On Mathieu-Type Series with (p,ν)-Extended Hypergeometric Terms: Integral Representations and Upper Bounds
Abstract
:1. Introduction and Preliminaries
2. Contiguous Recurrence Integral Representations of and
3. Bounding Inequalities for the -Extended Mathieu-Type Series
3.1. Upper Bound for -Extended Beta Function
3.2. Bounds Obtained via Series Representations
4. Concluding Remarks
- A
- The cited references for the Mathieu-type series are given concerning the integral representations, which are mainly obtained by virtue of Cahen’s formula for the sum of Dirichlet series in the form of a Laplace integral. The contiguous recurrence relations exist for almost all already considered cases, together with the bounding inequalities for the studied general Mathieu-type series up to the related multiplicative constants.
- B
- C
- D
- Further research directions may include the asymptotic expansion of generalized Mathieu series [31,32], connections with the Riemann zeta and Dirichlet Beta functions [33], Mathieu series associated with the Mittag–Leffler function, harmonic Mathieu series, Fourier–Mathieu series and connections with the Butzer–Flocke–Hauss Omega function, the multiparameter variants of Mathieu–type series with reference to the recent monograph [34], and article [5]. Moreover, the probability distributions and allied topics defined in terms of Mathieu-type series are also studied, for instance in [35,36] and the appropriate references therein. These publications suggested some ideas for generalizing the Mathieu-type series studied here, e.g., new generalizations of the Beta functions related to (27), that can result in novel forms of the associated hypergeometric functions and the related Mathieu series.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathieu, É. Mémoire sur des intégrations relatives a l’équilibre d’élasticité. J. Ecole Polytéch. 1880, 29, 163–206. [Google Scholar]
- Mathieu, É. Mémoire sur l’équilibre d’élasticité d’un prisme rectangle. J. Ecole Polytéch. 1881, 30, 173–196. [Google Scholar]
- Mathieu, É. Sur léquilibre d’élasticité d’un prisme rectangle. C. R. Acad. Sci. Paris 1890, 90, 1272–1274. [Google Scholar]
- Mathieu, É.L. Traité de Physique Mathématique, VI-VII: Théorie de l’élasticité des Corps Solides; Gauthier–Villars: Paris, France, 1890. [Google Scholar]
- Parmar, R.K.; Milovanović, V.G.; Pogány, T.K. Multi-parameter Mathieu, and alternating Mathieu series. Appl. Math. Comput. 2021, 400, 126099. [Google Scholar] [CrossRef]
- Meleshko, V.V. Equilibrium of elastic rectangle: Mathieu–Inglis–Pickett solution revisited. J. Elast. 1995, 40, 207–238. [Google Scholar] [CrossRef]
- Meleshko, V.V. Selected topics in the history of the two-dimensional biharmonic problem. Appl. Mech. Rev. 2003, 56, 33–85. [Google Scholar] [CrossRef]
- Meleshko, V.V.; Gomilko, A.M. On the bending of clamped rectangular plates. Mech. Res. Commun. 1994, 21, 19–24. [Google Scholar] [CrossRef]
- Pogány, T.K. Integral representation of a series which includes the Mathieu a-series. J. Math. Anal. Appl. 2004, 296, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; University Press: Cambridge, UK, 2010. [Google Scholar]
- Pogány, T.K.; Srivastava, H.M. Some Mathieu-type series associated with the Fox–Wright function. Comput. Math. Appl. 2009, 57, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.K.; Pogány, T.K. Mathieu-type series for the ℵ-function occurring in Fokker-Planck equation. Eur. J. Pure Appl. Math. 2010, 3, 980–988. [Google Scholar]
- Pogány, T.K.; Tomovski, Ž. On Mathieu–type series which terms contain generalized hypergeometric function pFq and Meijer’s G-function. Math. Comput. Model. 2008, 47, 952–969. [Google Scholar] [CrossRef]
- Pogány, T.K. Integral expressions of Mathieu-type series whose terms contain Fox’s H-function. Appl. Math. Lett. 2007, 20, 764–769. [Google Scholar] [CrossRef] [Green Version]
- Parmar, R.K.; Saxena, R.K.; Pogány, T.K. On properties and applications of (p,q)–extended τ–hypergeometric functions. C. R. Acad. Sci. Paris Ser. I 2018, 356, 278–282. [Google Scholar] [CrossRef]
