Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters
Abstract
:1. Introduction
2. Problem Statement of Continuous-Time Predictive Control
Algorithm 1: Predictive controller for continuous-time systems (1) and (2) |
0. The HP prediction horizon, update step, δ > 0 (note that δ is not necessarily a constant value but is smaller than the prediction horizon), and consider the sequence of update moments , such that . |
1. Measure or determine the state of the system at the , moment. |
2. Define the optimal control problem below, and solve it to determine the answer of |
x( |
where represents the set of all continuous functions of the segment . |
3. Apply control on the system in the range and ignore the remaining control signal. |
4. Repeat the above process for the next update moment . |
3. Optimal Control Problem and Approaches to Solve It
Indirect Method of Solving Optimal Control Problems
4. Homotopy Perturbation Method
5. The Proposed Method
Algorithm 2: Predictive controller for the problem (14) |
0. The HP forecast horizon, the update step , (note that δ is not necessarily a fixed value but is defined as smaller than the forecast horizon), and the sequence of update moments , such as . |
1. Solve the system of differential-algebraic equations of the following DAEs using the method of homotopy perturbation to obtain approximate answers of state functions, both state and control, in the range of |
2. Apply control over the system in the range of and ignore the rest of the control signal. |
3. Determine the system state at moment with the state function obtained in step (1), . |
4. Repeat the above process for the next update moment . |
Stability
6. Simulation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Essa, M.E.-S.M.; Elsisi, M.; Saleh Elsayed, M.; Fawzy Ahmed, M.; Elshafeey, A.M. An Improvement of Model Predictive for Aircraft Longitudinal Flight Control Based on Intelligent Technique. Mathematics 2022, 10, 3510. [Google Scholar] [CrossRef]
- Guo, X.; Shirkhani, M.; Ahmed, E.M. Machine-Learning-Based Improved Smith Predictive Control for MIMO Processes. Mathematics 2022, 10, 3696. [Google Scholar] [CrossRef]
- Huang, H.; Shirkhani, M.; Tavoosi, J.; Mahmoud, O. A New Intelligent Dynamic Control Method for a Class of Stochastic Nonlinear Systems. Mathematics 2022, 10, 1406. [Google Scholar] [CrossRef]
- Chen, W.H.; You, F. Sustainable building climate control with renewable energy sources using nonlinear model predictive control. Renew. Sustain. Energy Rev. 2022, 168, 112830. [Google Scholar] [CrossRef]
- Danyali, S.; Aghaei, O.; Shirkhani, M.; Aazami, R.; Tavoosi, J.; Mohammadzadeh, A.; Mosavi, A. A New Model Predictive Control Method for Buck-Boost Inverter-Based Photovoltaic Systems. Sustainability 2022, 14, 11731. [Google Scholar] [CrossRef]
- Tavoosi, J.; Shirkhani, M.; Abdali, A.; Mohammadzadeh, A.; Nazari, M.; Mobayen, S.; Asad, J.H.; Bartoszewicz, A. A New General Type-2 Fuzzy Predictive Scheme for PID Tuning. Appl. Sci. 2021, 11, 10392. [Google Scholar] [CrossRef]
- Yang, H.; Xi, D.; Weng, X.; Qian, F.; Tan, B. A Numerical Algorithm for Self-Learning Model Predictive Control in Servo Systems. Mathematics 2022, 10, 3152. [Google Scholar] [CrossRef]
- Tavoosi, J.; Shirkhani, M.; Azizi, A.; Din, S.U.; Mohammadzadeh, A.; Mobayen, S. A hybrid approach for fault location in power distributed networks: Impedance-based and machine learning technique. Electr. Power Syst. Res. 2022, 210, 108073. [Google Scholar] [CrossRef]
- Aazami, R.; Heydari, O.; Tavoosi, J.; Shirkhani, M.; Mohammadzadeh, A.; Mosavi, A. Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations. Sustainability 2022, 14, 6183. [Google Scholar] [CrossRef]
- Mohammadi, F.; Mohammadi-Ivatloo, B.; Gharehpetian, G.B.; Ali, M.H.; Wei, W.; Erdinç, O.; Shirkhani, M. Robust control strategies for microgrids: A review. IEEE Syst. J. 2021, 16, 2401–2412. [Google Scholar] [CrossRef]
- Hu, Q. Boundless Data Analytics through Progressive Mining. Ph.D. Dissertation, Rutgers University-School of Graduate Studies, New Brunswick, NJ, USA, 2018. [Google Scholar]
- Wu, T.; Xiong, L.; Cheng, J.; Xie, X. New results on stabilization analysis for fuzzy semi-Markov jump chaotic systems with state quantized sampled-data controller. Inf. Sci. 2020, 521, 231–250. [Google Scholar] [CrossRef]
