The Random Effect Transformation for Three Regularity Classes
Abstract
:1. Introduction
- , ;
- , ;
- Function F is non-decreasing, i.e., if ;
- Function is right-continuous on , i.e., for any .
2. Regularity Classes
- A d.f. F is heavy-tailed, denoted , if for every fixed ,In the opposite case, we say that a d.f. F is light-tailed and denote .
- A d.f. F is exponential-like-tailed, with index , denoted , if
- A d.f. F belongs to the class of generalized long-tailed distributions , if for any,
- A d.f. F is said to be subexponential, denoted ifwhere .
- A d.f. F is said to be long-tailed, denoted , if for every ,
- A d.f. F is said to have dominatedly varying tail, denoted , if for any
- A d.f. F has a consistently varying tail, denoted , if
- A d.f. F is said to be regularly varying with index , denoted , if for any ,
3. Some Known Results
4. Main Results
4.1. Transformation of the Heavy-Tailed Distribution Function
4.2. Transformation of the Consistently Varying Distribution Function
4.3. Transformation of the Exponential-like-Tailed Distribution Function
5. Proof of Theorem 1
6. Proof of Theorem 2
7. Proof of Theorem 3
8. Proof of Theorem 4
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puišys, R.; Lewkiewicz, S.; Šiaulys, J. Properties of the random effect transformation. Lith. Math. J. 2024, 64, 177–189. [Google Scholar] [CrossRef]
- Bowers, N.L.; Gerber, H.U.; Hickman, J.C.; Jones, D.A.; Nesbit, C.J. Actuarial Mathematics; Society of Actuaries: Itasca, IL, USA, 1986. [Google Scholar]
- Gerber, H.U. Life Insurance Mathematics; Springer: Berlin, Germany, 1990. [Google Scholar]
- De Vylder, F.E. Life Insurance Theory: Actuarial Perspectives; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Møller, T.; Steffensen, M. Market-Valuation Methods in Life and Pension Insurance; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Zhu, Y. Actuarial Model: Life Insurance and Anuity; International Press: Somerville, MA, USA, 2007. [Google Scholar]
- Dickson, D.C.; Hardy, M.R.; Waters, H.R. Actuarial Mathematics for Life Contingent Risks; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Straub, E. Non-Life Insurance Mathematics; Springer: Berlin, Germany, 1988. [Google Scholar]
- Embrechts, P.; Klüppelberg, C.; Mikosch, T. Modeling Extremal Events for Insurance and Finance; Springer: Berlin, Germany, 1997. [Google Scholar]
- Kaas, R.; Goovaerts, M.; Dhaene, J.; Denuit, M. Modern Actuarial Risk Theory; Springer: Berlin, Germany, 2008. [Google Scholar]
- Mikosch, T. Non-Life Insurance Mathematics: An Introduction with the Poisson Process; Springer: Berlin, Germany, 2009. [Google Scholar]
- Schmidli, H. Risk Theory; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Asmussen, S.; Steffensen, M. Risk and Insurance; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Vaupel, J.W. Inherited frailty and longevity. Demography 1988, 25, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Manton, K.G. Changing concepts of morbidity and mortality in the elderly population. Milbank Meml. Fund Q. Health Soc. 1982, 60, 183–244. [Google Scholar] [CrossRef]
- Manton, K.G.; Stallard, E.; Vaupel, J.W. Alternative models for heterogeneity of mortality risks among the aged. J. Am. Stat. Assoc. 1986, 81, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Yashin, A.I.; Iachine, I.A.; Begun, A.Z.; Vaupel, J.W. Hidden Frailty: Myths and Reality; Research Report 34; Institut for Statistik og Demografi, Syddansk Universitet: Odense, Denmark, 2001. [Google Scholar]
- Moger, T.A.; Aalen, O.O. Regression models for infant mortality data in Norwegian siblings, using a compound Poisson frailty distribution with random scale. Biostatistics 2008, 3, 577–591. [Google Scholar] [CrossRef]
- Hougaard, P. Frailty models for survival data. Lifetime Data Anal. 1995, 1, 255–273. [Google Scholar] [CrossRef]
- Pitacco, E. From Halley to “frailty”: A review of survival models for actuarial calculations. G. Ist. Ital. Attuari 2005. Available online: https://ssrn.com/abstract=741586 (accessed on 1 October 2024).
