Saliency Map Estimation Using a Pixel-Pairwise-Based Unsupervised Markov Random Field Model
Abstract
:1. Introduction
2. Unsupervised Markovian Model for The Saliency Map Estimation Problem
2.1. Observation Field
2.2. Likelihood Distributions
2.2.1. Likelihood in the Identical Pixel-Pairwise Label Case
2.2.2. Likelihood in the Different Pixel-Pairwise Label Case
2.3. Posterior Distribution
2.4. Iterative Conditional Estimation
2.4.1. Principle
- •
- We start from an initial value .
- •
- is computed from and from using:
2.4.2. Ml Estimators for the ICE
2.4.3. ICE Algorithm
- (1)
- Stochastic step: using the Gibbs sampler, one realization x of the saliency map is simulated according to the posterior distribution , with parameter vector .More precisely, for each site s (lexicographically), we sample with the local version of Equation (7), i.e.,with a Gaussian law for with parameter (see Section 2.2.2).
- (2)
- (3)
- Repeat until a stopping criterion is met or until convergence is achieved, i.e., if (i.e., if the 1-norm of the difference between these two parameter vectors is below a threshold or after a maximum number of iterations), we return to the stochastic step.
2.5. Saliency Map Generation Step
2.5.1. Additional Location-Based Prior
2.5.2. Region-Based Constraint
3. Experimental Results
3.1. Setup
3.2. Dataset Description
3.3. Quantitative Measure
3.4. Results and Comparisons
3.5. Discussion
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, C.; Li, X.; Zhao, L. Infrared Small Target Detection via Modified Random Walks. Remote Sens. 2018, 10, 2004. [Google Scholar] [CrossRef] [Green Version]
- Itti, L.; Koch, C. Computational Modelling of Visual Attention. Nat. Rev. Neurosci. 2001, 2, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itti, L.; Koch, C.; Niebur, E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.F.; Zhang, H.J. Contrast-based Image Attention Analysis by Using Fuzzy Growing. In Proceedings of the Eleventh ACM International Conference on Multimedia, MULTIMEDIA’03, Berkeley CA, USA, 2–8 November 2003; ACM: New York, NY, USA, 2003; pp. 374–381. [Google Scholar]
- Harel, J.; Koch, C.; Perona, P. Graph-Based Visual Saliency. In Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS’06, Vancouver, BC, Canada, 4–7 December 2006; MIT Press: Cambridge, MA, USA, 2006; pp. 545–552. [Google Scholar]
- Harel, J.; Koch, C.; Perona, P. Graph-Based Visual Saliency. In Advances in Neural Information Processing Systems 19; Schölkopf, B., Platt, J.C., Hoffman, T., Eds.; MIT Press: Cambridge, MA, USA, 2007; pp. 545–552. [Google Scholar]
- Hou, X.; Zhang, L. Saliency detection: A spectral residual approach. In Proceedings of the Computer Vision and Pattern Recognition, CVPR’07, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Achanta, R.; Estrada, F.; Wils, P.; Susstrunk, S. Salient Region Detection and Segmentation. In Computer Vision Systems; Gasteratos, A., Vincze, M., Tsotsos, J.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 66–75. [Google Scholar]
- Achanta, R.; Estrada, F.; Wils, P.; Susstrunk, S. Salient Region Detection and Segmentation. In Proceedings of the 6th International Conference on Computer Vision Systems, Santorini, Greece, 12–14 May 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 66–75. [Google Scholar]
- Guo, C.; Ma, Q.; Zhang, L. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008. [Google Scholar]
- Achanta, R.; Hemami, S.S.; Estrada, F.J.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Miami, FL, USA, 20–25 June 2009; pp. 1597–1604. [Google Scholar]
