Some New and Sharp Inequalities of Composite Simpson’s Formula for Differentiable Functions with Applications
Abstract
1. Introduction
2. Main Results
3. Numerical Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burden, R.L.; Faires, J.D. Numerical Analysis, 9th ed.; Cengage Learning: Boston, MA, USA, 2010. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. Res. Rep. Collect. 2009, 12, 1–19. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef]
- Alomari, M.; Hussain, S. Two inequalities of Simpson type for quasi-convex functions and applications. Appl. Math. E-Notes 2011, 11, 110–117. [Google Scholar]
- Chun, L.; Qi, F. Inequalities of Simpson type for functions whose third derivatives are extended s-convex functions and applications to means. J. Comput. Anal. Appl. 2015, 19, 555–569. [Google Scholar]
- Qaisar, S.; He, C.; Hussain, S. A generalizations of Simpson’s type inequality for differentiable functions using (α,m)-convex functions and applications. J. Inequalities Appl. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Tunc, M.; Yildiz, C.; Ekinci, A. On some inequalities of Simpson’s type via h-convex functions. Hacet. J. Math. Stat. 2013, 42, 309–317. [Google Scholar]
- Sarikaya, M.Z.; Aktan, N. On the generalization of some integral inequalities and their applications. Math. Comput. Model. 2011, 54, 2175–2182. [Google Scholar] [CrossRef]
- Kashuri, A.; Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.; Chu, Y. New Simpson type integral inequalities for s-convex functions and their applications. Math. Probl. Eng. 2020, 2020, 8871988. [Google Scholar] [CrossRef]
- Cakmak, M. The differentiable h-convex functions involving the Bullen inequality. Acta Univ. Apulensis 2021, 65, 29–36. [Google Scholar]
- Sarikaya, M.Z. On the some generalization of inequalities associated with Bullen, Simpson, midpoint and trapezoid type. Acta Univ. Apulensis Math. Inform. 2023, 73, 33–52. [Google Scholar]
- Vivas–Cortez, M.; Javed, M.Z.; Awan, M.U.; Noor, M.A.; Dragomir, S.S. Bullen-Mercer type inequalities with applications in numerical analysis. Alex. Eng. J. 2024, 96, 15–33. [Google Scholar] [CrossRef]
- Du, T.; Yuan, X. On the parameterized fractal integral inequalities and related applications. Chaos Solitons Fractals 2023, 170, 113375. [Google Scholar] [CrossRef]
- Yuan, X.; Xu, L.E.I.; Du, T. Simpson-like inequalities for twice differentiable (s,P)-convex mappings involving with AB-fractional integrals and their applications. Fractals 2023, 31, 2350024. [Google Scholar] [CrossRef]
- Zhou, Y.; Du, T. The Simpson-type integral inequalities involving twice local fractional differentiable generalized (s,P)-convexity and their applications. Fractals 2023, 31, 2350038. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H. Fractional Newton-type integral inequalities by means of various function classes. Math. Methods Appl. Sci. 2025, 48, 1198–1215. [Google Scholar] [CrossRef]
- Du, T.; Long, Y. The multi-parameterized integral inequalities for multiplicative Riemann–Liouville fractional integrals. J. Math. Anal. Appl. 2025, 541, 128692. [Google Scholar] [CrossRef]
- Ai, D.; Du, T. A study on Newton-type inequalities bounds for twice* differentiable functions under multiplicative Katugampola fractional integrals. Fractals 2025, 2550032. [Google Scholar] [CrossRef]
- Peng, Y.; Özcan, S.; Du, T. Symmetrical Hermite-Hadamard type inequalities stemming from multiplicative fractional integrals. Chaos Solitons Fractals 2024, 183, 114960. [Google Scholar] [CrossRef]
- Hezenci, F.; Budak, H. Fractional Euler-Maclaurin-type inequalities for various function classes. Comput. Appl. Math. 2024, 43, 261. [Google Scholar] [CrossRef]
- Hezenci, F. Fractional inequalities of corrected Euler–Maclaurin-type for twice-differentiable functions. Comput. Appl. Math. 2023, 42, 92. [Google Scholar] [CrossRef]
- Mahajan, Y.; Nagar, H. Fractional Newton-type integral inequalities for the Caputo fractional operator. Math. Methods Appl. Sci. 2025, 48, 5244–5254. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Methods Appl. Sci. 2021, 44, 378–390. [Google Scholar] [CrossRef]
