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Abstract: Infrared small target detection under intricate background and heavy noise is one of the
crucial tasks in the field of remote sensing. Conventional algorithms can fail in detecting small targets
due to the low signal-to-noise ratios of the images. To solve this problem, an effective infrared small
target detection algorithm inspired by random walks is presented in this paper. The novelty of our
contribution involves the combination of the local contrast feature and the global uniqueness of
the small targets. Firstly, the original pixel-wise image is transformed into an multi-dimensional
image with respect to the local contrast measure. Secondly, a reconstructed seeds selection map (SSM)
is generated based on the multi-dimensional image. Then, an adaptive seeds selection method is
proposed to automatically select the foreground seeds potentially placed in the areas of the small
targets in the SSM. After that, a confidence map is constructed using a modified random walks (MRW)
algorithm to represent the global uniqueness of the small targets. Finally, we segment the targets from
the confidence map by utilizing an adaptive threshold. Extensive experimental evaluation results on
a real test dataset demonstrate that our algorithm is superior to the state-of-the-art algorithms in both
target enhancement and detection performance.
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1. Introduction

Infrared search and tracking (IRST) systems have been widely applied in remote sensing, space
surveillance, external intrusion warnings [1–3], etc. For early warning applications, incoming targets
such as missiles, aircraft, and boats are supposed to be detected at a long distance. Due to the remotely
sensed imaging, the targets in an infrared image are of small size with a lack of prior knowledge
about the target shape and texture features [4,5]. Moreover, the targets are usually buried in heavy
noise and complicated background clutter (e.g., irregular sunlit spot, sky–sea background, and heavy
cloud). The above hostile situations make the signal-to-clutter ratio (SCR) of small targets very low [6].
Therefore, small target detection under heavy noise and complex background is considered to be a
difficult and challenging problem. Although many research efforts have been made in this task over
the past decades [7–9], it remains an open issue.

There are numerous methods for small-target detection problems, and these algorithms can
be roughly categorized into two representative groups: track before detection (TBD) [10–12] and
detection before track (DBT) [13–15]. Prior knowledge of the targets and backgrounds are necessarily
required and have strong influence for the TBD methods. Furthermore, TBD methods are normally
time-consuming because they involve the processing of sequential images. Compared to TBD methods,
DBT methods only focus on detecting the small targets in a single frame, which makes them more
time-saving and require less prior knowledge about the targets and backgrounds. Therefore, the
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DBT methods are more appropriate in some practical applications with real-time detection demands,
and have recently attracted great attention [16–18].

Different kinds of DBT methods have been developed. Some conventional methods attempt to
segment targets from the infrared images by spatial filtering and background estimation. For instance,
Deshpande et al. [19] adopted Max-Mean and Max-Median filters to suppress the background clutter,
Bai et al. [20] and Zhou et al. [21] applied a Top-Hat filter to small targets detection, and some other
spatial filtering based methods (e.g., Laplacian of Gaussian (LoG) filter [22], two-dimensional least-mean
square (TDLMS) filter [23], and bilateral filter (BF) [24,25]) have been proposed. These methods are easy
to implement but are sensitive to noise and not eligible for scenes with varying backgrounds.

Motivated by the recent advances in the theory of the human visual system (HVS), many methods
have been presented. Since an infrared dim-small target usually occupies only a few pixels and
exhibits a signature of discontinuity with its neighboring regions rather than the global image,
a number of HVS-based methods attempt to describe the local feature with different feature descriptors,
for example, the local contrast measure (LCM) [26], the multiscale relative local contrast measure
(RLCM) [27], and the weighted local difference measure (WLDM) [28]. Similar to the local feature
descriptor-based methods, some entropy-based methods [29,30] and saliency-based methods [31,32]
have also been presented. Although these approaches have shown better detection performance
compared to conventional methods, they failed when the targets were embedded in thick cloud and
heavy noise.

Based on the constructive work that Candes et al. [33] made about robust principal component
analysis (RPCA), numerous methods have been proposed to detect infrared small targets. These methods
consider that the target components and background components can be approximately represented
by a sparse matrix and a low-rank matrix, respectively. For instance, Gao et al. [34] presented an
infrared patch-image (IPI) model by transforming the the original infrared image into a raw matrix and
then recovering the sparse matrix and low-rank matrix from it. Similarly, Wang et al. [35] generated
an image patch set by multiscale patch transformation and achieved the matrix recovery using an
adaptive weighting parameter. Additionally, other components analysis-based methods such as singular
value decomposition [36] and partial sum minimization of singular values [37] have been proposed.
Although their methods perform better than the conventional method for complex scenes, the process of
component composition and reconstruction is expensive and time-consuming.