- Klein, D.; Frintrop, S. Center-surround divergence of feature statistics for salient object detection. In Proceedings of the International Conference on Computer Vision, ICCV 2011, Barcelona, Spain, 6–13 November 2011; pp. 2214–2219. [Google Scholar]
- Zhang, J.; Ma, S.; Sameki, M.; Sclaroff, S.; Betke, M.; Lin, Z.; Shen, X.; Price, B.; Radomír, R. Salient Object Subitizing. Int. J. Comput. Vision 2017, 124, 169–186. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Shah, M. Visual Attention Detection in Video Sequences Using Spatiotemporal Cues. In Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006; ACM: New York, NY, USA, 2006; pp. 815–824. [Google Scholar]
- Cheng, M.M.; Zhang, G.X.; Mitra, N.J.; Huang, X.; Hu, S.M. Global Contrast Based Salient Region Detection. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 20–25 June 2011; IEEE Computer Society: Washington, DC, USA, 2011; pp. 409–416. [Google Scholar]
- Tal, A.; Zelnik-Manor, L.; Goferman, S. Context-Aware Saliency Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1915–1926. [Google Scholar]
- Shen, X.; Wu, Y. A Unified Approach to Salient Object Detection via Low Rank Matrix Recovery. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; IEEE Computer Society: Washington, DC, USA, 2012; pp. 853–860. [Google Scholar]
- Jiang, H.; Wang, J.; Yuan, Z.; Wu, Y.; Zheng, N.; Li, S. Salient Object Detection: A Discriminative Regional Feature Integration Approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Liu, Z.; Zou, W.; Le Meur, O. Saliency Tree: A Novel Saliency Detection Framework. IEEE Trans. Image Process. 2014, 23, 1937–1952. [Google Scholar]
- Cheng, M.; Mitra, N.J.; Huang, X.; Torr, P.H.S.; Hu, S. Global Contrast Based Salient Region Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Xu, L.; Shi, J.; Jia, J. Hierarchical Saliency Detection. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; IEEE Computer Society: Washington, DC, USA, 2013; pp. 1155–1162. [Google Scholar]
- Aytekin, C.; Kiranyaz, S.; Gabbouj, M. Automatic Object Segmentation by Quantum Cuts. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweeden, 24–28 August 2014; pp. 112–117. [Google Scholar]
- Liu, T.; Yuan, Z.; Sun, J.; Wang, J.; Zheng, N.; Tang, X.; Shum, H. Learning to Detect a Salient Object. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 353–367. [Google Scholar]
- Zhang, L.; Tong, M.H.; Marks, T.K.; Shan, H.; Cottrell, G.W. Sun: A Bayesian framework for saliency using natural statistics. J. Vis. 2008, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Qi, J.; Lu, H.; Zhang, L.; Ruan, X. Salient Object Detection via Multiple Instance Learning. IEEE Trans. Image Process. 2017, 26, 1911–1922. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ren, J.; Sun, G.; Zhao, H.; Han, J.; Li, X.; Marshall, S.; Zhan, J. Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement. Pattern Recognit. 2018, 79, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Li, B.; Ling, H.; Hu, W.; Xiong, W.; Maybank, S.J. Salient Object Detection via Structured Matrix Decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 818–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, L.; Liu, Z.; Li, L.; Shen, L.; Bai, C.; Wang, Y. Salient Object Segmentation via Effective Integration of Saliency and Objectness. IEEE Trans. Multimed. 2017, 19, 1742–1756. [Google Scholar] [CrossRef]
