Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study
Abstract
1. Introduction and Literature Review
Objectives
2. Materials and Methods
2.1. Data
2.2. Notation
2.3. Preliminary Filtering
2.4. Variance Filtering
2.5. Combined Ridge Regression and Nonlinear Modeling
Algorithm 1 Grid approach optimization (,) |
Input: Output:
|
Algorithm 2 Grid approach optimization (,, ) |
Input: ,, Output: (
|
3. Results
4. Discussion
Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
CpG | CpG Code (GEO) |
---|---|
1 | cg15290312 |
2 | cg14331362 |
3 | cg01270299 |
4 | cg07352438 |
5 | cg19393008 |
6 | cg26110710 |
7 | cg21523564 |
8 | cg14487131 |
9 | cg00259849 |
10 | cg14262681 |
11 | cg02263377 |
12 | cg06073449 |
13 | cg18456523 |
References
- Deshmukh, A.A.; Suk, R.; Shiels, M.S.; Sonawane, K.; Nyitray, A.G.; Liu, Y.; Gaisa, M.M.; Palefsky, J.M.; Sigel, K. Recent trends in squamous cell carcinoma of the anus incidence and mortality in the United States, 2001–2015. JNCI J. Natl. Cancer Inst. 1991, 338, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.; Ciombor, K.K.; Cho, M.; Dorth, J.A.; Rajdev, L.N.; Horowitz, D.P.; Gollub, M.J.; Jacome, A.A.; Lockney, N.A.; Muldoon, R.L. Anal cancer: Emerging standards in a rare disease. J. Clin. Oncol. 2022, 40, 2774–2788. [Google Scholar] [CrossRef] [PubMed]
- Monsrud, A.L.; Avadhani, V.; Mosunjac, M.B.; Flowers, L.; Krishnamurti, U. Programmed death ligand-1 expression is associated with poorer survival in anal squamous cell carcinoma. Arch. Pathol. Lab. Med. 2022, 146, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Saiki, Y.; Yamada, K.; Tanaka, M.; Fukunaga, M.; Irei, Y.; Suzuki, T. Prognosis of anal canal adenocarcinoma versus lower rectal adenocarcinoma in Japan: A propensity score matching study. Surg. Today 2022, 52, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Lupi, M.; Brogden, D.; Howell, A.; Tekkis, P.; Mills, S.; Kontovounisios, C. Anal Cancer in High-Risk Women: The Lost Tribe. Cancers 2022, 15, 60. [Google Scholar] [CrossRef]
- Melbye, M.; Sprogel, P. Aetiological parallel between anal cancer and cervical cancer. Lancet 1991, 338, 657–659. [Google Scholar] [CrossRef]
- Rabkin, C.S.; Biggar, R.J.; Melbye, M.; Curtis, R.E. Second primary cancers following anal and cervical carcinoma: Evidence of shared etiologic factors. Am. J. Epidemiol. 1992, 136, 54–58. [Google Scholar] [CrossRef]
- Scholefield, J.H.; Talbot, I.C.; Whatrup, C.; Sonnex, C.; Palmer, J.G.; Mindel, A.; Northover, J.M.A. Anal and cervical intraepithelial neoplasia: Possible parallel. Lancet 1989, 334, 765–769. [Google Scholar] [CrossRef]
- Palmer, J.G.; Scholffield, J.H.; Coates, P.J.; Shepherd, N.A.; Jass, J.R.; Crawford, L.V.; Northover, J.M.A. Anal cancer and human papillomaviruses. Dis. Colon Rectum 1989, 32, 1016–1022. [Google Scholar] [CrossRef]
- Doggett, S.W.; Green, J.P.; Cantril, S.T. Efficacy of radiation therapy alone for limited squamous cell carcinoma of the anal canal. Int. J. Radiat. Oncol. Biol. Phys. 1988, 15, 1069–1072. [Google Scholar] [CrossRef]
- Darragh, T.M.; Winkler, B. Anal cancer and cervical cancer screening: Key differences. Cancer Cytopathol. 2011, 119, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, S.; De Vuyst, H. Human papillomavirus vaccines and anal carcinoma. Curr. Opin. HIV AIDS 2009, 4, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Škamperle, M.; Kocjan, B.J.; Maver, P.J.; Seme, K.; Poljak, M. Human papillomavirus (HPV) prevalence and HPV type distribution in cervical, vulvar, and anal cancers in central and eastern Europe. Acta Dermatovenerol. Alpina Panon. Adriat. 2013, 22, 1–5. [Google Scholar] [PubMed]