Inspired by statistics research and computer vision theory, Wang et al. [38] proposed a small target
detection method utilizing least squares support vector machine (LS-SVM). Li et al. [39] employed
the local steering kernel (LSK) to encode the infrared image patch and proposed a local adaptive
contrast measure based on regularized LSK reconstruction. Moreover, Gao et al. [40] developed their
IPI model by taking the temporal cue into consideration and presented a statistical model based on the
mixture of Gaussians (MoG) and the Markov random field (MRF). In addition to the state-of-the-art
studies, there are still many other algorithms for detecting dim-small targets, such as algorithms
based on the statistical regression [9], manifold learning [41], the nearest neighbor classifier [42],
neural networks [43], etc.

Notice that small targets reveal different patterns compared with the backgrounds, thus they can
be taken as anomalies (or outliers) in the infrared images. In this case, small target detection can also
be considered as anomaly detection. In the past decades, anomaly detection has been well studied
and widely used in detecting small targets from multispectral and hyperspectral images. One of the
best-known anomaly detection methods is the Reed–Xiaoli (RX) algorithm [44]. RX detector attempts to
measure the difference of outliers and backgrounds with Mahalanobis distance. However, it is fragile
when the feature of the outliers lies in a high-dimensional space. To solve this problem, Kwon et al. [45]
proposed a nonlinear version of the RX-algorithm by using kernel functions. Later, Zhou et al. [46]
developed a faster version of the kernel-based RX-algorithm by grouping background pixels into
clusters in the preprocessing step.
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The intention of this research was to propose a small target detection algorithm that is effective
and efficient in detecting small targets in varying scenes and robust to noise pollution. Note that
small targets are generally of small size and target birth causes remarkable changes of local textural
characteristics. Moreover, the pixels of the background clutter are distributed over the entire image
while the pixels of small targets are unique within the entire image. With these considerations in mind,
we first construct a local contrast element for each pixel according to its local discontinuity with the
neighboring pixels. We adaptively select potential foreground seeds and background seeds based
on these elements. Then, the global uniqueness of the targets is represented by applying a modified
random walks (MRW) algorithm. The contributions of this paper can be summarized as follows:

1. A multi-dimensional image is constructed, and each element of the image delineates the local
contrast of the corresponding pixel in the original infrared image. Additionally, the local contrast
element is utilized as an indicator of the seeds selection for the random walks algorithm.

2. A confidence map for the original image is achieved using the MRW algorithm. The targets of
interest are well enhanced, while the background clutter and noise are greatly suppressed.

3. A dim-small target detection algorithm is designed based on MRW. To demonstrate the validity
of the algorithm, a real dataset is used in our experiments. The extensive experimental results
show that the proposed method is superior to the state-of-the-art methods with respect to target
enhancement performance and detection accuracy.

The remainder of this paper is organized as follows: Section 2 describes the proposed small target
detection method based on MRW in detail. Section 3 gives comprehensive experimental results on the
simulated and real datasets. Section 4 contains the target enhancement and detection performances on
the four real sequences and the comparison with the current methods. Conclusions and perspectives
are presented in Section 5.

2. Methodology

In this section, we first briefly review the theory of the random walks algorithm. Then, the specific
mathematical description of the proposed local contrast element is given. Subsequently, an adaptive
seeds selection method based on local contrast element is presented. Then, we provide an illustration
of the modified random walks algorithm (MRW) with the selected seeds. Finally, we introduce a full
framework and a detailed algorithm of the MRW-based small target detection method.

