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1. Introduction and Preliminaries

The series
S(x) = ∑

n≥0

2n
(n2 + x2)2 , x > 0,

occurring in the classical literature in mathematical physics [1–4] and nowadays called
the Mathieu series, was firstly considered by Émile Leonard Mathieu in his study of the
clamped plate and membrane vibration models described by the fourth-order homogeneous
and non-homogeneous differential equation ∆2U = g(x, y) associated with the Neumann
boundary condition. He also studied the same-type Neumann problem for 3D prisms
and other applied mathematical models, which occur in elasticity problems of rigid body
motion, see, e.g., ([5], Section 8.3), Meleshko [6,7], and Meleshko and Gomilko [8]. The
Mathieu-type series built with the help of a Gauss hypergeometric function was introduced
by Pogány in ([9], pp. 309–310) in the following form:

S(x, µ, ν, a) = ∑
n≥0

2F1(
ν−µ+1

2 , ν−µ
2 + 1; ν + 1;− x2

a2
n
)

aν−µ+1
n (a2

n + x2)µ− 1
2

, x > 0 , (1)

where (x, µ − 1
2 ) ∈ R2

+; ν < µ − 1, whilst the positive sequence a = (an) monotonely
increases and tends toward infinity. The Gauss hypergeometric function ([10], §15.2)

2F1(a, b; c; z) = ∑
n≥0

(a)n (b)n

(c)n

zn

n!
, (2)

completes the Mathieu-type series definition (1).
Later, Pogány [9], both alone and as a co-author, published a series of articles on

more general Mathieu-type series and alternating Mathieu-type series, the terms of which
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include other higher transcendental functions, such as the generalized hypergeometric
function rFs [11], the Fox–Wright generalized rΨs function, Meijer’s G-function [12,13],
the Fox H-function [14], the (p, q)-extended τ-hypergeometric function [15], V. P. Saxena’s
I-function, and the ℵ-function [12]; see also [16,17].

For any b, c ∈ C, <(c) > <(b) > 0, we can transform the ratio of Pochhammer
symbols’ as follows:

(b)n

(c)n
=

B(b + n, c− b)
B(b, c− b)

, <(c− b) > 0, n ∈ N0,

which implies

2F1(a, b; c; z) = ∑
n≥0

(a)n
B(b + n, c− b)

B(b, c− b)
zn

n!
. (3)

The same stands for Kummer’s confluent hypergeometric function:

Φ(b; c; z) = ∑
n≥0

(b)n

(c)n

zn

n!
= ∑

n≥0

B(b + n, c− b)
B(b, c− b)

zn

n!
, (4)

where in both series, −c 6∈ N0 and |z| < 1.
The next main generalization direction concerns Euler’s Beta integral:

B(s, t) =
∫ 1

0
xs−1(1− x)t−1 dx, min{s, t} > 0 .

The Beta integral transform of some suitable input function h viz.

B[h](s, t) =
∫ 1

0
xs−1(1− x)t−1h(x)dx ,

was considered by Krattenthaler and Srinivasa Rao [18,19], assuming that this integral
converges in a certain sense. When h1(x) = exp{− p

x(1−x)}; <(p) ≥ 0, we arrive at the
p-extended Beta function introduced by Chaudhry et al. ([20], p. 20, Equation (1.7))

Bp(x, y) := B[h1](x, y) =
∫ 1

0
tx−1 (1− t)y−1 e−

p
t(1−t) dt , <(p) ≥ 0 ; min{<(x),<(y)} > 0. (5)

When we replace B(x, y) with Bp(x, y) in both (3) and (4), we obtain the p-variant
of related p-Gauss hypergeometric and p-Kummer confluent hypergeometric functions
(see below).

Recently, Parmar et al. [21] introduced the (p, ν)-extended Beta function by choosing

h2(x) =

√
2p

πx(1− x)
Kν+ 1

2

(
p

x(1− x)

)
,

where <(p) ≥ 0; min{<(x),<(y)} > 0,
√

p takes its principal value, and Kµ(z) stands for the
modified Bessel function of the second kind of the order µ ([10], p. 251, Equation (10.27.4))

Kµ(x) =
π

2
I−µ(x)− Iµ(x)

sin(πµ)
.