- Zhu, W.; Liang, S.; Wei, Y.; Sun, J. Saliency Optimization from Robust Background Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Li, X.; Lu, H.; Zhang, L.; Ruan, X.; Yang, M.H. Saliency Detection via Dense and Sparse Reconstruction. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Xie, Y.; Lu, H.; Yang, M. Bayesian Saliency via Low and Mid Level Cues. Trans. Image Process. 2013, 22, 1689–1698. [Google Scholar]
- Feng, L.; Li, H.; Cheng, D.; Zhang, W.; Xiao, C. An Improved Saliency Detection Algorithm Based on Edge Boxes and Bayesian Model. Trait. Signal 2022, 39, 59–70. [Google Scholar] [CrossRef]
- Mai, L.; Niu, Y.; Liu, F. Saliency Aggregation: A Data-Driven Approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Rahtu, E.; Kannala, J.; Salo, M.; Heikkilä, J. Segmenting Salient Objects from Images and Videos. In Proceedings of the Computer Vision—ECCV 2010, Heraklion, Greece, 5–11 September 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 366–379. [Google Scholar]
- Fu, K.; Gu, I.Y.; Yang, J. Saliency Detection by Fully Learning a Continuous Conditional Random Field. IEEE Trans. Multimed. 2017, 19, 1531–1544. [Google Scholar] [CrossRef]
- Qiu, W.; Gao, X.; Han, B. A superpixel-based CRF saliency detection approach. Neurocomputing 2017, 244, 19–32. [Google Scholar] [CrossRef]
- Junwei, H.; Ngi, N.K.; Mingjing, L.; HongJiang, Z. Unsupervised extraction of visual attention objects in color images. IEEE Trans. Circuits Syst. Video Techn. 2006, 16, 141–145. [Google Scholar]
- da Fontoura Costa, L. Visual Saliency and Attention as Random Walks on Complex Networks. arXiv 2006, arXiv:0603025. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Hu, Y.; Rajan, D. Random walks on graphs for salient object detection in images. IEEE Trans. Image Process. 2010, 19, 3232–3242. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Huang, Q.; Gao, W. Measuring visual saliency by Site Entropy Rate. In Proceedings of the Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13–18 June 2010; pp. 2368–2375. [Google Scholar]
- Jiang, B.; Zhang, L.; Lu, H.; Yang, C.; Yang, M.H. Saliency Detection via Absorbing Markov Chain. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Yang, J.; Yang, M. Top-Down Visual Saliency via Joint CRF and Dictionary Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 576–588. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yuan, Y.; Cai, W.; Xia, Y.; Feng, F.D.D. Robust Saliency Detection via Regularized Random Walks Ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Yuan, Y.; Li, C.; Kim, J.; Cai, W.; Feng, D.D. Reversion Correction and Regularized Random Walk Ranking for Saliency Detection. IEEE Trans. Image Process. 2018, 27, 1311–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Kong, B.; Li, J.; Dashtipour, K.; Gogate, M. Robust Visual Saliency Optimization Based on Bidirectional Markov Chains. Cogn. Comput. 2021, 13, 69–80. [Google Scholar] [CrossRef]
- Singh, V.; Kumar, N. CoBRa: Convex hull based random walks for salient object detection. Multimed. Tools Appl. 2022, 81, 30283–30303. [Google Scholar] [CrossRef]
- Tang, W.; Wang, Z.; Zhai, J.; Yang, Z. Salient Object Detection via Two-Stage Absorbing Markov Chain Based on Background and Foreground. J. Vis. Commun. Image Represent. 2019, 71, 102727. [Google Scholar] [CrossRef]
- Pengfei, L.; Xiaosheng, Y.; Jianning, C.; Chengdong, W. Saliency Detection via Absorbing Markov Chain with Multi-level Cues. Ieice Trans. Fundam. Electron. Commun. Comput. Sci. 2021, 105, 1010–1014. [Google Scholar]
- Zhang, L.; Ai, J.; Jiang, B.; Lu, H.; Li, X. Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability. IEEE Trans. Image Process. 2018, 27, 987–998. [Google Scholar] [CrossRef]
