5th-Order Multivariate Edgeworth Expansions for Parametric Estimates
Abstract
1. Introduction and Summary
2. Foundations
3. Cumulant Coefficients for when
4. Cumulant Coefficients for when
5. Cumulant Coefficients for Univariate
6. An Extension to Theorem 1
7. Discussion
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Some Comments on the References
References
- Withers, C.S.; Nadarajah, S. Chain rules for multivariate cumulant coefficients. Stat 2022, 11, e451. [Google Scholar] [CrossRef]
- Withers, C.S. The distribution and quantiles of a function of parameter estimates. Ann. Inst. Stat. Math. Ser. A 1982, 34, 55–68. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Tilted Edgeworth expansions for asymptotically normal vectors. Ann. Inst. Stat. Math. 2010, 62, 1113–1142. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Improved confidence regions based on Edgeworth expansions. Comput. Stat. Data Anal. 2012, 56, 4366–4380. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. The dual multivariate Charlier and Edgeworth expansions. Stat. Probab. Lett. 2014, 87, 76–85. [Google Scholar] [CrossRef]
- Comtet, L. Advanced Combinatorics; Reidel: Dordrecht, The Netherlands, 1974. [Google Scholar]
- Withers, C.S.; Nadarajah, S. Expansions about the gamma for the distribution and quantiles of a standard estimate. Methodol. Comput. Appl. Probab. 2014, 16, 693–713. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Edgeworth-Cornish-Fisher-Hill-Davis expansions for normal and non-normal limits via Bell polynomials. Stochastics Int. J. Probab. Stoch. Process. 2015, 87, 794–805. [Google Scholar] [CrossRef]
- Bhattacharya, R.N.; Rao, R.R. Normal Approximation and Asymptotic Expansions; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Cai, T. One-sided confidence intervals in discrete distributions. J. Stat. Plan. Inference 2005, 131, 63–88. [Google Scholar]
- Barndoff-Nielsen, O.E.; Cox, D.R. Asymptotic Techniques for Use in Statistics; Chapman & Hall: London, UK, 1989. [Google Scholar]
- Daniels, H.E. Saddlepoint approximations for estimating equations. Biometrika 1983, 70, 89–96. [Google Scholar] [CrossRef]
- Daniels, H.E. Tail probability expansions. Intern. Stat. Rev. 1987, 55, 37–48. [Google Scholar] [CrossRef]
- Withers, C.S. Asymptotic expansions for distributions and quantiles with power series cumulants. J. R. Stat. Soc. B 1984, 46, 389–396. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Edgeworth expansions for functions of weighted empirical distributions with applications to nonparametric confidence intervals. J. Nonparametr. Stat. 2008, 20, 751–768. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. The bias and skewness of M-estimators in regression. Electron. J. Stat. 2010, 4, 1–14. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Channel capacity for MIMO systems with multiple frequencies and delay spread. Appl. Math. Inf. Sci. 2011, 5, 480–483. [Google Scholar]
- Withers, C.S.; Nadarajah, S. Cornish-Fisher expansions for sample autocovariances and other functions of sample moments of linear processes. Braz. J. Probab. Stat. 2012, 26, 149–166. [Google Scholar] [CrossRef]
- James, G.S.; Mayne, A.J. Cumulants of functions of random variables. Sankhya A 1962, 24, 47–54. [Google Scholar]
- Withers, C.S. Accurate confidence intervals when nuisance parameters are present. Commun. Stat.—Theory Methods 1989, 18, 4229–4259. [Google Scholar] [CrossRef]
- Withers, C.S. Bias reduction by Taylor series. Commun. Stat.—Theory Methods 1987, 16, 2369–2383. [Google Scholar] [CrossRef]
- Withers, C.S. Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals. Ann. Stat. 1983, 11, 577–587. [Google Scholar] [CrossRef]
- Withers, C.S. Nonparametric confidence intervals for functions of several distributions. Ann. Inst. Stat. Math. Part A 1988, 40, 727–746. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Expansions for the distribution of M-estimates with applications to the multi-tone problem. Esiam—Probab. Stat. 2011, 15, 139–167. [Google Scholar] [CrossRef]
- Kakizawa, Y. Some integrals involving multivariate Hermite polynomials: Application to evaluating higher-order local powers. Stat. Prob. Lett. 2016, 110, 162–168. [Google Scholar] [CrossRef]
