Multivariate Bayesian Global–Local Shrinkage Methods for Regularisation in the High-Dimensional Linear Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Multivariate Regression
2.2. Scale Mixture of Normals’ Priors for Regression Coefficients in the Multivariate Model
2.2.1. Normal–Gamma Prior
- Separated Non-Conjugate Model.We then focus on the shared non-conjugate model, which is based on the following hierarchy:
- Shared Non-Conjugate Model.Finally,
- Shared Conjugate Model.
2.2.2. Horseshoe Prior
- Separated Non-Conjugate Model;
- Shared Non-Conjugate Model;
- Shared Conjugate Model
2.2.3. Normal–Gamma–Gamma Prior
- Separated Non-Conjugate Model
- Shared Non-Conjugate Model
- Shared Conjugate Model.
2.3. Error Covariance Prior
2.4. MCMC Algorithm
2.4.1. Full Conditional for the Regression Coefficients
2.4.2. Full Conditional for the Error Covariance Matrix
2.4.3. Deviance for Covariance Matrix
2.4.4. Performance Measures
2.5. Two Datasets
2.5.1. Sugars Data
2.5.2. Drug Discovery Data
2.5.3. Design of Simulation Study
2.6. MCMC Convergence
2.7. Statistical Learning Methods
3. Results
3.1. Sugars Data for Two Responses
3.2. Drug Discovery
3.3. Simulation Using Sugars Data as Baseline
3.4. Commentary on the Simulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breiman, L.; Friedman, J.H. Predicting multivariate responses in multiple linear regression (with Discussion). J. R. Stat. Soc. B 1997, 59, 3–54. [Google Scholar] [CrossRef]
- Bhadra, A.; Datta, J.; Polson, N.G.; Willard, B.T. Lasso meets horseshoe: A survey. Stat. Sci. 2019, 34, 405–427. [Google Scholar] [CrossRef]
- Griffin, J.; Brown, P.J. Bayesian global-local shrinkage methods for regularisation in the high dimensional linear model. Chemom. Intell. Lab. Syst. 2021, 210, 104255. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Vannucci, M. Handbook of Bayesian Variable Selection; Chapman and Hall/CRC: New York, NY, USA, 2022. [Google Scholar]
- Hauzenberger, N.; Huber, F.; Koop, G. Macroeconomic Forecasting Using BVARs. Book Chapter. Available online: https://www.researchgate.net/publication/376688025_Macroeconomic_Forecasting_Using_BVARs (accessed on 1 March 2025).
- Carvalho, C.M.; Polson, N.G.; Scott, J.G. The horseshoe estimator for sparse signals. Biometrika 2010, 97, 465–480. [Google Scholar] [CrossRef]
- Polson, N.G.; Scott, J.G. Shrink globally, act locally: Sparse Bayesian regularization and prediction. In Bayesian Statistics 9; Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M., Eds.; Clarendon Press: Oxford, UK, 2011; pp. 501–538. [Google Scholar]
- Griffin, J.E.; Brown, P.J. Inference with Normal-Gamma prior distributions in regression problems. Bayesian Anal. 2010, 5, 171–188. [Google Scholar]
- Zhang, L.; Khare, K.; Xing, Z. Trace class Markov chains for Normal-Gamma Bayesian shrinkage model. Electron. J. Stat. 2019, 13, 167–207. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Pati, D.; Pillai, N.S.; Dunson, D.B. Dirichlet-Laplace priors for optimal shrinkage. J. Am. Stat. Assoc. 2016, 111, 1479–1490. [Google Scholar] [CrossRef] [PubMed]
- Van der Pas, S.L.; Salomond, J.B.; Schmidt-Hieber, J. Conditions for posterior contraction in sparse normal means problems. Electron. J. Stat. 2016, 8, 976–1000. [Google Scholar] [CrossRef]
