Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials
Abstract
:1. Preliminaries
2. Results for the Class
3. Results for the Class
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Arif, M.; Barkub, O.; Srivastava, H.M.; Abdullah, S.; Khan, S.A. Some Janowski type harmonic q-starlike functions associated with symmetrical points. Mathematics 2020, 8, 629. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Uma, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM) 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesnik 2013, 65, 454–465. [Google Scholar]
- Ahmad, Q.Z.; Khan, N.; Raza, M. Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions. Filomat 2019, 33, 3385–3397. [Google Scholar] [CrossRef]
- Frasin, B.A.; Darus, M. Subclass of analytic functions defined by q-derivative operator associated with Pascal distribution series. AIMS Math. 2021, 6, 5008–5019. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Arik, M.; Demircan, E.; Turgut, T.; Ekinci, L.; Mungan, M. Fibonacci oscillators. Z. Phys. C Part. Fields 1992, 55, 89–95. [Google Scholar] [CrossRef]
- Brodimas, G.; Jannussis, A.; Mignani, R. Two-parameter Quantum Groups. Dipartimento di Fisica Universit di Roma “La Sapienza” I.N.F.N.-Sezione di Roma 1991, 1–16, preprint. [Google Scholar]
- Chakrabarti, R.; Jagannathan, R.A. (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Wachs, M.; White, D. (p; q)-Stirling numbers and set partition statistics. J. Combin. Theory Ser. A 1991, 56, 27–46. [Google Scholar] [CrossRef]
- Jagannathan, R.; Rao, K.S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In Proceeding of the International Conference on Number Theory and Mathematical Physics, Srinivasa Ramanujan Centre, Kumbakonam, India, 20–21 December 2005. [Google Scholar]
- Araci, S.; Duran, U.; Acikgoz, M.; Srivastava, H.M. A certain (p, q)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 301, 2016. [Google Scholar] [CrossRef]
- Tuncer, A.; Ali, A.; Syed Abdul, M. On Kantorovich modification of (p, q)-Baskakov operators. J. Inequal. Appl. 2016, 2016, 98. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Aracta, S. Study on some new results arising from (p, q)-calculus. TWMS J. Pure Appl. Math. 2020, 11, 57–71. [Google Scholar]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften; Band 259; Springer-Verlag: New York, NY, USA, 1983. [Google Scholar]
- Gehring, F.W. Aspects of contemporary complex analysis. In Proceedings of an Instructional Conference Organized by the London Mathematical Society at the University of Durham, July 1979; Brannan, D.A., Clunie, J.G., Eds.; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A. 1984, 5, 559–568. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. stat. 2014, 43, 383–389. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficients estimate for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-Starlike and (p, q)-convex functions. Rev. La Real Acad. Cienc. Exactas Fisicas y Nat. Ser. A Mat. 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Certain classes of bi-univalent functions of complex order associated with quasi-subordination involving (p, q)- derivative operator. Kragujevac J. Math. 2020, 44, 639–649. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Lucas polynomials and applications to an unified class of bi-univalent functions equipped with (p,q)-derivative operators. TWMS J. Pure. Appl. Math. 2020, 11, 100–108. [Google Scholar]
- Cotîrlă, L.-I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.P.; Sudharsan, T.V.; Bulboac, T. Symmetric Toeplitz determinants for classes defined by post quantum operators subordinated to the limacon function. Stud. Univ. Babes-Bolyai Math. 2024, 69, 299–316. [Google Scholar]
- Almutairi, N.S.; Sahen, A.; Catas, A.; Darwish, H. On the Fekete Szegö problem for certain classes of (γ,δ)-starlike and (γ,δ)-convex functions related to quasi-subordinations. Symmetry 2024, 16, 1043. [Google Scholar] [CrossRef]
- Motamednezhad, A.; Salehian, S. New subclass of bi-univalent functions by (p; q)-derivative operator. Honam Math. J. 2019, 41, 381–390. [Google Scholar]
- Kocer, E.G.; Tuncez, S. Bazilevic Fibonacci and Lucas like polynomials. Gazi Univ.J. Sci. 2016, 29, 109–113. [Google Scholar]
- Yilmaz, N.; Aktas, I. On some new subclasses of bi-univalent functions defined by generalized bivariate Fibonacci polynomial. Afr. Mat. 2022, 33, 3–12. [Google Scholar]
- Panwar, Y.K.; Singh, M. Generalized bivariate Fibonacci-like polynomials. Int. J. Pure Math. 2014, 1, 8–13. [Google Scholar]
- Aktaş, I.; Hamarat, D. Generalized bivariate Fibonacci polynomial and two new subclasses of bi-univalent functions. Asian-Eur. J. Math. 2023, 16, 2350147. [Google Scholar] [CrossRef]
- Oztürk, R.; Aktaş, I. Coefficient estimate and Fekete-Szegö problems for certain new subclasses of Bi-univalent functions defined by generalized bivariate Fibonacci polynomial. Sahand Commun. Math. Anal. 2024, 21, 35–53. [Google Scholar]
- Frasin, B.A.; Swamy, S.R.; Amourah, A.; Salah, J.; Ranjitha, H.M. A family of bi-univalent functions defined by (p,q)-derivative operator subordinate to a generalized bivariate Fibonacci polynomials. Eur. J. Pure Appl. Math. 2024, 17, 3801–3814. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung Über Ungerade Schlichte Funktionen. J. Lond. Math. Soc. 1933, 89, 85–89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swamy, S.R.; Frasin, B.A.; Breaz, D.; Cotîrlă, L.-I. Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials. Mathematics 2024, 12, 3933. https://doi.org/10.3390/math12243933
Swamy SR, Frasin BA, Breaz D, Cotîrlă L-I. Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials. Mathematics. 2024; 12(24):3933. https://doi.org/10.3390/math12243933
Chicago/Turabian StyleSwamy, Sondekola Rudra, Basem Aref Frasin, Daniel Breaz, and Luminita-Ioana Cotîrlă. 2024. "Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials" Mathematics 12, no. 24: 3933. https://doi.org/10.3390/math12243933
APA StyleSwamy, S. R., Frasin, B. A., Breaz, D., & Cotîrlă, L.-I. (2024). Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials. Mathematics, 12(24), 3933. https://doi.org/10.3390/math12243933