- Hall, P. The Bootstrap and Edgeworth Expansion; Springer: New York, NY, USA, 1992. [Google Scholar]
- Yang, J.J.; Trucco, E.M.; Buu, A. A hybrid method of the sequential Monte Carlo and the Edgeworth expansion for computation of very small p-values in permution tests. Stat. Methods Med. Res. 2019, 28, 2937–2951. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A.; Cornish, E.A. The percentile points of distributions having known cumulants. Technometrics 1960, 2, 209–225. [Google Scholar] [CrossRef]
- Chebyshev, P. Sur deux théorèmes relatifs aux probabilités. Acta Math. 1890, 14, 305–315. [Google Scholar]
- Edgeworth, F.Y. The asymmetrical probability curve. Proc. R. Soc. Lond. 1894, 56, 271–272. [Google Scholar] [CrossRef]
- Charlier, C.V.L. Applications de la Theorie des Probabilites a l’Astronomie; Tome II, Les Applications de la Theorie des Probabilites Aux Sciences Mathematiques et Aux Science Physique; Borel, E., Ed.; Gauthier-Villars: Paris, France, 1931. [Google Scholar]
- Cramer, H. On the composition of elementary errors. Skand Aktuarietidskr 1928, 11, 13–74. [Google Scholar]
- Ibragimov, I.A. On the accuracy of approximation by the normal distribution of distribution functions of sums of independent random variables. Teor. Verojatnost. Primenen 1966, 11, 632–655. [Google Scholar]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar]
- Stuart, A.; Ord, K. Kendall’s Advanced Theory of Statistics, 5th ed.; Griffin: London, UK, 1987; Volume 1. [Google Scholar]
- Bobkov, S.G. Berry-Esseen bounds and Edgeworth expansions in the central limit theorem for transport distances. Prob. Theory Relat. Fields 2018, 170, 229–262. [Google Scholar] [CrossRef]
- Velasco, C. Edgeworth Expansions for Spectral Density Estimates and Studentized Sample Mean; Econometrics Discussion Paper; Suntory and Toyota International Centres for Economics and Related Discipline: London, UK, 2000. [Google Scholar]
- Ciginas, A.; Pumputis, D. Calibrated Edgeworth expansions of finite population L-statistics. Math. Popul. Stud. 2020, 27, 59–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, D. Edgeworth expansions for network moments. arXiv 2021. [Google Scholar] [CrossRef]
- Jirak, M. Edgeworth expansions for volatility models. Electron. J. Probab. 2023, 28, 171. [Google Scholar] [CrossRef]
- Gotze, F.; Hipp, C. Asymptotic expansions for sums of weakly dependent random vectors. Z. Wahrsch. Verw. Gebiete 1983, 64, 211–239. [Google Scholar] [CrossRef]
- Ibragimov, I.A.; Linnik, Y.V. Independent and Stationary Sequences of Random Variables; Wolters-Noordhoff: Groningen, The Netherlands, 1971. [Google Scholar]
- Withers, C.S.; Nadarajah, S. Charlier and Edgeworth expansions for distributions and densities in terms of Bell polynomials. Probab. Math. Stat. 2009, 29, 271–280. [Google Scholar]
- Cornish, E.A.; Fisher, R.A. Moments and cumulants in the specification of distributions. Rev. l’Inst. Int. Stat. 1937, 5, 307–322. [Google Scholar] [CrossRef]
- Hill, G.W.; Davis, A.W. Generalised asymptotic expansions of Cornish-Fisher type. Ann. Math. Stat. 1968, 39, 1264–1273. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. Transformations of multivariate Edgeworth-type expansions. Stat. Methodol. 2012, 9, 423–439. [Google Scholar] [CrossRef]
- Withers, C.S.; Nadarajah, S. The distribution of the amplitude and phase of the mean of a sample of complex random variables. J. Multivar. Anal. 2013, 113, 128–152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Withers, C.S. 5th-Order Multivariate Edgeworth Expansions for Parametric Estimates. Mathematics 2024, 12, 905. https://doi.org/10.3390/math12060905
Withers CS. 5th-Order Multivariate Edgeworth Expansions for Parametric Estimates. Mathematics. 2024; 12(6):905. https://doi.org/10.3390/math12060905
Chicago/Turabian StyleWithers, C. S. 2024. "5th-Order Multivariate Edgeworth Expansions for Parametric Estimates" Mathematics 12, no. 6: 905. https://doi.org/10.3390/math12060905
APA StyleWithers, C. S. (2024). 5th-Order Multivariate Edgeworth Expansions for Parametric Estimates. Mathematics, 12(6), 905. https://doi.org/10.3390/math12060905