If µ is not an integer, then limµ→n, n ∈ Z. Consequently, the related (p, ν)-extended
Beta function reads as follows ([21], p. 93, Equation (13)):

Bp,ν(x, y) := B[h2](x, y) =

√
2p
π

∫ 1

0
tx− 3

2 (1− t)y− 3
2 Kν+ 1

2

(
p

t(1− t)

)
dt. (6)
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The mentioned extensions of Euler’s Beta functions have recently been studied by a
number of authors (see [20,22,23]).

In view of the above, the (p, ν)-extended Gauss hypergeometric and (p, ν)-extended Kum-
mer confluent hypergeometric functions are, respectively ([21], p. 98, Equations (40) and (41))

Fp,ν(a, b; c; z) = ∑
n≥0

(a)n
Bp,ν(b + n, c− b)

B(b, c− b)
zn

n!
, p ≥ 0; <(c) > <(b) > 0 ; |z| < 1, (7)

Φp,ν(b; c; z) = ∑
n≥0

Bp,ν(b + n, c− b)
B(b, c− b)

zn

n!
, p ≥ 0; <(c) > <(b) > 0, (8)

when ν = 0 and ([10], p. 254, Eq. 10.39.2)

K 1
2
(z) =

√
π

2z
e−z. (9)

The Bessel K 1
2

needs to be convoluted with the integrand of Euler’s Beta function to
obtain (5), from (7) and (8) and their special cases, the p-extended Gauss hypergeomet-
ric and the p-extended Kummer confluent hypergeometric functions ([22], pp. 591–592,
Equaions (2.2)–(2.3))

Fp(a, b; c; z) =
∞

∑
n≥0

(a)n
Bp(b + n, c− b)

B(b, c− b)
zn

n!
, p ≥ 0; <(c) > <(b) > 0 ; |z| < 1,

Φp(b; c; z) = ∑
n≥0

Bp(b + n, c− b)
B(b, c− b)

zn

n!
, p ≥ 0 ; <(c) > <(b) > 0.

Now, extending the Mathieu-type series studied in [9] by imposing the Fp,ν(a, b; c; z)
building block function instead of the originally used 2F1 in the summands, we define the
Mathieu-type a-seriesRµ,ζ and its alternating variant R̃µ,ζ in the power series definition:

Rµ,ζ(Fp,ν; a; r) := ∑
n≥1

Fp,ν (µ, b; c; − r2

an
)

aµ
n(an + r2)ζ

(p ≥ 0; µ, ζ, r ∈ R+ ), (10)

and

R̃µ,ζ(Fp,ν; a; r) := ∑
n≥1

(−1)n−1Fp,ν (µ, b; c; − r2

an
)

aµ
n(an + r2)ζ

(p ≥ 0; µ, ζ, r ∈ R+). (11)

In this article, we provide integral representations for the Mathieu–type series and its
alternating versions, the terms of which are constructed from the (p, ν)-extended Gauss
hypergeometric function. The main achievements of the manuscript are the contiguous
recurrence relations obtained for (p, ν)-extended Mathieu-type series with respect to both
of their constituting parameters in Theorem 1 and Corollary 1. An upper bound is derived
in Lemma 1. for the (p, ν)-extended Beta function Bp,ν, which further implies the bounds
for the moduli of the (p, ν)-extended hypergeometric function Fp,ν and the (p, ν)-extended
Kummer’s function Φp,ν in Theorem 2. Finally, related bounding inequalities are given
for the (p, ν)-extended Mathieu-type series Rµ,ζ(Fp,ν; a; r) and for its alternating variant
R̃µ,ζ(Fp,ν; a; r) in Theorem 3.

2. Contiguous Recurrence Integral Representations ofRµ,ζ(Fp,ν; a; r) and R̃µ,ζ(Fp,ν; a; r)

This section deals with integral expressions for the seriesRµ,ζ(Fp,ν; a; r) and R̃µ,ζ(Fp,ν; a; r).
Now, we prove that there are first-order contiguous recurrence relations for both series
with respect to the parameters µ and ζ. Some particular cases of our first main result are
also considered.
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Theorem 1. Let µ > 0, ζ > 0, r > 0, and the real positive sequence a = (an)n≥1 monotonely
increases to ∞. Then, for <(p) > 0, we have

Rµ,ζ(Fp,ν; a; r) = µ Ip,ν(µ + 1, ζ) + ζ Ip,ν(µ, ζ + 1) (12)