- Wu, J.; Han, G.; Liu, P.; Yang, H.; Luo, H.; Li, Q. Saliency Detection with Bilateral Absorbing Markov Chain Guided by Depth Information. Sensors 2021, 21, 838. [Google Scholar] [CrossRef]
- Salzenstein, F.; Pieczynski, W. Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation. Cvgip Graph. Model Image Process. 1997, 59, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Pieczynski, W. Convergence of the Iterative Conditional Estimation and Application to Mixture Proportion Identification. In Proceedings of the IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, USA, 26–29 August 2007; pp. 49–53. [Google Scholar]
- Marroquin, J.; Mitter, S.; Poggio, T. Probabilistic Solution of ill-Posed problems in Computation Vision. J. Am. Stat. Assoc. 1987, 82, 76–89. [Google Scholar] [CrossRef]
- Gimel’farb, G.L. Texture modeling by multiple pairwise pixel interactions. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 1110–1114. [Google Scholar] [CrossRef] [Green Version]
- Mignotte, M. MDS-based multiresolution nonlinear dimensionality reduction model for color image segmentation. IEEE Trans. Neural Netw. 2011, 22, 447–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignotte, M. MDS-based segmentation model for the fusion of contour and texture cues in natural images. Comput. Vis. Image Underst. 2012, 116, 981–990. [Google Scholar] [CrossRef]
- Mignotte, M. A multiresolution Markovian fusion model for the color visualization of hyperspectral images. IEEE Trans. Geosci. Remote. Sens. 2010, 48, 4236–4247. [Google Scholar] [CrossRef]
- Mignotte, M. A bi-criteria optimization approach based dimensionality reduction model for the color display of hyperspectral images. IEEE Trans. Geosci. Remote. Sens. 2012, 50, 501–513. [Google Scholar] [CrossRef]
- Moevus, A.; Mignotte, M.; de Guise, J.; Meunier, J. A perceptual map for gait symmetry quantification and pathology detection. Biomed. Eng. OnLine (BMEO) 2015, 14, 1–24. [Google Scholar] [CrossRef]
- Mignotte, M. An energy based model for the image edge histogram specification problem. IEEE Trans. Image Process. 2012, 21, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Mignotte, M. Non-local pairwise energy based model for the HDR image compression problem. J. Electron. Imaging 2012, 21, 99. [Google Scholar] [CrossRef] [Green Version]
- Mignotte, M. A Label Field Fusion Bayesian Model and Its Penalized Maximum Rand Estimator For Image Segmentation. IEEE Trans. Image Process. 2010, 19, 1610–1624. [Google Scholar] [CrossRef] [Green Version]
- Touati, R.; Mignotte, M.; Dahmane, M. Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based Markov Random Field model. IEEE Trans. Image Process. 2019, 29, 757–767. [Google Scholar] [CrossRef]
- Mignotte, M.; Collet, C.; Pérez, P.; Bouthemy, P. Sonar image segmentation using an unsupervised hierarchical MRF model. IEEE Trans. Image Process. 2000, 9, 1216–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mignotte, M.; Meunier, J.; Soucy, J.P. DCT-based complexity regularization for EM tomographic reconstruction. IEEE Trans. Biomed. Eng. 2008, 55, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Mignotte, M. Fusion of regularization terms for image restoration. J. Electron. Imaging 2010, 19, 333004. [Google Scholar] [CrossRef] [Green Version]
- Ooura, T. General Purpose FFT (Fast Fourier/Cosine/Sine Transform) Package. Available online: http://momonga.t.u-tokyo.ac.jp/~ooura/fft.html (accessed on 31 January 2023).