- Ryan, D.P.; Compton, C.C.; Mayer, R.J. Carcinoma of the anal canal. N. Engl. J. Med. 2000, 342, 792–800. [Google Scholar] [CrossRef]
- de Sanjose, S.; Bruni, L.; Alemany, L. HPV in genital cancers (at the exception of cervical cancer) and anal cancers. La Presse Médicale 2014, 43, 423–428. [Google Scholar] [CrossRef]
- Williams, G.R.; Talbot, I.C. Anal carcinoma—A histological review. Histopathology 1994, 25, 507–516. [Google Scholar] [CrossRef]
- Sumner, L.; Kamitani, E.; Chase, S.; Wang, Y. A systematic review and meta-analysis of mortality in anal cancer patients by HIV status. Histopathology 2022, 76, 102069. [Google Scholar] [CrossRef]
- Naito, T.; Suzuki, M.; Fukushima, S.; Yuda, M.; Fukui, N.; Tsukamoto, S.; Fujibayashi, K.; Goto-Hirano, K.; Kuwatsuru, R. Comorbidities and co-medications among 28 089 people living with HIV: A nationwide cohort study from 2009 to 2019 in Japan. HIV Med. 2022, 23, 485–493. [Google Scholar] [CrossRef]
- Muchengeti, M.; Bartels, L.; Olago, V.; Dhokotera, T.; Chen, W.C.; Spoerri, A.; Rohner, E.; Butikofer, L.; Ruffieux, Y.; Singh, E. Cohort profile: The South African HIV Cancer Match (SAM) Study, a national population-based cohort. BMJ Open 2022, 12, 053460. [Google Scholar] [CrossRef]
- Varnai, A.D.; Bollmann, M.; Griefingholt, H.; Speich, N.; Schmitt, C.; Bollmann, R.; Decker, D. HPV in anal squamous cell carcinoma and anal intraepithelial neoplasia (AIN) Impact of HPV analysis of anal lesions on diagnosis and prognosis. Int. J. Color. Dis. 2006, 21, 135–142. [Google Scholar] [CrossRef]
- van der Zee, R.P.; Richel, O.; van Noesel, C.J.M.; Novianti, P.W.; Ciocanea-Teodorescu, I.; van Splunter, A.P.; Duin, S.; van den Berk, G.E.L.; Meijer, C.; Quint, W. Host cell deoxyribonucleic acid methylation markers for the detection of high-grade anal intraepithelial neoplasia and anal cancer. Clin. Infect. Dis. 2019, 68, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Legarth, R.; Helleberg, M.; Kronborg, G.; Larsen, C.S.; Pedersen, G.; Pedersen, C.; Jensen, J.; Nielsen, L.N.; Gerstoft, J.; Obel, N. Anal carcinoma in HIV-infected patients in the period 1995–2009: A Danish nationwide cohort study. Scand. J. Infect. Dis. 2013, 45, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, A.; Potthoff, A.; Brockmeyer, N.H.; Gambichler, T.; Swoboda, J.; Stucker, M.; Schmitt, M.; Pfister, H.; Wieland, U. Anal carcinoma in human immunodeficiency virus-positive men: Results of a prospective study from Germany. Br. J. Dermatol. 2010, 162, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Martins, C.R.; Fansler, Z.B.; Roemer, K.L.; Kincaid, E.A.; Gustafson, K.S.; Heitjan, D.F.; Clark, D.P. DNA methylation in anal intraepithelial lesions and anal squamous cell carcinoma. Clin. Cancer Res. 2005, 11, 6544–6549. [Google Scholar] [CrossRef]
- Siegel, E.M.; Ajidahun, A.; Berglund, A.; Guerrero, W.; Eschrich, S.; Putney, R.M.; Magliocco, A.; Riggs, B.; Winter, K.; Simko, J.P. Genome-wide host methylation profiling of anal and cervical carcinoma. PLoS ONE 2021, 16, e0260857. [Google Scholar] [CrossRef]
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [Google Scholar] [CrossRef]