R̃µ,ζ(Fp,ν; a; r) = µ Ĩp,ν(µ + 1, ζ) + ζ Ĩp,ν(µ, ζ + 1) , (13)

where

Jp,ν(µ, ζ) =
∫ ∞

a1

Fp,ν (µ, b; c; − r2

x )[a
−1(x)]

xµ(x + r2)ζ
dx (14)

J̃p,ν(µ, ζ) =
∫ ∞

a1

Fp,ν (µ, b; c; − r2

x ) sin2(π
2 [a
−1(x)]

)
xµ(x + r2)ζ

dx (15)

and a : R+ 7→ R+ is an arbitrary increasing function restriction of which a(x)|x∈N = a and [w]
stands for the integer part of the quantity w.

Proof. Consider the Laplace transform formula of tµ−1 Φp,ν(b; c; z) by using the
definition (7). For a real ω,

Fp,ν

(
µ, b; c;

ω

z

)
=

zµ

Γ(µ)

∫ ∞

0
e−zttµ−1 Φp,ν(b; c; ωt)dt. (16)

Inserting ξ = an + r2 into the Gamma function formula

Γ(η)ξ−η =
∫ ∞

0
e−ξttη−1 dt, <(ξ) > 0, <(η) > 0,

and, after rearrangement, by specifying ω = −r2, z = an, in (16), the auxiliary function
in (14) becomes

Jp,ν(µ, ζ) =
1

Γ(µ)Γ(ζ)

∫ ∞

0

∫ ∞

0
e−r2s tµ−1sζ−1

(
∑
n≥1

e−an(t+s)
)

Φp,ν(b; c;−r2t) dt ds .

Using the Cahen formula [24] for summing up the Dirichlet series with the method
developed in ([9], p. 310, Equations (5) and (6)), we conclude

Da(t + s) = ∑
n≥1

e−an(s+t) = (s + t)
∫ ∞

a1

e−(t+s)x[a−1(x)] dx .

This gives

Jp,ν(µ, ζ) =
1

Γ(µ)Γ(ζ)

∫ ∞

0

∫ ∞

0

∫ ∞

a1

e−(r
2+x)s−tx(t + s)tµ−1sζ−1[a−1(x)]

· Φp,ν(b; c;−r2t) dt ds dx =: Jt + Js , (17)

where

Jt =
1

Γ(ζ)

∫ ∞

0

(∫ ∞

a1

(∫ ∞

0

e−xttµ

Γ(µ)
Φp,ν(b; c;−r2t) dt

)
e−xs[a−1(x)] dx

)
e−r2ssζ−1 ds

=
µ

Γ(ζ)

∫ ∞

a1

(∫ ∞

0
e−(x+r2)ssζ−1 ds

)
[a−1(x)]

xµ+1 Fp,ν

(
µ + 1, b; c; − r2

x

)
dx

= µ
∫ ∞

a1

[a−1(x)]
xµ+1(x + r2)ζ

Fp,ν

(
µ + 1, b; c; − r2

x

)
dx = µ J (µ + 1, ζ) . (18)
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In a similar way, we obtain

Js =
∫ ∞

a1

(∫ ∞

0

(∫ ∞

0

sζ

Γ(ζ)
e−(x+r2)s ds

)
e−xttµ−1

Γ(µ)
Φp,ν(b; c;−r2t) dt

)
[a−1(x)] dx

= ζ
∫ ∞

a1

[a−1(x)]
(x + r2)ζ+1

(∫ ∞

0

e−xttµ−1

Γ(µ)
Φp,ν(b; c;−r2t) dt

)
dx

= ζ
∫ ∞

a1

[a−1(x)]
xµ(x + r2)ζ+1 Fp,ν

(
µ, b; c; − r2

x

)
dx = ζ I (µ, ζ + 1). (19)

By applying (18) and (19) to (17), we obtain the expression (12).
The derivation of (14) is similar to the exposed proving procedure. Having in mind

again the Cahen formula, since the counting function equals

Ã(t) = ∑
n : an≤t

(−1)n−1 =
1− (−1)[a

−1(t)]

2
= sin2

(π

2
[a−1(t)]

)
,

the integral form of the alternating Dirichlet series Da(x) becomes ([25], p. 79)

D̃a(x) = ∑
n≥1

(−1)n−1e−an x = x
∫ ∞

a1

e−xt Ã(t) dt,

and
D̃a(x) = x

∫ ∞

a1

e−xt sin2
(π

2
[a−1(t)]

)
dt.