- Pitacco, E. High Age Mortality and Frailty. Some Remarks and Hints for Actuarial Modeling; Working Paper 2016/19; CEPAR: Kensington, Australia, 2016. [Google Scholar]
- Šiaulys, J.; Puišys, R. Survival with random effect. Mathematics 2022, 10, 1097. [Google Scholar] [CrossRef]
- Jessen, A.H.; Mikosch, T. Regularly varying functions. Publ. Inst. Math. Nouv. Sér. 2006, 80, 171–192. [Google Scholar] [CrossRef]
- Ragulina, O.; Šiaulys, J. Randomly stopped minima and maxima with exponential-type distributions. Nonlinear Anal.-Model. 2019, 24, 297–313. [Google Scholar] [CrossRef]
- Sprindys, J.; Šiaulys, J. Regularly distributed randomly stopped sum, minimum and maximum. Nonlinear Anal.-Model. 2020, 25, 509–522. [Google Scholar] [CrossRef]
- Karasevičienė, J.; Šiaulys, J. Randomly stopped minimum, maximum, minimum of sums and maximum of sums with generalized subexponential distributions. Axioms 2024, 13, 85. [Google Scholar] [CrossRef]
- Leipus, R.; Šiaulys, J.; Danilenko, S.; Karasevičienė, J. Randomly stopped sums, minima, and maxima for heavy-tailed and light-tailed distributions. Axioms 2024, 13, 355. [Google Scholar] [CrossRef]
- Leipus, R.; Šiaulys, J.; Konstantinides, D. Closure Properties of Heavy-Tailed and Related Distributions; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Cai, J.; Tang, Q. On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications. J. Appl. Probab. 2004, 41, 117–130. [Google Scholar] [CrossRef]
- Dirma, M.; Paukštys, S.; Šiaulys, J. Tails of the moments for sums with dominatedly varying summands. Mathematics 2021, 9, 824. [Google Scholar] [CrossRef]
- Liu, Y. A general treatment of alternative expectation formulae. Stat. Probab. Lett. 2020, 166, 108863. [Google Scholar] [CrossRef]
- Karamata, J. Sur un mode de croissance régulière. Théorèmes fundamentaux. Bull. Soc. Math. Fr. 1933, 61, 55–62. [Google Scholar] [CrossRef]
- Seneta, E. Regularly Varying Functions; Lecture Notes in Mathematics; Springer: Berlin/Haidelberg, Germany, 1976; Volume 508. [Google Scholar]
- Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Alfahad, M.F.; Ghitany, M.E.; Alothman, A.N.; Nadarajah, S. A bimodal extension of the log-normal distribution on the real line with an application to DNA microarray data. Mathematics 2023, 11, 3360. [Google Scholar] [CrossRef]
- Candino, F.; Domma, F. Unit distributions: A general framework, some special cases, and regression unit-Dagum models. Mathematics 2023, 11, 2888. [Google Scholar] [CrossRef]
- Fayami, A.; Hassan, A.S.; Baaqeel, H.; Almetwally, E.M. Bayesian Influence and data analysis of the unit-power Burr X distribution. Axioms 2023, 12, 297. [Google Scholar] [CrossRef]
- Konstantinides, D.; Leipus, R.; Šiaulys, J. On the non-closure under convolution for strong subexponential distributions. Nonlinear Anal.-Model. 2023, 28, 97–115. [Google Scholar] [CrossRef]
- Paukštys, S.; Šiaulys, J.; Leipus, R. Truncated moments for heavy-tailed and related distribution classes. Mathematics 2023, 11, 2172. [Google Scholar] [CrossRef]
- Sepanski, J.H.; Wang, X. New classes of distortion risk measures and their estimation. Risks 2023, 11, 194. [Google Scholar] [CrossRef]
- Zaevski, T.; Kyurkchiev, N. On some composite Kies families: Distribution properties and saturation in Hausdorff sense. Mod. Stoch. Theory Appl. 2023, 10, 287–312. [Google Scholar] [CrossRef]
- Aldhufairi, F.A.A.; Sepanski, J.H. New bivariate copulas via Lomax distribution generated distortions. AppliedMath 2024, 4, 641–665. [Google Scholar] [CrossRef]
- Šuvak, N. Time scale transformation in bivariate Pearson distributions: A shift from light to heavy tails. Axioms 2024, 13, 765. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šiaulys, J.; Lewkiewicz, S.; Leipus, R. The Random Effect Transformation for Three Regularity Classes. Mathematics 2024, 12, 3932. https://doi.org/10.3390/math12243932
Šiaulys J, Lewkiewicz S, Leipus R. The Random Effect Transformation for Three Regularity Classes. Mathematics. 2024; 12(24):3932. https://doi.org/10.3390/math12243932
Chicago/Turabian StyleŠiaulys, Jonas, Sylwia Lewkiewicz, and Remigijus Leipus. 2024. "The Random Effect Transformation for Three Regularity Classes" Mathematics 12, no. 24: 3932. https://doi.org/10.3390/math12243932
APA StyleŠiaulys, J., Lewkiewicz, S., & Leipus, R. (2024). The Random Effect Transformation for Three Regularity Classes. Mathematics, 12(24), 3932. https://doi.org/10.3390/math12243932