- Salau, A.O.; Jain, S. Feature extraction: A survey of the types, techniques, applications. In Proceedings of the 2019 International Conference on Signal Processing and Communication (ICSC), Noida, India, 7–9 March 2019; pp. 158–164. [Google Scholar]
- Guarino, A.; Lettieri, N.; Malandrino, D.; Zaccagnino, R.; Capo, C. Adam or Eve? Automatic users’ gender classification via gestures analysis on touch devices. Neural Comput. Appl. 2022, 34, 18473–18495. [Google Scholar] [CrossRef]
- Rabbani, N.; Kim, G.Y.; Suarez, C.J.; Chen, J.H. Applications of machine learning in routine laboratory medicine: Current state and future directions. Clin. Biochem. 2021, 103, 1–7. [Google Scholar] [CrossRef]
- Quazi, S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 2022, 39, 120. [Google Scholar] [CrossRef]
- Mueller, B.; Kinoshita, T.; Peebles, A.; Graber, M.A.; Lee, S. Artificial intelligence and machine learning in emergency medicine: A narrative review. Acute Med. Surg. 2022, 9, 740. [Google Scholar] [CrossRef]
- Cai, Z.; Poulos, R.C.; Liu, J.; Zhong, Q. Machine learning for multi-omics data integration in cancer. iScience 2022, 2022, 103798. [Google Scholar] [CrossRef] [PubMed]
- Capobianco, E. High-dimensional role of AI and machine learning in cancer research. Br. J. Cancer 2022, 126, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Painuli, D.; Bhardwaj, S. Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review. Comput. Biol. Med. 2022, 2022, 105580. [Google Scholar] [CrossRef]
- Cuocolo, R.; Caruso, M.; Perillo, T.; Ugga, L.; Petretta, M. Machine learning in oncology: A clinical appraisal. Cancer Lett. 2020, 481, 55–62. [Google Scholar] [CrossRef]
- Forsch, S.; Klauschen, F.; Hufnagl, P.; Roth, W. Artificial intelligence in pathology. Deutsches Ärzteblatt Int. 2021, 118, 199. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef]
- Huang, G.; Wang, C.; Fu, X. Bidirectional deep neural networks to integrate RNA and DNA data for predicting outcome for patients with hepatocellular carcinoma. Future Oncol. 2021, 17, 4481–4495. [Google Scholar] [CrossRef] [PubMed]
- Nartowt, B.J.; Hart, G.R.; Roffman, D.A.; Llor, X.; Ali, I.; Muhammad, W.; Liang, Y.; Deng, J. Scoring colorectal cancer risk with an artificial neural network based on self-reportable personal health data. PLoS ONE 2019, 14, 0221421. [Google Scholar] [CrossRef]
- Marchevsky, A.M. The Use of Artificial Neural Networks for the Diagnosis and Estimation of Prognosis in Cancer Patients. Outcome Predict. Cancer 2007, 243–259. [Google Scholar] [CrossRef]
- Ligor, T.; Pater, L.; Buszewski, B. Application of an artificial neural network model for selection of potential lung cancer biomarkers. J. Breath Res. 2015, 9, 027106. [Google Scholar] [CrossRef]
- Calabrese, E.; Rudie, J.D.; Rauschecker, A.M.; Villanueva-Meyer, J.E.; Clarke, J.L.; Solomon, D.A.; Cha, S. Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma. Neuro-Oncol. Adv. 2022, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Pergialiotis, V.; Pouliakis, A.; Parthenis, C.; Damaskou, V.; Chrelias, C.; Papantoniou, N.; Panayiotides, I. The utility of artificial neural networks and classification and regression trees for the prediction of endometrial cancer in postmenopausal women. Public Health 2018, 164, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xue, Z.; Yan, C.; Wang, J.; Luo, H. A novel biomarker identification approach for gastric cancer using gene expression and DNA methylation dataset. Front. Genet. 