- Moran, G.E.; Ročková, V.; George, E.I. Variance prior forms for high dimensional variable selection. Bayesian Anal. 2019, 14, 1091–1119. [Google Scholar] [CrossRef]
- Bai, R.; Ghosh, M.L. High-Dimensional Posterior Consistency under Global-Local Shrinkage Priors. J. Multivar. Anal. 2018, 167, 157–170. [Google Scholar] [CrossRef]
- Kundu, D.; Mitra, R.; Gaskins, J.T. Bayesian variable selection for multi-outcome models through shared shrinkage. Scand. J. Stat. 2021, 48, 295–320. [Google Scholar] [CrossRef]
- Brown, P.J.; Vannucci, M.; Fearn, T. Multivariate Bayesian Variable Selection and Prediction. J. R. Stat. Soc. Ser. B 1998, 60, 627–641. [Google Scholar] [CrossRef]
- Brown, P.J.; Fearn, T.; Vannucci, M. The Choice of Variables in Multivariate Regression: A Non-conjugate Bayesian Decision Theory Approach. Biometrika 1999, 86, 635–648. [Google Scholar] [CrossRef]
- Petretto, E.; Bottolo, L.; Langley, S.R.; Heinig, M.; McDermott-Roe, C.; Sarwar, R.; Pravenec, M.; Hübner, N.; Aitman, T.; Cook, S.; et al. New Insights into Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach. PLoS Comput. Biol. 2010, 6, e1000737. [Google Scholar] [CrossRef]
- Bhadra, A.; Mallick, B.K. Joint High-Dimensional Bayesian Variable and Covariance Selection with an application to eQTL analysis. Biometrics 2013, 69, 447–457. [Google Scholar] [CrossRef]
- Brown, P.J.; Vannucci, M.; Fearn, T. Bayes model averaging with selection of regressors. J. R. Stat. Soc. B 2002, 64, 519–536. [Google Scholar] [CrossRef]
- Bottolo, L.; Banterle, M.; Richardson, S.; Ala-Korpela, M.; Järvelin, M.; Lewin, A. A computationally efficient Bayesian seemingly unrelated regressions model for high-dimensional quantitative trait loci discovery. J. R. Stat. Soc. C 2021, 70, 886–908. [Google Scholar] [CrossRef]
- Brown, P.J.; Le, N.D.; Zidek, J.V. Inference for a covariance matrix. In Aspects of Uncertainty: A Tribute to D.V. Lindley; Freeman, P.R., Smith, A.F.M., Eds.; Wiley: Chichester, UK, 1994; pp. 77–92. [Google Scholar]
- Le, N.D.; Sun, L.; Zidek, J.V. Spatial interpolation and temporal backcasting for environmental fields having monotone data patterns. Can. J Stat. 2001, 29, 529–554. [Google Scholar] [CrossRef]
- Liquest, B.; Mengerson, K.; Pettitt, A.N.; Sutton, M. Bayesian variable selection regression of Multivariate responses for group data. Bayesian Anal. 2017, 12, 1039–1067. [Google Scholar]
- Griffin, J.; Brown, P.J. Hierarchical shrinkage priors for regression models. Bayesian Anal. 2017, 12, 135–159. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chakraborty, A.; Mallick, B.K. Fast sampling with Gaussian scale-mixture priors in high-dimensional regression. Biometrika 2016, 103, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Dawid, A.P. Some matrix-variate distribution theory: Notational considerations and a Bayesian application. Biometrika 1981, 68, 265–274. [Google Scholar] [CrossRef]
- Brown, P.J. Measurement, Regression, and Calibration; Clarendon Press: Oxford, UK, 1993. [Google Scholar]
- Slanzi, D.; Mameli, V.; Brown, P.J. A comparative study on high-dimensional Bayesian regression with binary predictors. Commun. Stat. Simul. Comput. 2023, 52, 1979–1999. [Google Scholar] [CrossRef]
- Bhadra, A.; Datta, J.; Poison, N.G.; Scott, J.G. The horseshoe+ estimator of ultra-sparse signals. Bayesian Anal. 2017, 12, 1105–1131. [Google Scholar] [CrossRef]