Because
D̃a(t + s) = (t + s)

∫ ∞

a1

e−(t+s)x sin2
(π

2
[a−1(x)]

)
dx,

we conclude (15), and a fortiori (13) by obvious steps.

When ν = 0 and by using (9), the results of Theorem 1 are simplified.

Corollary 1. Let µ > 0, ζ > 0, r > 0, and the real sequence a monotonely increases and tends to
∞. Then, for <(p) ≥ 0, we have

Rµ,ζ(Fp; a; r) = µ Jp(µ + 1, ζ) + ζ Jp(µ, ζ + 1)

R̃µ,ζ(Fp; a; r) = µ J̃p(µ + 1, ζ) + ζ J̃p(µ, ζ + 1) ,

where

Jp(µ, ζ) =
∫ ∞

a1

Fp (µ, b; c; − r2

x )[a
−1(x)]

xµ(x + r2)ζ
dx,

J̃p(µ, ζ) =
∫ ∞

a1

Fp (µ, b; c; − r2

x ) sin2(π
2 [a
−1(x)]

)
xµ(x + r2)ζ

dx .

Remark 1. The special case ν = p = 0 immediately reduces the claim of Theorem 1 to the
Gauss 2F1 hypergeometric function’s case studied in [9].

3. Bounding Inequalities for the (p, ν)-Extended Mathieu-Type Series

In this section, our main goal is to derive an upper bound for the (p, ν)-extended Beta
function Bp,ν(x, y) in (6). By making use of this upper bound, we obtain bounds for the
(p, ν)-extended Gauss hypergeometric Fp,ν and the (p, ν)-extended Kummer’s confluent
hypergeometric Φp,ν via series representations (7) and (8). Finally, we obtain bounding
inequalities for the (p, ν)-extended Mathieu-type series (10) and (11).
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3.1. Upper Bound for (p, ν)-Extended Beta Function

Firstly, we establish the upper bound for the (p, ν)-extended hypergeometric function
Fp,ν by applying the following result ([26], p. 17, Equation (5.3)):

∣∣Kν+ 1
2
(z)
∣∣ < √π

(
1
2 |z|

)ν+ 1
2

Γ(ν + 1)
Γ
(
2ν + 1,<(z)

)(
<(z)

)2ν+1 , <(z) > 0 , (20)

where the upper incomplete Gamma function is

Γ(a, x) =
∫ ∞

x
ta−1e−t dt , <(a),<(x) > 0 .

Consequently, since Γ(a, x) < Γ(a), there holds ([26], p. 17)

∣∣∣Kν+ 1
2

( p
t(1− t)

)∣∣∣ < 1
2

(
2|p| t(1− t)
<2(p)

)ν+ 1
2

Γ
(
ν + 1

2
)
, <(p) > 0, t ∈ (0, 1) . (21)

The immediate implication of (21) follows by means of (6).

Lemma 1. For all <(p) > 0, ν > 0, min{<(x),<(y)} > 0 and t ∈ (0, 1), we have

∣∣Bp,ν(x, y)
∣∣ ≤ 2ν|p|ν+1 Γ(ν + 1

2 )√
π(<(p))2ν+1 B(x + ν, y + ν) . (22)

This upper bound plays an important role in the whole section (indirectly) applied ei-
ther for the sum or integral representations of the families of (p, ν)-extended
special functions.

3.2. Bounds Obtained via Series Representations

The functional bound (21) will be used in proving our first set of the main bound-
ing inequalities. More precisely, by applying (22) to all the series representations of the
(p, ν)-extended special functions, which contain Bp,ν(x, y), such as the (p, ν)-extended
Gauss hypergeometric Fp,ν and (p, ν)-extended Kummer’s confluent hypergeometric Φp,ν,
described in (7) and (8), we arrive at the results below.

Theorem 2. For all <(p) > 0, ν > 0; <(c) > <(b) > 0 and for all |z| < 1, we have

∣∣Fp,ν(a, b; c; z)
∣∣ ≤ 2ν|p|ν+1 Γ(ν + 1

2 )√
π(<(p))2ν+1

B(b + ν, c− b + ν)

B(b, c− b) 2F1(a, b + ν; c + 2ν; |z|), (23)

∣∣Φp,ν(b; c; z)
∣∣ ≤ 2ν|p|ν+1 Γ(ν + 1

2 )√
π(<(p))2ν+1

B(b + ν, c− b + ν)

B(b, c− b)
Φ(b + ν; c + 2ν; |z|) .