- Karamanakos, P.; Geyer, T. Guidelines for the design of finite control set model predictive controllers. IEEE Trans. Power Electron. 2019, 35, 7434–7450. [Google Scholar] [CrossRef]
- Mahoui, S.; Moulay, M.S.; Omrane, A. Finite element approximation to optimal pointwise control of parabolic problems with incomplete data. In Proceedings of the International Conference on Mathematical Modelling in Applied Sciences, Saint Petersburg, Russia, 24–28 July 2017; p. 65. [Google Scholar]
- Fontes, F.A.; Paiva, L.T. Guaranteed constraint satisfaction in continuous-time control problems. IEEE Control Syst. Lett. 2018, 3, 13–18. [Google Scholar] [CrossRef]
- Faedo, N.; Olaya, S.; Ringwood, J.V. Optimal control, MPC and MPC-like algorithms for wave energy systems: An overview. IFAC J. Syst. Control 2017, 1, 37–56. [Google Scholar] [CrossRef]
- Berberich, J.; Köhler, J.; Müller, M.A.; Allgöwer, F. Linear tracking MPC for nonlinear systems—Part II: The data-driven case. IEEE Trans. Autom. Control 2022, 67, 4406–4421. [Google Scholar] [CrossRef]
- Pereira, G.C.; Lima, P.F.; Wahlberg, B.; Pettersson, H.; Mårtensson, J. Linear time-varying robust model predictive control for discrete-time nonlinear systems. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA, 17–19 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2659–2666. [Google Scholar]
- Gregory, J.; Lin, C. Constrained Optimization in the Calculus of Variations and Optimal Control Theory; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
- Nasir, Y.; Yu, W.; Sepehrnoori, K. Hybrid derivative-free technique and effective machine learning surrogate for nonlinear constrained well placement and production optimization. J. Pet. Sci. Eng. 2020, 186, 106726. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Li, B. Robust Adaptive Neural Cooperative Control for the USV-UAV Based on the LVS-LVA Guidance Principle. J. Mar. Sci. Eng. 2022, 10, 51. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, Q.; Ju, Y.; Song, C.; Chen, D. Distance-based support vector machine to predict DNA N6-methyladenine modification. Curr. Bioinform. 2022, 17, 473–482. [Google Scholar]
- Zhang, H.; Zhao, X.; Zhang, L.; Niu, B.; Zong, G.; Xu, N. Observer-based adaptive fuzzy hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with input quantization. Int. J. Robust Nonlinear Control 2022, 32, 8163–8185. [Google Scholar] [CrossRef]
- Si, Z.; Yang, M.; Yu, Y.; Ding, T. Photovoltaic power forecast based on satellite images considering effects of solar position. Appl. Energy 2021, 302, 117514. [Google Scholar] [CrossRef]
- Ding, T.; Zhang, Y.; Ma, G.; Cao, Z.; Zhao, X.; Tao, B. Trajectory tracking of redundantly actuated mobile robot by MPC velocity control under steering strategy constraint. Mechatronics 2022, 84, 102779. [Google Scholar] [CrossRef]
- Chang, Y.; Niu, B.; Wang, H.; Zhang, L.; Ahmad, A.M.; Alassafi, M.O. Adaptive tracking control for nonlinear system in pure-feedback form with prescribed performance and unknown hysteresis. IMA J. Math. Control Inf. 2022, 39, 892–911. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Niu, B.; Zhang, L.; Ahmad, A.M. Sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with average dwell time. Inf. Sci. 2021, 580, 756–774. [Google Scholar] [CrossRef]
- Cheng, F.; Liang, H.; Wang, H.; Zong, G.; Xu, N. Adaptive Neural Self-Triggered Bipartite Fault-Tolerant Control for Nonlinear MASs With Dead-Zone Constraints. IEEE Trans. Autom. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, B.; Ahmad, A.; Liu, Y.; Wang, H.; Zong, G.; Alsaadi, F. Adaptive command filtered control for switched multi-input multi-output nonlinear systems with hysteresis inputs. Int. J. Adapt. Control Signal Process. 2022, 36, 3023–3042. [Google Scholar] [CrossRef]
- Li, Y.; Niu, B.; Zong, G.; Zhao, J.; Zhao, X. Command filter-based adaptive neural finite-time control for stochastic nonlinear systems with time-varying full-state constraints and asymmetric input saturation. Int. J. Syst. Sci. 2022, 53, 199–221. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, L.; Li, J.; Zhang, W. Improved LVS guidance and path-following control for unmanned sailboat robot with the minimum triggered setting. Ocean Eng. 2023, 272, 113860. [Google Scholar] [CrossRef]
- Liu, S.; Niu, B.; Zong, G.; Zhao, X.; Xu, N. Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy. Appl. Math. Comput. 2022, 435, 127441. [Google Scholar] [CrossRef]
