Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials
Abstract
1. Preliminaries
2. Results for the Class
3. Results for the Class
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Arif, M.; Barkub, O.; Srivastava, H.M.; Abdullah, S.; Khan, S.A. Some Janowski type harmonic q-starlike functions associated with symmetrical points. Mathematics 2020, 8, 629. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Uma, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM) 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesnik 2013, 65, 454–465. [Google Scholar]
- Ahmad, Q.Z.; Khan, N.; Raza, M. Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions. Filomat 2019, 33, 3385–3397. [Google Scholar] [CrossRef]
- Frasin, B.A.; Darus, M. Subclass of analytic functions defined by q-derivative operator associated with Pascal distribution series. AIMS Math. 2021, 6, 5008–5019. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Arik, M.; Demircan, E.; Turgut, T.; Ekinci, L.; Mungan, M. Fibonacci oscillators. Z. Phys. C Part. Fields 1992, 55, 89–95. [Google Scholar] [CrossRef]
- Brodimas, G.; Jannussis, A.; Mignani, R. Two-parameter Quantum Groups. Dipartimento di Fisica Universit di Roma “La Sapienza” I.N.F.N.-Sezione di Roma 1991, 1–16, preprint. [Google Scholar]
- Chakrabarti, R.; Jagannathan, R.A. (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Wachs, M.; White, D. (p; q)-Stirling numbers and set partition statistics. J. Combin. Theory Ser. A 1991, 56, 27–46. [Google Scholar] [CrossRef]
- Jagannathan, R.; Rao, K.S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. In Proceeding of the International Conference on Number Theory and Mathematical Physics, Srinivasa Ramanujan Centre, Kumbakonam, India, 20–21 December 2005. [Google Scholar]
- Araci, S.; Duran, U.; Acikgoz, M.; Srivastava, H.M. A certain (p, q)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 301, 2016. [Google Scholar] [CrossRef]
- Tuncer, A.; Ali, A.; Syed Abdul, M. On Kantorovich modification of (p, q)-Baskakov operators. J. Inequal. Appl. 2016, 2016, 98. [Google Scholar]
- Sadjang, P.N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Aracta, S. Study on some new results arising from (p, q)-calculus. TWMS J. Pure Appl. Math. 2020, 11, 57–71. [Google Scholar]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften; Band 259; Springer-Verlag: New York, NY, USA, 1983. [Google Scholar]
- Gehring, F.W. Aspects of contemporary complex analysis. In Proceedings of an Instructional Conference Organized by the London Mathematical Society at the University of Durham, July 1979; Brannan, D.A., Clunie, J.G., Eds.; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A. 1984, 5, 559–568. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. stat. 2014, 43, 383–389. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficients estimate for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-Starlike and (p, q)-convex functions. Rev. La Real Acad. Cienc. Exactas Fisicas y Nat. Ser. A Mat. 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Certain classes of bi-univalent functions of complex order associated with quasi-subordination involving (p, q)- derivative operator. Kragujevac J. Math. 2020, 44, 639–649. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Lucas polynomials and applications to an unified class of bi-univalent functions equipped with (p,q)-derivative operators. TWMS J. Pure. Appl. Math. 2020, 11, 100–108. [Google Scholar]
- Cotîrlă, L.-I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
- Vijayalakshmi, S.P.; Sudharsan, T.V.; Bulboac, T. Symmetric Toeplitz determinants for classes defined by post quantum operators subordinated to the limacon function. Stud. Univ. Babes-Bolyai Math. 2024, 69, 299–316. [Google Scholar]
- Almutairi, N.S.; Sahen, A.; Catas, A.; Darwish, H. On the Fekete Szegö problem for certain classes of (γ,δ)-starlike and (γ,δ)-convex functions related to quasi-subordinations. Symmetry 2024, 16, 1043. [Google Scholar] [CrossRef]
- Motamednezhad, A.; Salehian, S. New subclass of bi-univalent functions by (p; q)-derivative operator. Honam Math. J. 2019, 41, 381–390. [Google Scholar]
- Kocer, E.G.; Tuncez, S. Bazilevic Fibonacci and Lucas like polynomials. Gazi Univ.J. Sci. 2016, 29, 109–113. [Google Scholar]
- Yilmaz, N.; Aktas, I. On some new subclasses of bi-univalent functions defined by generalized bivariate Fibonacci polynomial. Afr. Mat. 2022, 33, 3–12. [Google Scholar]
- Panwar, Y.K.; Singh, M. Generalized bivariate Fibonacci-like polynomials. Int. J. Pure Math. 2014, 1, 8–13. [Google Scholar]
- Aktaş, I.; Hamarat, D. Generalized bivariate Fibonacci polynomial and two new subclasses of bi-univalent functions. Asian-Eur. J. Math. 2023, 16, 2350147. [Google Scholar] [CrossRef]
- Oztürk, R.; Aktaş, I. Coefficient estimate and Fekete-Szegö problems for certain new subclasses of Bi-univalent functions defined by generalized bivariate Fibonacci polynomial. Sahand Commun. Math. Anal. 2024, 21, 35–53. [Google Scholar]
- Frasin, B.A.; Swamy, S.R.; Amourah, A.; Salah, J.; Ranjitha, H.M. A family of bi-univalent functions defined by (p,q)-derivative operator subordinate to a generalized bivariate Fibonacci polynomials. Eur. J. Pure Appl. Math. 2024, 17, 3801–3814. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung Über Ungerade Schlichte Funktionen. J. Lond. Math. Soc. 1933, 89, 85–89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swamy, S.R.; Frasin, B.A.; Breaz, D.; Cotîrlă, L.-I. Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials. Mathematics 2024, 12, 3933. https://doi.org/10.3390/math12243933
Swamy SR, Frasin BA, Breaz D, Cotîrlă L-I. Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials. Mathematics. 2024; 12(24):3933. https://doi.org/10.3390/math12243933
Chicago/Turabian StyleSwamy, Sondekola Rudra, Basem Aref Frasin, Daniel Breaz, and Luminita-Ioana Cotîrlă. 2024. "Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials" Mathematics 12, no. 24: 3933. https://doi.org/10.3390/math12243933
APA StyleSwamy, S. R., Frasin, B. A., Breaz, D., & Cotîrlă, L.-I. (2024). Two Families of Bi-Univalent Functions Associating the (p, q)-Derivative with Generalized Bivariate Fibonacci Polynomials. Mathematics, 12(24), 3933. https://doi.org/10.3390/math12243933