Proof. Regarding assertion (23), because all parameters and expressions involved are
positive, by means of the series representation of the (p, ν)-extended Gauss hypergeometric
function (7), and by Lemma 1, we conclude

Fp,ν(a, b; c; z) ≤
2ν|p|ν+1 Γ(ν + 1

2 )√
π(<(p))2ν+1B(b, c− b) ∑

n≥0
(a)nB(b + ν + n, c− b + ν)

|z|n
n!

=
2ν|p|ν+1 Γ(ν + 1

2 )√
π(<(p))2ν+1B(b, c− b) ∑

n≥0

(a)nΓ(b + ν + n)Γ(c− b + ν)

Γ(c + 2ν + n)
|z|n
n!

=
2ν|p|ν+1 Γ(ν + 1

2 )Γ(c− b + ν)Γ(b + ν)√
π(<(p))2ν+1B(b, c− b)Γ(c + 2ν)

∑
n≥0

(a)n(b + ν)n

(c + 2ν)n

|z|n
n!

.
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The rest is obvious. Moreover, by applying similar transformations per definitionem, we
prove the second statement for the (p, ν)-extended confluent hypergeometric
function (8).

Furthermore, we need a certain Luke’s upper bound for the Gauss hypergeometric
function. Precisely, for all b ∈ (0, 1], c ≥ a > 0 and z > 0, there holds ([27], p. 52,
Equation (4.7))

2F1(a, b; c;−z) < 1− 2ab(c + 1)
c(a + 1)(b + 1)

(
1− 2(c + 1)

2(c + 1) + (a + 1)(b + 1) z

)
. (24)

Theorem 3. Let µ ∈ (0, 1], ζ > 0, ν > 0, and the positive real sequence a = (an)n≥1 monotonely
increases and tends to ∞. Then, for all r ∈ (0,

√
a1 ), <(p) > 0 and <(c) > <(b) > 0, we have

Rµ,ζ(Fp,ν;a; r) ≤ µ Yp,ν

{(
1− 2(µ + 1)(b + ν)(c + 2ν + 1)

c(µ + 2)(b + ν + 1)

)
Xa(µ + 1, ζ)

+
4(µ + 1)(b + ν)(c + 2ν + 1)2 Xa(µ, ζ)

(c + 2ν)(µ + 2)(b + ν + 1) [(µ + 2)(b + ν + 1)r2 + 2(c + 2ν + 1)a1]

}

+ ζ Yp,ν

{(
1− 2µ(b + ν)(c + 2ν + 1)

(c + 2ν)(µ + 1)(b + ν + 1)

)
Xa(µ, ζ + 1)

+
4µ(b + ν)(c + 2ν + 1)2 Xa(µ− 1, ζ + 1)

(c + 2ν)(µ + 1)(b + ν + 1) [(µ + 1)(b + ν + 1)r2 + 2(c + 2ν + 1)a1]

}
. (25)

Moreover, for all µ + ζ > 1, ν > 0; r ∈ (0,
√

a1 ), <(p) > 0 and <(c) > <(b) > 0, we have

R̃µ,ζ(Fp,ν; a; r) ≤ µYp,ν

{(
1− 2(µ + 1)(b + ν)(c + 2ν + 1)

(c + 2ν)(µ + 2)(b + ν + 1)

)
a−µ−ζ

1
µ + ζ

2F1

(
ζ, µ + ζ; ζ + 1;− r2

a1

)

+
4(µ + 1)(b + ν)(c + 2ν + 1)2

(c + 2ν)(µ + 2)(b + ν + 1)

a1−µ−ζ
1 2F1

(
ζ, µ + ζ − 1; ζ + 1;− r2

a1

)
(µ + ζ − 1)

(
(µ + 2)(b + ν + 1)r2 + 2(c + 2ν + 1)a1

)}

+ ζ Yp,ν

{(
1− 2µ(b + ν)(c + 2ν + 1)

(c + 2ν)(µ + 1)(b + ν + 1)