- Choi, J.; Parmar, R.K.; Pogány, T.K. Mathieu–type series built by (p,q)–extended Gaussian hypergeometric function. Bull. Korean Math. Soc. 2017, 54, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Pogány, T.K.; Parmar, R.K. On p–extended Mathieu series. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 2018, 22, 107–117. [Google Scholar] [CrossRef]
- Krattenthaler, C.; Srinivasa Rao, K. Automatic generation of hypergeometric identities by the beta integral method. J. Comput. Appl. Math. 2003, 160, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.E.H.; Pitman, J. Algebraic evaluations of some Euler integrals, duplication formulae for Appell’s hypergeometric function F1, and Brownian variations. Canad. J. Math. 2000, 52, 961–981. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s Beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Parmar, R.K.; Paris, R.B.; Chopra, P. On an extension of extended beta and hypergeometric functions. J. Classical Anal. 2017, 11, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions. Appl. Math. Comput. 2004, 159, 589–602. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K.; Parmar, R.K. Extension of extended beta, hypergeometric and confluent hypergeometric functions. Honam Math. J. 2014, 36, 339–367. [Google Scholar] [CrossRef] [Green Version]
- Cahen, E. Sur la fonction ζ(s) de Riemann et sur des fontions analogues. Ann. Sci. l’École Norm. Sup. Sér. Math. 1894, 11, 75–164. [Google Scholar] [CrossRef]
- Pogány, T.K.; Srivastava, H.M.; Tomovski, Ž. Some families of Mathieu a-series and alternating Mathieu a-series. Appl. Math. Comput. 2006, 173, 69–108. [Google Scholar] [CrossRef]
- Dar, S.A.; Paris, R.B. A (p,ν)–extension of the Appell function F1(·) and its properties. J. Comput. Appl. Math. 2019, 358, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Luke, Y.L. Inequalities for generalized hypergeometric functions. J. Approx. Theory 1974, 5, 41–65. [Google Scholar] [CrossRef] [Green Version]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Jeffrey, A., Zwillinger, D., Eds.; Academic Press, Inc.: San Diego, CA, USA, 2000. [Google Scholar]
- Luo, M.-J.; Milovanović, G.V.; Agarwal, P. Some results on the extended beta and extended hypergeometric functions. Appl. Math. Comput. 2014, 248, 631–651. [Google Scholar] [CrossRef]
- Parmar, R.K.; Pogány, T.K. On Mathieu–type series for the unified Gaussian hypergeometric functions. Appl. Anal. Discrete Math. 2020, 14, 138–149. [Google Scholar] [CrossRef]
- Paris, R.B. The asymptotic expansion of a generalised Mathieu series. Appl. Math. Sci. (Ruse) 2013, 7, 6209–6216. [Google Scholar] [CrossRef]
- Gerhold, S.; Hubalek, F.; Tomovski, Ž. Asymptotics of some generalized Mathieu series. Math. Scand. 2020, 126, 424–450. [Google Scholar] [CrossRef]
- Cerone, P. On zeta and Dirichlet beta function families as generators of generalized Mathieu series, providing approximation and Bounds. Facta Univ. Ser. Math. Inform. 2022, 37, 251–282. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Leškovski, D.; Gerhold, S. Generalized Mathieu Series; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Srivastava, H.M.; Tomovski, Ž.; Leškovski, D. Some families of Mathieu type series and Hurwitz–Lerch zeta functions and associated probability distributions. Appl. Comput. Math. 2015, 14, 349–380. [Google Scholar]
- Tomovski, Ž.; Mehrez, K. Some families of generalized Mathieu-type power series, associated probability distributions and related inequalities involving complete monotonicity and log-convexity. Math. Inequal. Appl. 2017, 20, 973–986. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmar, R.K.; Pogány, T.K.; Saravanan, S. On Mathieu-Type Series with (p,ν)-Extended Hypergeometric Terms: Integral Representations and Upper Bounds. Mathematics 2023, 11, 1710. https://doi.org/10.3390/math11071710
Parmar RK, Pogány TK, Saravanan S. On Mathieu-Type Series with (p,ν)-Extended Hypergeometric Terms: Integral Representations and Upper Bounds. Mathematics. 2023; 11(7):1710. https://doi.org/10.3390/math11071710
Chicago/Turabian StyleParmar, Rakesh K., Tibor K. Pogány, and S. Saravanan. 2023. "On Mathieu-Type Series with (p,ν)-Extended Hypergeometric Terms: Integral Representations and Upper Bounds" Mathematics 11, no. 7: 1710. https://doi.org/10.3390/math11071710