2021, 12, 644378. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yao, Y.; Wang, Y.; Wang, L.; Cui, H. PD-L1 and immune infiltration of m6A RNA methylation regulators and its miRNA regulators in hepatocellular carcinoma. BioMed Res. Int. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Butcher, L.M.; Beck, S. Probe Lasso: A novel method to rope in differentially methylated regions with 450 K DNA methylation data. Methods 2015, 72, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Kim, S.; Zhi, D.; Cui, X. Predicting gene expression using DNA methylation in three human populations. PeerJ 2019, 7, 6757. [Google Scholar] [CrossRef]
- Zhang, G.P.; Patuwo, B.E.; Hu, M.Y. A simulation study of artificial neural networks for nonlinear time-series forecasting. Comput. Oper. Res. 2001, 28, 381–396. [Google Scholar] [CrossRef]
- Liu, S.; Xu, M.; Wang, J.; Lu, F.; Zhang, W.; Tian, H.; Chang, G. A multilevel artificial neural network nonlinear equalizer for millimetre-wave mobile fronthaul systems. J. Light. Technol. 2017, 35, 4406–4417. [Google Scholar] [CrossRef]
- Cong, S.; Liang, Y. PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems. IEEE Trans. Ind. Electron. 2009, 56, 3872–3879. [Google Scholar] [CrossRef]
- Wang, H.Y.; Chang, S.C.; Lin, W.Y.; Chen, C.H.; Chiang, S.H.; Huang, K.Y.; Chu, B.Y.; Lu, J.J.; Lee, T.Y. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing. J. Comput. Biol. 2018, 25, 1347–1360. [Google Scholar] [CrossRef]
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Alfonso Perez, G.; Castillo, R. Identification of Systemic Sclerosis through Machine Learning Algorithms and Gene Expression. Mathematics 2022, 10, 4632. [Google Scholar] [CrossRef]
- Puleston, D.J.; Buck, M.D.; Klein, G.R.I.; Kyle, R.L.; Caputa, G.; O’Sullivan, D.; Cameron, A.M.; Castoldi, A.; Musa, Y.; Kabat, A.M.; et al. Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation. Cell Metab. 2019, 30, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef] [PubMed]
- McDonald, G.C. Ridge regression. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Marquardt, D.W.; Snee, R.D. Ridge regression in practice. Am. Stat. 1975, 29, 3–20. [Google Scholar]
- Hoerl, A.E.; Kannard, R.W.; Baldwin, K.F. Ridge regression: Some simulations. Commun.-Stat.-Theory Methods 1975, 4, 105–123. [Google Scholar] [CrossRef]
Metric | Algorithm 1 | Algorithm 2 * | Algorithm 2 ** | Base |
---|---|---|---|---|
Accuracy | 97.69 | 96.92 | 94.62 | 69.23 |
Specificity | 98.26 | 97.34 | 98.26 | 78.95 |
Sensitivity | 95.02 | 93.33 | 78.67 | 42.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonso Perez, G.; Castillo, R. Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study. Mathematics 2023, 11, 1795. https://doi.org/10.3390/math11081795
Alfonso Perez G, Castillo R. Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study. Mathematics. 2023; 11(8):1795. https://doi.org/10.3390/math11081795
Chicago/Turabian StyleAlfonso Perez, Gerardo, and Raquel Castillo. 2023. "Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study" Mathematics 11, no. 8: 1795. https://doi.org/10.3390/math11081795
APA StyleAlfonso Perez, G., & Castillo, R. (2023). Nonlinear Techniques and Ridge Regression as a Combined Approach: Carcinoma Identification Case Study. Mathematics, 11(8), 1795. https://doi.org/10.3390/math11081795