- Li, Y.; Datta, J.; Craig, B.A.; Bhadra, A. Joint mean-covariance estimation via the horseshoe. J. Multivar. Anal. 2021, 183, 104716. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Naughton, B.P.; Bondell, H.D.; Reich, B.J. Bayesian Regression using a prior on the model fit: The R2D2 Shrinkage prior. J. Am. Stat. Assoc. 2022, 117, 862–874. [Google Scholar] [CrossRef]
- Frühwirth-Schnatter, S.; Hosszejni, D.; Lopes, H.F. Sparse Bayesian Factor Analysis when the number of factors is unknown (with Discussion). Bayesian Anal. 2025, 20, 213–344. [Google Scholar] [CrossRef]
- Park, T.; Casella, G. The Bayesian Lasso. J. Am. Stat. Assoc. 2008, 103, 681–686. [Google Scholar] [CrossRef]
- Makalic, E.; Schmidt, D.F. A simple sampler for the horseshoe estimator. IEEE. Signal Process. Lett. 2010, 23, 179–182. [Google Scholar] [CrossRef]
- Piironen, J.; Vehtari, A. On the Hyperprior Choice for global shrinkage parameter in the horseshoe prior. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 20–22 April 2017; Volume 54, pp. 905–913. [Google Scholar]
- Van der Pas, S.L.; Szabo, B.; van der Vaart, A.W. Adaptive posterior contraction rates for the horseshoe. Electron. J. Stat. 2017, 11, 3196–3225. [Google Scholar] [CrossRef]
- Van der Pas, S.L.; Kleijn, B.J.K.; van der Vaart, A.W. The horseshoe estimator: Posterior concentration around nearly black vectors. Electron. J. Stat. 2014, 8, 2585–2618. [Google Scholar] [CrossRef]
- Cadonna, A.; Frühwirth-Schnatter, S.; Knaus, P. Triple the gamma—A unifying shrinkage prior for variance and variable selection in sparse state space and TVP models. Econometrics 2020, 8, 20. [Google Scholar] [CrossRef]
- Chipman, H.; George, E.I.; McCulloch, R.E. The Practical Implementation of Bayesian Model Selection; Anderson, T.W., Fang, K.T., Olkin, I., Eds.; IMS Lecture-Notes Monograph Series; Institute of Mathematical Statistics: Hayward, CA, USA, 2001; Volume 38. [Google Scholar]
- Mardia, K.V.; Kent, J.T.; Bibby, J.M. Multivariate Analysis; Academic Press: London, UK, 1979. [Google Scholar]
- Pickett, S.D.; Green, D.V.S.; Hunt, D.L.; Pardoe, D.A.; Hughes, I. Automated lead optimisation of MMP-12 inhibitors using a genetic algorithm. ACS Med. Chem. Lett. 2011, 2, 28–33. [Google Scholar] [CrossRef]
- Brown, P.J.; Ridout, M.S. Level-screening designs for factors with many levels. Ann. Appl. Stat. 2016, 10, 864–883. [Google Scholar] [CrossRef]
- Mameli, V.; Slanzi, D.; Poli, I.; Green, D.V.S. Search for relevant subsets of binary predictors in high dimensional regression for discovering the lead molecule. Pharm. Stat. 2021, 20, 898–915. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularisation paths for Generalised Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Qian, J.; Hastie, T.; Friedman, J.; Tibshirani, R.; Simon, N. Glmnet for Matlab. 2013. Available online: http://hastie.su.domains/glmnet_matlab/ (accessed on 1 March 2025).
- Brown, P.J.; Zidek, J.V. Adaptive multivariate ridge regression. Ann. Stat. 1980, 8, 64–74. [Google Scholar] [CrossRef]
Separated | Shared NC | Shared C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HS | NGG | NG | HS | NGG | NG | HS | NGG | NG | Lasso | Ridge | |
0.25 | 0.24 | 0.28 | 0.78 | 0.47 | 0.30 | 0.65 | 0.55 | 0.24 | 0.16 | 34.69 | |
(0.34) | (0.40) | (0.46) | (1.78) | (0.91) | (0.52) | (1.35) | (1.09) | (0.30) | (0.25) | (34.15) | |