)
a−µ−ζ

1
µ + ζ

2F1

(
ζ + 1, µ + ζ; ζ + 2;− r2

a1

)

+
4µ(b + ν)(c + 2ν + 1)2

(c + 2ν)(µ + 1)(b + ν + 1)

a1−µ−ζ
1 2F1

(
ζ + 1, µ + ζ − 1; ζ + 2;− r2

a1

)
(µ + ζ − 1)

(
(µ + 1)(b + ν + 1)r2 + 2(c + 2ν + 1)a1

)} , (26)

where the integral’s shorthand reads

Xa(µ, ζ) :=
∫ ∞

a1

[a−1(x)]
xµ(x + r2)ζ

dx; and Yp,ν :=
2ν|p|ν+1 Γ(ν + 1

2 )√
π(<(p))2ν+1

B(b + ν, c− b + ν)

B(b, c− b)
.

Proof. Firstly, consider the relation (10)

Rµ,ζ(Fp,ν; a; r) = µ Jp,ν(µ + 1, ζ) + ζ Jp,ν(µ, ζ + 1) ,

in which we bound from above the auxiliary integral Jp,ν described in (14). To do this, we
quote that Fp,ν(a, b; c; z) > 0 for all a, b, c > 0 and all non-positive values of z. Indeed, it is
enough to consider the integral expression ([21], p. 99, Equation (42))

Fp,ν(a, b; c; z) =

√
2p
π

1
B(b, c− b)

∫ 1

0
tb− 3

2 (1− t)c−b− 3
2 (1− zt)−a Kν+ 1

2

(
p

t(1− t)

)
dt ,
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where p > 0; <(c) > <(b) > 0; |z| < 1. Therefore, by virtue of (14) and (23),

Jp,ν(µ, ζ) =
∫ ∞

a1

Fp,ν (µ, b; c; − r2

x )[a
−1(x)]

xµ(x + r2)ζ
dx ≤ Yp,ν

∫ ∞

a1

2F1 (µ, b + ν; c + 2ν; − r2

x )[a
−1(x)]

xµ(x + r2)ζ
dx

≤ Yp,ν

{(
1− 2µ(b + ν)(c + 2ν + 1)

(c + 2ν)(µ + 1)(b + ν + 1)

) ∫ ∞

a1

[a−1(x)]
xµ(x + r2)ζ

dx

+
4µ(b + ν)(c + 2ν + 1)2

(c + 2ν)(µ + 1)(b + ν + 1)

∫ ∞

a1

x1−µ(x + r2)−ζ [a−1(x)] dx
(µ + 1)(b + ν + 1)r2 + 2(c + 2ν + 1)x

}

≤ Yp,ν

{(
1− 2µ(b + ν)(c + 2ν + 1)

(c + 2ν)(µ + 1)(b + ν + 1)

)
Xa(µ, ε)

+
4µ(b + ν)(c + 2ν + 1)2 Xa(µ− 1, ε)

(c + 2ν)(µ + 1)(b + ν + 1)
(
(µ + 1)(b + ν + 1)r2 + 2(c + 2ν + 1)a1

)} .

The rest in deriving (25) is straightforward.
Secondly, we recall (13), which reads as follows:

R̃µ,ζ(Fp,ν; a; r) = µ Ĩp,ν(µ + 1, ζ) + ζ Ĩp,ν(µ, ζ + 1) .

By the positivity of the integrand of (15), since (23), we conclude

J̃p,ν(µ, ζ) ≤
∫ ∞

a1

Fp,ν (µ, b; c; − r2

x )

xµ(x + r2)ζ
dx ≤ Yp,ν

∫ ∞

a1

2F1 (µ, b + ν; c + 2ν; − r2

x )

xµ(x + r2)ζ
dx .

In turn, with the aid of (24), we deduce that

J̃p,ν(µ, ζ) ≤ Yp,ν

{(
1− 2µ(b + ν)(c + 2ν + 1)

(c + 2ν)(µ + 1)(b + ν + 1)

) ∫ ∞

a1

dx
xµ(x + r2)ζ

+
4µ(b + ν)(c + 2ν + 1)2

(c + 2ν)(µ + 1)(b + ν + 1)

∫ ∞

a1

x1−µ(x + r2)−ζ dx
(µ + 1)(b + ν + 1)r2 + 2(c + 2ν + 1)x

}
.

