00220 | 0.00436 |
Mauritius | MR | 0.00000 | 0.00261 | 0.00422 | 0.00673 | 0.00455 | 0.00600 |
Mozambique | MZ | 0.00055 | 0.00814 | 0.01081 | 0.00179 | 0.00253 | 0.00246 |
Rwanda | RD | 0.00045 | 0.00390 | 0.01016 | 0.00447 | 0.00478 | 0.00483 |
Seychelles | SC | 0.00011 | 0.00000 | 0.00129 | 0.01519 | 0.00415 | 0.00583 |
Somalia | SM | 0.00015 | 0.00294 | 0.00129 | 0.01095 | 0.00939 | 0.00000 |
South Sudan | SS | 0.00029 | 0.01016 | 0.00143 | 0.00055 | 0.00616 | 0.00064 |
Uganda | UD | 0.00039 | 0.00697 | 0.00580 | 0.00617 | 0.00243 | 0.00308 |
Tanzania | TZ | 0.00030 | 0.00984 | 0.00802 | 0.00475 | 0.00151 | 0.00380 |
Zambia | ZB | 0.00045 | 0.00903 | 0.01016 | 0.00124 | 0.00186 | 0.00464 |
Zimbabwe | ZW | 0.00048 | 0.01149 | 0.00293 | 0.00260 | 0.00301 | 0.00280 |
Country | Code | C1 | C2 | C3 | C4 | C5 | C6 | G |
---|---|---|---|---|---|---|---|---|
Burundi | BR | 0.00020 | 0.00712 | 0.00293 | 0.00463 | 0.00638 | 0.00376 | 0.02502 |
Comoros | CM | 0.00038 | 0.00785 | 0.01202 | 0.00646 | 0.00349 | 0.00185 | 0.03205 |
Djibouti | DB | 0.00000 | 0.01148 | 0.00716 | 0.00424 | 0.00310 | 0.00266 | 0.02865 |
Eritrea | ER | 0.00038 | 0.00277 | 0.01288 | 0.01519 | 0.00939 | 0.00317 | 0.04379 |
Ethiopia | ET | 0.00027 | 0.00530 | 0.01188 | 0.00196 | 0.00338 | 0.00497 | 0.02777 |
Kenya | KY | 0.00033 | 0.00651 | 0.00000 | 0.00737 | 0.00600 | 0.00331 | 0.02351 |
Madagascar | MD | 0.00040 | 0.00675 | 0.01095 | 0.00890 | 0.00481 | 0.00254 | 0.03435 |
Malawi | ML | 0.00002 | 0.00315 | 0.00222 | 0.00038 | 0.00719 | 0.00164 | 0.01460 |
Mauritius | MR | 0.00060 | 0.00888 | 0.00866 | 0.00846 | 0.00484 | 0.00000 | 0.03144 |
Mozambique | MZ | 0.00004 | 0.00335 | 0.00208 | 0.01340 | 0.00686 | 0.00354 | 0.02928 |
Rwanda | RD | 0.00015 | 0.00759 | 0.00272 | 0.01072 | 0.00461 | 0.00117 | 0.02696 |
Seychelles | SC | 0.00048 | 0.01149 | 0.01159 | 0.00000 | 0.00524 | 0.00017 | 0.02898 |
Somalia | SM | 0.00045 | 0.00855 | 0.01159 | 0.00424 | 0.00000 | 0.00600 | 0.03084 |
South Sudan | SS | 0.00030 | 0.00134 | 0.01145 | 0.01465 | 0.00323 | 0.00536 | 0.03633 |
Uganda | UD | 0.00021 | 0.00452 | 0.00709 | 0.00902 | 0.00696 | 0.00292 | 0.03071 |
Tanzania | TZ | 0.00030 | 0.00165 | 0.00487 | 0.01044 | 0.00788 | 0.00220 | 0.02734 |
Zambia | ZB | 0.00015 | 0.00247 | 0.00272 | 0.01395 | 0.00753 | 0.00136 | 0.02818 |
Zimbabwe | ZW | 0.00012 | 0.00000 | 0.00995 | 0.01260 | 0.00638 | 0.00320 | 0.03225 |
Strategic Group | Member Countries | Avg. G-Score | Food Export Share | Stability Index | Notable Characteristics |
---|---|---|---|---|---|
Group 1: Pioneers | Malawi, Kenya, Burundi, Rwanda, Tanzania | <0.028 | High | Moderate–High | Balanced structure, low volatility, strong trade capacity |
Group 2: Emerging | Ethiopia, Mozambique, Zambia, Uganda, etc. | 0.027–0.032 | Moderate | Low– Moderate | Potential in land/productivity, need institutional support |
Group 3: Trade-based | Seychelles, Djibouti | ~0.033 | High (export) | Low | Export-oriented, import-dependent, internal weakness |
Group 4: High Risk | Eritrea, South Sudan, Madagascar | >0.034 | Low | Very Low | Systemic fragility, poor infrastructure, high volatility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Tran Thi, D.-O.; Nhieu, N.-L.; Hsueh, M.-H. An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa. Mathematics 2025, 13, 2465. https://doi.org/10.3390/math13152465
Wang C-N, Tran Thi D-O, Nhieu N-L, Hsueh M-H. An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa. Mathematics. 2025; 13(15):2465. https://doi.org/10.3390/math13152465
Chicago/Turabian StyleWang, Chia-Nan, Duy-Oanh Tran Thi, Nhat-Luong Nhieu, and Ming-Hsien Hsueh. 2025. "An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa" Mathematics 13, no. 15: 2465. https://doi.org/10.3390/math13152465
APA StyleWang, C.-N., Tran Thi, D.-O., Nhieu, N.-L., & Hsueh, M.-H. (2025). An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa. Mathematics, 13(15), 2465. https://doi.org/10.3390/math13152465