0.41 | 0.37 | 0.43 | 0.61 | 0.51 | 0.43 | 0.59 | 0.56 | 0.41 | 0.30 | 4.99 | |
(0.30) | (0.32) | (0.32) | (0.66) | (0.47) | (0.34) | (0.56) | (0.50) | (0.29) | (0.26) | (3.2)1 | |
0.65 | 0.55 | 0.67 | 2.13 | 1.21 | 0.70 | 1.67 | 1.25 | 0.76 | |||
(0.49) | (0.85) | (0.74) | (2.98) | (1.54) | (0.83) | (2.04) | (1.49) | (0.42) | |||
0.50 | 0.44 | 0.19 | 0.33 | 0.27 | 0.18 | 0.36 | 0.26 | 0.10 | 0.47 | 20.88 | |
(0.58) | (0.54) | (0.23) | (0.33) | (0.33) | (0.21) | (0.40) | (0.31) | (0.14) | (0.59) | (22.50) | |
0.58 | 0.54 | 0.35 | 0.49 | 0.42 | 0.35 | 0.50 | 0.41 | 0.26 | 0.56 | 3.91 | |
(0.42) | (0.40) | (0.27) | (0.31) | (0.31) | (0.25) | (0.34) | (0.31) | (0.19) | (0.41) | (3.21) | |
1.37 | 1.22 | 0.65 | 1.45 | 0.92 | 0.57 | 1.02 | 0.73 | 0.71 | |||
(1.38) | (1.34) | (0.50) | (1.73) | (1.26) | (0.56) | (1.10) | (0.71) | (0.26) | |||
0.37 | 0.34 | 0.24 | 0.56 | 0.37 | 0.24 | 0.50 | 0.41 | 0.17 | 0.32 | 27.79 | |
(0.33) | (0.31) | (0.24) | (0.88) | (0.46) | (0.27) | (0.70) | (0.55) | (0.16) | (0.30) | (23.43) | |
0.49 | 0.45 | 0.39 | 0.55 | 0.47 | 0.39 | 0.54 | 0.49 | 0.33 | 0.43 | 4.45 | |
(0.25) | (0.23) | (0.19) | (0.36) | (0.26) | (0.20) | (0.34) | (0.28) | (0.17) | (0.22) | (2.31) | |
2.04 | 1.76 | 1.42 | 2.57 | 1.89 | 1.36 | 2.22 | 1.89 | 1.55 | |||
(1.38) | (1.31) | (0.87) | (2.44) | (1.51) | (0.95) | (1.77) | (1.46) | (0.54) | |||
0.91 | 0.53 | 1.11 | 0 | 0.28 | 0.99 | 15.40 | 13.25 | 11.91 | |||
0.40 | 0.40 | 0.40 | 0.38 | 0.37 | 0.40 | 0.05 | 0.06 | 0.07 |
Separated | Shared NC | Shared C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HS | NGG | NG | HS | NGG | NG | HS | NGG | NG | Lasso | Ridge | |
0.24 | 0.25 | 0.24 | 0.27 | 0.29 | 0.25 | 0.27 | 0.26 | 0.27 | 0.27 | 0.46 | |
(0.43) | (0.43) | (0.42) | (0.55) | (0.59) | (0.48) | (0.54) | (0.51) | (0.54) | (0.49) | (0.51) | |
0.38 | 0.39 | 0.38 | 0.39 | 0.40 | 0.39 | 0.38 | 0.38 | 0.39 | 0.40 | 0.58 | |
(0.31) | (0.31) | (0.31) | (0.34) | (0.35) | (0.33) | (0.34) | (0.33) | (0.34) | (0.33) | (0.37) | |
0.75 | 0.77 | 0.72 | 0.73 | 0.76 | 0.71 | 0.72 | 0.70 | 0.71 | |||
(0.92) | (0.96) | (0.84) | (0.94) | (1.01) | (0.91) | (0.90) | (0.88) | (0.89) | |||
0.34 | 0.34 | 0.35 | 0.33 | 0.34 | 0.33 | 0.34 | 0.33 | 0.33 | 0.32 | 0.73 | |
(0.83) | (0.83) | (0.85) | (0.75) | (0.79) | (0.72) | (0.75) | (0.76) | (0.76) | (0.77) | (1.10) | |
0.39 | 0.39 | 0.40 | 0.39 | 0.40 | 0.40 | 0.40 | 0.40 | 0.39 | 0.39 | 0.67 | |
(0.44) | (0.44) | (0.44) | (0.42) | (0.43) | (0.41) | (0.42) | (0.42) | (0.42) | (0.42) | (0.53) | |
0.72 | 0.68 | 0.72 | 0.72 | 0.71 | 0.72 | 0.75 | 0.70 | 0.71 | |||
(1.01) | (1.03) | (1.07) | (1.03) | (1.08) | (0.98) | (1.02) | (1.00) | (1.03) | |||
0.29 | 0.30 | 0.30 | 0.30 | 0.31 | 0.29 | 0.30 | 0.30 | 0.30 | 0.29 | 0.60 | |
(0.48) | (0.49) | (0.49) | (0.49) | (0.52) | (0.45) | (0.49) | (0.48) | (0.49) | (0.46) | (0.58) | |
0.39 | 0.39 | 0.39 | 0.39 | 0.40 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.63 | |
(0.29) | (0.29) | (0.28) | (0.30) | (0.30) | (0.29) | (0.29) | (0.29) | (0.30) | (0.27) | (0.30) | |
1.48 | 1.44 | 1.45 | 1.45 | 1.45 | 1.44 | 1.49 | 1.44 | 1.44 | |||
(1.16) | (1.17) | (1.16) | (1.28) | (1.31) | (1.19) | (1.29) | (1.26) | (1.27) | |||
4.37 | 8.34 | 5.32 | 0 | 1.34 | 2.85 | 7.22 | 6.41 | 6.23 | |||
0.20 | 0.22 | 0.20 | 0.11 | 0.15 | 0.17 | 0.002 | 0.002 | 0.004 |
Separated | Shared NC | Shared C | |||||||