- Gao, H.; Shi, K.; Zhang, H. A novel event-triggered strategy for networked switched control systems. J. Frankl. Inst. 2021, 358, 251–267. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, N.; Xu, N.; Zhao, X.; Alsaadi, F.E. Minimal-Approximation-Based Adaptive Event-Triggered Control of Switched Nonlinear Systems with Unknown Control Direction. Electronics 2022, 11, 3386. [Google Scholar] [CrossRef]
- Cao, C.; Wang, J.; Kwok, D.; Cui, F.; Zhang, Z.; Zhao, D.; Li, M.J.; Zou, Q. webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Res. 2022, 50, D1123–D1130. [Google Scholar] [CrossRef] [PubMed]
- Tavoosi, J.; Shirkhani, M.; Azizi, A. Control engineering solutions during epidemics: A review. Int. J. Model. Identif. Control 2021, 39, 97–106. [Google Scholar] [CrossRef]
- Panchal, B.; Mate, N.; Talole, S.E. Continuous-time predictive control-based integrated guidance and control. J. Guid. Control Dyn. 2017, 40, 1579–1595. [Google Scholar] [CrossRef]
- Wang, T.; Kang, Y.; Li, P.; Zhao, Y.B.; Yu, P. Robust model predictive control for constrained networked nonlinear systems: An approximation-based approach. Neurocomputing 2020, 418, 56–65. [Google Scholar] [CrossRef]
- Wang, M.; Yang, M.; Fang, Z.; Wang, M.; Wu, Q. A Practical Feeder Planning Model for Urban Distribution System. IEEE Trans. Power Syst. 2022, 38, 1297–1308. [Google Scholar] [CrossRef]
- Köhler, J.; Soloperto, R.; Müller, M.A.; Allgöwer, F. A computationally efficient robust model predictive control framework for uncertain nonlinear systems. IEEE Trans. Autom. Control 2020, 66, 794–801. [Google Scholar] [CrossRef]
- Sparasci, M. Nonlinear Modeling and Control of Coaxial Rotor UAVs with Application to the Mars Helicopter. Master’s Thesis, Politecnico di Milano University, Milan, Italy, 2022. [Google Scholar] [CrossRef]
- Fethalla, N. Modelling, Identification, and Control of a Quadrotor Helicopter. Ph.D. Dissertation, École de Technologie Supérieure, Montreal, QC, Canada, 2019. [Google Scholar]
- Ifkirne, S. Helicopter Mathematical Modelling and Optimal Controller Design. Bachelor’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2015. [Google Scholar]
- Iranmehr, H.; Aazami, R.; Tavoosi, J.; Shirkhani, M.; Azizi, A.R.; Mohammadzadeh, A.; Mosavi, A.H.; Guo, W. Modeling the price of emergency power transmission lines in the reserve market due to the influence of renewable energies. Front. Energy Res. 2022, 9, 944. [Google Scholar] [CrossRef]
- Chen, H.; Allgower, F. A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability. Automatica 1998, 34, 1205–1217. [Google Scholar] [CrossRef]
- Salati, A.B.; Shamsi, M.; Torres, D.F. Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 334–350. [Google Scholar] [CrossRef]
- Li, P.; Yang, M.; Wu, Q. Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk. IEEE Trans. Sustain. Energy 2020, 12, 58–69. [Google Scholar] [CrossRef]
- Chen, H.; Allgower, F. A quasi infinite horizon nonlinear predictive control scheme for stable. IFAC Proc. Vol. 1997, 30, 529–534. [Google Scholar] [CrossRef]
- Fang, X.; Wu, A.; Shang, Y.; Dong, N. Robust control of small-scale unmanned helicopter with matched and mismatched disturbances. J. Frankl. Inst. 2016, 353, 4803–4820. [Google Scholar] [CrossRef]
- Guo, X.; Qi, G.; Li, X.; Ma, S. Chaos control of small-scale UAV helicopter based on high order differential feedback controller. Int. J. Control 2022, 95, 2473–2484. [Google Scholar] [CrossRef]
- Zhao, W.; Meng, Z.; Wang, K.; Zhang, H. Backstepping Control of an Unmanned Helicopter Subjected to External Disturbance and Model Uncertainty. Appl. Sci. 2021, 11, 5331. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Quan, J.; Ma, X.; Salah, M.M.; Shaker, A. Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters. Mathematics 2023, 11, 1845. https://doi.org/10.3390/math11081845
Hu W, Quan J, Ma X, Salah MM, Shaker A. Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters. Mathematics. 2023; 11(8):1845. https://doi.org/10.3390/math11081845
Chicago/Turabian StyleHu, Weijun, Jiale Quan, Xianlong Ma, Mostafa M. Salah, and Ahmed Shaker. 2023. "Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters" Mathematics 11, no. 8: 1845. https://doi.org/10.3390/math11081845
APA StyleHu, W., Quan, J., Ma, X., Salah, M. M., & Shaker, A. (2023). Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters. Mathematics, 11(8), 1845. https://doi.org/10.3390/math11081845