If µ + ζ > 2, then ([28], p. 313, Equation (3.194 1)).

∫ ∞

a1

dx
xµ(x + r2)ζ

=
∫ 1

a1

0

tµ+ζ−2

(1 + r2t)ζ
dt =

a1−µ−ζ
1

µ + ζ − 1 2F1

(
ζ, µ + ζ − 1; ζ + 1;− r2

a1

)
,

which implies

∫ ∞

a1

dx

xµ−1(x + r2)ζ
(
(µ + 1)r2 + 2

c + 2ν + 1
b + ν + 1

x
) ≤ a2−µ−ζ

1 2F1

(
ζ, µ + ζ − 2; ζ + 1;− r2

a1

)
(µ + ζ − 2)

(
(µ + 1) r2 + 2

c + 2ν + 1
b + ν + 1

a1
) .

Collecting these formulae, we infer

J̃p,ν(µ, ζ) ≤ Yp,ν

{(
1− 2µ(b + ν)(c + 2ν + 1)

(c + 2ν)(µ + 1)(b + ν + 1)

)
a1−µ−ζ

1
µ + ζ − 1 2F1

(
ζ, µ + ζ − 1; ζ + 1;− r2

a1

)

+
4µ(b + ν)(c + 2ν + 1)2

(c + 2ν)(µ + 1)(b + ν + 1)

a2−µ−ζ
1 2F1

(
ζ, µ + ζ − 2; ζ + 1;− r2

a1

)
(µ + ζ − 2)[(µ + 1)(b + ν + 1)r2 + 2(c + 2ν + 1)a1]

}
.

Now, obvious steps lead to the asserted upper bound (26).
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4. Concluding Remarks

A The cited references for the Mathieu-type series are given concerning the integral
representations, which are mainly obtained by virtue of Cahen’s formula for the sum
of Dirichlet series in the form of a Laplace integral. The contiguous recurrence relations
exist for almost all already considered cases, together with the bounding inequalities
for the studied general Mathieu-type series up to the related multiplicative constants.

B It is worth mentioning that there is also another type of extended Beta function,
which was introduced in [29], where the extended Beta function consists of the Beta
integral transform of the Kummer confluent hypergeometric function, viz. ([29], p. 631,
Definition 1.1.)

B(α,β)
p;κ,λ(x, y) =

∫ 1

0
tx−1(1− t)y−1

1F1

(
α; β;− p

tκ(1− t)λ

)
dt , (27)

where the parameters κ, λ ≥ 0; min{<(α),<(β)} > 0; <(x) > −<(κα), <(y) > −<(λα).
The special case B(α,α)

p;1,1 (x, y) = Bp(x, y) coincides with the p-extended Beta function (5)
introduced by Chaudhry et al. in [20].

C The results for the extended hypergeometric functions F(α,β;κ,µ)
p relative to B(α,β)

p;κ,λ(x, y)
are published in ([30], pp. 140–143, Theorem 1 et seq.), together with the integral
representations for the extended Mathieu-type series ([30], p. 140, Equations (1.3)
and (1.4)).

Fλ,η(F(α,β;κ,µ)
p ; a; r) = ∑

n≥1

F(α,β;κ,µ)
p (λ, b; c; − r2

an
)

aλ
n(an + r2)η

F̃λ,η(F(α,β;κ,µ)
p ; a; r) = ∑

n≥1

(−1)n−1F(α,β;κ,µ)
p (λ, b; c; − r2

an
)

aλ
n(an + r2)η

,

where λ, η, r > 0; <(c) > <(b) > 0.

D Further research directions may include the asymptotic expansion of generalized
Mathieu series [31,32], connections with the Riemann zeta and Dirichlet Beta func-
tions [33], Mathieu series associated with the Mittag–Leffler function, harmonic Math-
ieu series, Fourier–Mathieu series and connections with the Butzer–Flocke–Hauss
Omega function, the multiparameter variants of Mathieu–type series with reference
to the recent monograph [34], and article [5]. Moreover, the probability distributions
and allied topics defined in terms of Mathieu-type series are also studied, for instance
in [35,36] and the appropriate references therein. These publications suggested some
ideas for generalizing the Mathieu-type series studied here, e.g., new generalizations
of the Beta functions related to (27), that can result in novel forms of the associated
hypergeometric functions and the related Mathieu series.
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