---|---|---|---|---|---|---|---|---|---|
HS | NGG | NG | HS | NGG | NG | HS | NGG | NG | |
0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.002) | (0.003) | (0.002) | (0.002) | |
0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | |
(0.004) | (0.004) | (0.004) | (0.004) | (0.004) | (0.004) | (0.006) | (0.004) | (0.004) | |
0.15 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.13 | 0.14 | 0.14 | |
(0.027) | (0.027) | (0.027) | (0.030) | (0.027) | (0.027) | (0.029) | (0.027) | (0.027) | |
0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | |
(0.00018) | (0.00013) | (0.00017) | (0.00009) | (0.00016) | (0.00018) | (0.00017) | (0.00031) | (0.00027) | |
−0.02 | −0.02 | −0.02 | −0.02 | −0.02 | −0.02 | −0.00 | −0.00 | −0.01 | |
Separated | Shared NC | Shared C | |||||||
HS | NGG | NG | HS | NGG | NG | HS | NGG | NG | |
0.08 | 0.08 | 0.08 | 0.08 | 0.11 | 0.08 | 0.09 | 0.10 | 0.15 | |
(0.003) | (0.003) | (0.005) | (0.003) | (0.003) | (0.003) | (0.003) | (0.005) | (0.006) | |
0.23 | 0.23 | 0.23 | 0.23 | 0.25 | 0.23 | 0.23 | 0.26 | 0.31 | |
(0.005) | (0.005) | (0.005) | (0.005) | (0.005) | (0.005) | (0.005) | (0.005) | (0.006) | |
0.21 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.38 | 0.73 | 0.88 | |
(0.028) | (0.028) | (0.028) | (0.029) | (0.028) | (0.027) | (0.022) | (0.021) | (0.020) | |
0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 7.89 | 6.84 | 5.48 | |
(0.00092) | (0.00080) | (0.00094) | (0.00041) | (0.00098) | (0.00075) | (0.0056) | (0.00390) | (0.0045) | |
0.57 | 0.57 | 0.57 | 0.56 | 0.57 | 0.57 | 0.09 | 0.10 | 0.14 | |
Separated | Shared NC | Shared C | |||||||
HS | NGG | NG | HS | NGG | NG | HS | NGG | NG | |
0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.12 | 0.17 | 0.18 | |
(0.004) | (0.004) | (0.004) | (0.004) | (0.004) | (0.004) | (0.005) | (0.006) | (0.007) | |
0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.28 | 0.34 | 0.34 | |
(0.006) | (0.006) | (0.006) | (0.006) | (0.006) | (0.006) | (0.007) | (0.007) | (0.007) | |
−0.93 | −0.92 | −0.92 | −1.00 | −0.92 | −0.92 | 0.63 | 1.20 | 1.35 | |
(0.025) | (0.0245) | (0.024) | (0.025) | (0.024) | (0.024) | (0.036) | (0.019) | (0.017) | |
1 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 1.04 | 0.98 | 0.87 |
0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.14 | 0.16 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mameli, V.; Slanzi, D.; Griffin, J.E.; Brown, P.J. Multivariate Bayesian Global–Local Shrinkage Methods for Regularisation in the High-Dimensional Linear Model. Mathematics 2025, 13, 1812. https://doi.org/10.3390/math13111812
Mameli V, Slanzi D, Griffin JE, Brown PJ. Multivariate Bayesian Global–Local Shrinkage Methods for Regularisation in the High-Dimensional Linear Model. Mathematics. 2025; 13(11):1812. https://doi.org/10.3390/math13111812
Chicago/Turabian StyleMameli, Valentina, Debora Slanzi, Jim E. Griffin, and Philip J. Brown. 2025. "Multivariate Bayesian Global–Local Shrinkage Methods for Regularisation in the High-Dimensional Linear Model" Mathematics 13, no. 11: 1812. https://doi.org/10.3390/math13111812
APA StyleMameli, V., Slanzi, D., Griffin, J. E., & Brown, P. J. (2025). Multivariate Bayesian Global–Local Shrinkage Methods for Regularisation in the High-Dimensional Linear Model. Mathematics, 13(11), 1812. https://doi.org/10.3390/math13111812