- Shi, J.; Yan, Q.; Xu, L.; Jia, J. Hierarchical Image Saliency Detection on Extended CSSD. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 717–729. [Google Scholar] [CrossRef]
- Pérez, P.; Blake, A.; Gangnet, M. JetStream: Probabilistic contour extraction with particles. In Proceedings of the IEEE International Conference on Computer Vision, ICCV’01, Vancouver, BC, Canada, 7–14 July 2001. [Google Scholar]
- Widynski, N.; Mignotte, M. A multiscale particle filter framework for contour detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1922–1935. [Google Scholar] [CrossRef]
- Destrempes, F.; Mignotte, M. A statistical model for contours in images. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Destrempes, F.; Mignotte, M. Localization of shapes using statistical models and stochastic optimization. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1603–1615. [Google Scholar] [CrossRef]
- Besag, J. On the Statistical Analysis of Dirty Pictures. J. R. Stat. Soc. 1986, B-48, 259–302. [Google Scholar] [CrossRef] [Green Version]
- Delignon, Y.; Marzouki, A.; Pieczynski, W. Estimation of Generalized Mixture and Its Application in Image Segmentation. IEEE Trans. Image Process. 1997, 6, 1364–1375. [Google Scholar] [CrossRef] [Green Version]
- Dempster, A.; Laird, N.; Rubin, D. Maximum likelihood from incomplete data via the EM algorithm. R. Stat. Soc. 1976, 39, 1–22. [Google Scholar]
- Masson, P.; Pieczynski, W. SEM algorithm and unsupervised statistical segmentation of satellite images. IEEE Trans. Geosci. Remote. Sens. 1993, 31, 618–633. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans. Pattern Recognit. 1984, 6, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Perez, P. Markov Random Fields and Images; CWI Quarterly: Amsterdam, The Netherlands, 1998; pp. 413–437. [Google Scholar]
- Borji, A.; Cheng, M.; Jiang, H.; Li, J. Salient Object Detection: A Benchmark. IEEE Trans. Image Process. 2015, 24, 5706–5722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Jiang, H.; Yuan, Z.; Cheng, M.M.; Hu, X.; Zheng, N. Salient Object Detection: A Discriminative Regional Feature Integration Approach. Int. J. Comput. Vision 2017, 123, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Yang, J. Exploiting Color Volume and Color Difference for Salient Region Detection. IEEE Trans. Image Process. 2019, 28, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Felzenszwalb, P.; Huttenlocher, D. Efficient Graph-Based Image Segmentation. Int. J. Comput. Vision 2004, 59, 167–181. [Google Scholar] [CrossRef]
- Jodoin, P.M.; Mignotte, M. Markovian segmentation and parameter estimation on graphics hardware. J. Electron. Imaging 2006, 15, 033005. [Google Scholar] [CrossRef]
- Mignotte, M.; Collet, C.; Pérez, P.; Bouthemy, P. Markov Random Field and fuzzy logic modeling in sonar imagery: Application to the classification of underwater floor. Comput. Vis. Image Underst. 2000, 79, 4–24. [Google Scholar] [CrossRef]
- Tang, Y.M.; Zhang, L.; Bao, G.; Ren, F.; Pedrycz, W. Symmetric implicational algorithm derived from intuitionistic fuzzy entropy. Iran. J. Fuzzy Syst. 2022, 19, 27–44. [Google Scholar]
AC [9] | CA [16] | FT [11] | GB [5] | HC [15] | IT [3] | LC [14] | LR [17] | SR [7] | RC [15] | RCC [20] | HS [68] | CHS [68] | UMESM |
0.264 | 0.310 | 0.270 | 0.282 | 0.326 | 0.290 | 0.294 | 0.267 | 0.264 | 0.301 | 0.187 | 0.224 | 0.227 | 0.150 |
0.228 | 0.250 | 0.230 | 0.243 | 0.239 | 0.248 | 0.245 | 0.215 | 0.225 | 0.264 | 0.140 | 0.153 | 0.150 | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mignotte, M. Saliency Map Estimation Using a Pixel-Pairwise-Based Unsupervised Markov Random Field Model. Mathematics 2023, 11, 986. https://doi.org/10.3390/math11040986
Mignotte M. Saliency Map Estimation Using a Pixel-Pairwise-Based Unsupervised Markov Random Field Model. Mathematics. 2023; 11(4):986. https://doi.org/10.3390/math11040986
Chicago/Turabian StyleMignotte, Max. 2023. "Saliency Map Estimation Using a Pixel-Pairwise-Based Unsupervised Markov Random Field Model" Mathematics 11, no. 4: 986. https://doi.org/10.3390/math11040986
APA StyleMignotte, M. (2023). Saliency Map Estimation Using a Pixel-Pairwise-Based Unsupervised Markov Random Field Model. Mathematics, 11(4), 986. https://doi.org/10.3390/math11040986