- Tunc, M.; Göv, E.; Balgecti, S. Simpson type quantum integral inequalities for convex functions. Miskolc Math. Notes 2018, 19, 649–664. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z. A new extension of quantum Simpson’s and quantum Newton’s type inequalities for quantum differentiable convex functions. Math. Methods Appl. Sci. 2022, 45, 1845–1863. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildirim, H. Some new Simpson’s type inequalities for coordinated convex functions in quantum calculus. Math. Methods Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Mateen, A.; Zhang, Z.; Ali, M.A. Some Milne’s rule type inequalities for convex functions with their computational analysis on quantum calculus. Filomat 2024, 38, 3329–3345. [Google Scholar] [CrossRef]
- Mishra, S.K.; Sharma, R.; Bisht, J. Hermite–Hadamard-type inequalities for strongly (α,m)-convex functions via quantum calculus. J. Appl. Math. Comput. 2024, 70, 4971–4994. [Google Scholar] [CrossRef]
- Noor, M.A.; Awan, M.U.; Noor, K.I. Quantum Ostrowski inequalities for q-differentiable convex functions. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tunc, T. Quantum Ostrowski-type integral inequalities for functions of two variables. Math. Methods Appl. Sci. 2021, 44, 5857–5872. [Google Scholar] [CrossRef]
- Stojiljković, V. Simpson type Tensorial Inequalities for Continuous functions of Selfadjoint operators in Hilbert Spaces. Palest. J. Math. 2024, 13, 41–50. [Google Scholar] [CrossRef]
n | Exact | Approximation | Error | Error Bound | |
---|---|---|---|---|---|
2 | −0.725661 | −0.725921 | 2.59667 × 10−4 | 0.0796703 | ∖ |
4 | −0.725661 | −0.725677 | 1.58658 × 10−5 | 0.0398352 | 4.03267 |
8 | −0.725661 | −0.725662 | 9.86074 × 10−7 | 0.0199176 | 4.00808 |
16 | −0.725661 | −0.725661 | 6.15437 × 10−8 | 0.00995879 | 4.00201 |
32 | −0.725661 | 0.725661 | 3.84514 × 10−9 | 0.00497939 | 4.0005 |
64 | −0.725661 | 0.725661 | 2.403 × 10−10 | 0.0024897 | 4.00013 |
128 | −0.725661 | 0.725661 | 1.50183 × 10−11 | 0.00124485 | 4.00004 |
n | Exact | Approximation | Error | Error Bound | |
---|---|---|---|---|---|
2 | 1.08877 | 1.08877 | 5.12 × 10−4 | 0.268978 | ∖ |
4 | 1.08877 | 1.08829 | 3.2 × 10−5 | 0.134489 | 4.000 |
8 | 1.08877 | 1.08826 | 2 × 10−6 | 0.0672444 | 4.000 |
16 | 1.08877 | 1.08826 | 1.25 × 10−7 | 0.0336222 | 4.000 |
32 | 1.08877 | 1.08826 | 7.8125 × 10−9 | 0.0168111 | 4.000 |
64 | 1.08877 | 1.08826 | 4.88281 × 10−10 | 0.00840556 | 4.000 |
128 | 1.08877 | 1.08826 | 3.05174 × 10−11 | 0.00420278 | 4.0001 |
n | Exact | Approximation | Error | Error Bound | |
---|---|---|---|---|---|
2 | −0.725661 | −0.725921 | 2.59667 × 10−4 | 0.110118 | ∖ |
4 | −0.725661 | −0.725677 | 1.58658 × 10−5 | 0.0543655 | 4.03267 |
8 | −0.725661 | −0.725662 | 9.86074 × 10−7 | 0.0270543 | 4.00808 |
16 | −0.725661 | −0.725661 | 6.15437 × 10−8 | 0.0135057 | 4.00201 |
32 | −0.725661 | 0.725661 | 3.84514 × 10−9 | 0.00674964 | 4.0005 |
64 | −0.725661 | 0.725661 | 2.403 × 10−10 | 0.00337438 | 4.00013 |
128 | −0.725661 | 0.725661 | 1.50183 × 10−11 | 0.00168713 | 4.00004 |
n | Exact | Approximation | Error | Error Bound | |
---|---|---|---|---|---|
2 | 1.08877 | 1.08877 | 5.12 × 10−4 | 0.363368 | ∖ |
4 | 1.08877 | 1.08829 | 3.2 × 10−5 | 0.179557 | 4.000 |
8 | 1.08877 | 1.08826 | 2 × 10−6 | 0.0893993 | 4.000 |
16 | 1.08877 | 1.08826 | 1.25 × 10−7 | 0.0446394 | 4.000 |
32 | 1.08877 | 1.08826 | 7.8125 × 10−9 | 0.0223111 | 4.000 |
64 | 1.08877 | 1.08826 | 4.88281 × 10−10 | 0.0111544 | 4.000 |
128 | 1.08877 | 1.08826 | 3.05174 × 10−11 | 0.00557706 | 4.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, Y.; Sial, I.B.; Ciurdariu, L. Some New and Sharp Inequalities of Composite Simpson’s Formula for Differentiable Functions with Applications. Mathematics 2025, 13, 1814. https://doi.org/10.3390/math13111814
Liu W, Wang Y, Sial IB, Ciurdariu L. Some New and Sharp Inequalities of Composite Simpson’s Formula for Differentiable Functions with Applications. Mathematics. 2025; 13(11):1814. https://doi.org/10.3390/math13111814
Chicago/Turabian StyleLiu, Wei, Yu Wang, Ifra Bashir Sial, and Loredana Ciurdariu. 2025. "Some New and Sharp Inequalities of Composite Simpson’s Formula for Differentiable Functions with Applications" Mathematics 13, no. 11: 1814. https://doi.org/10.3390/math13111814
APA StyleLiu, W., Wang, Y., Sial, I. B., & Ciurdariu, L. (2025). Some New and Sharp Inequalities of Composite Simpson’s Formula for Differentiable Functions with Applications. Mathematics, 13(11), 1814. https://doi.org/10.3390/math13111814