2.1. Overview of Random Walks

Random walks is a mathematical model of a random process, which leads an unlabeled element
to a labeled seed with the highest likelihood [47]. Given a graph structure G = (V, E) with nodes
v ∈ V and edges e ∈ E, the task of random walks is to group the nodes into K classes. Assume that the
elements set is given as X = {x1, . . . , xN} ∈ Rm, where N is the number of elements. The connection
between any two nodes xu and xv in X (i.e., the weight of the edge wuv) is quantified by a weight
matrix W = [wuv]N×N . Here, we assume that the connection between any two nodes is undirected
(i.e., wuv = wvu) [47] and wuv is empirically obtained by the typical Gaussian weighting function:

wuv = exp(−||Ixu − Ixv ||2
σ2 ), (1)

where Ixu indicates the intensity of xi and σ is a constant that controls the weighting degree. The degree
of xu is given by

du = ∑
v

wuv. (2)
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Without loss of generality, we partition the elements set X into two sets XM (marked/seed nodes)
and XU (unseeded nodes) such that XM ∪ XU = X and XM ∩ XU = ∅. The elements in XM are
classified into K categories according to the defined label function:

Q(xu) = k, k ∈ Z, 0 < k < K. (3)

Let pk = [pk
1, . . . , pk

N ]
T = [(pk

M)T , (pk
U)

T ] denote the probability vector of the elements in X for
label k, where pk

M is for the labeled seeds, which has fixed value as

pk
s =

{
1 Q(xs) = k,

0 otherwise,
(4)

for any xs ∈ XM. We further define the N × N Laplacian matrix L as

Luv =


du if u = v,

−wuv if xu and xv are adjacent nodes,

0 otherwise.

(5)

Note that L is symmetric since the edges E are undirected. With all of the above preparation, the
optimized pk is achieved by minimizing the decomposed Dirichlet integral [47]:

D[pk] =
1
2
(pk)T Lpk =

1
2

[
(pk

M)T(pk
U)

T
] [ LM B

BT LU

] [
pk

M
pk

U

]
. (6)

The critical point is found by differentiating D[pk] with respect to pk
U . That is,

pk
U = −L−1

U BT pk
M. (7)

We were inspired by the conventional random walks algorithm, which is highly suitable for
measuring the global uniqueness of small targets. Assume that we have found a set of candidate
targets including both ground-true and -false targets, we assign K labels to them and group these
labeled nodes into XM, and group the remaining pixels of the input image into an unlabeled nodes set
XU . In addition, the local and global similarity of the pixels can be measured by the weight matrix W
and the weighting degree du, respectively. After that, the small target detection is converted to find
the labeled pixels that only few unlabeled pixels lead to, i.e., find the labeled nodes with sparse pU .
With these considerations in mind, we modified the random walks algorithm and designed a small
target detection algorithm based on the modified random walks algorithm.

2.2. Adaptive Seeds Selection Based on Seeds Selection Map (SSM)

Since random walks has the ability to measure the global uniqueness of the labeled seeds,
numerous researchers have made great progress by applying this model to target detection [48,49].
The performance of this model is highly dependent on the user-defined seeds. Therefore, it is important
to select appropriate foreground and background seeds. In the following, we design an adaptive seeds
selection method for the random walks algorithm.

2.2.1. Seeds Selection Map (SSM)

As mentioned previously, the small target reveals structure discontinuity with its neighboring
pixels rather than the entire image. That is, the intensity of the target is greater (or lower) than the
remnant pixels in a local region. From this view, we conceive a local contrast element to represent the
local structure discontinuity of the target.
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Let an input raw infrared image denoted by I with size m× n be defined on the global patch
domain I ⊂ R2 and a sub-patch P with size of d× d be defined on the patch domain P ⊂ I ⊂ R2,
as shown in Figure 1a. As depicted in Figure 1b, the sub-patch P(i,j) is partitioned into bd/2c (b·c is

the floor function) parts such that P(i,j) =
⋃bd/2c

l=0 Pl
(i,j) and Pl

(i,j) contains the neighboring pixels with
Chebyshev distance of l from the center pixel (i, j). That is, for any l ∈ {0, 1, . . . , bd/2c}, we have

Pl
(i,j) = {(x, y)|max(|x− i|, |y− j|) = l} . (8)

Define
(xl

ij, yl
ij) = arg min

(x,y)∈Pl
(i,j)

|I(i, j)− I(x, y)|, ∀l ∈ {0, 1, . . . , bd/2c}, (9)

where I(x, y) is the intensity of the pixel (x, y) in I. That is, (xl
ij, yl

ij) is the pixel in Pl
(i,j) that has the

minimum difference with the center pixel (i, j). Let a vector cij = [c1
ij, . . . , cbd/2c], the so-called local

contrast element, describe the discontinuity structure between the center pixel (i, j) and the remnant
pixels in Pij, and each element of cij can be obtained by

cl
ij = I(i, j)− I(xl

ij, yl
ij), ∀l ∈ {1, . . . , bd/2c}. (10)

Assume that a seeds selection map (SSM) S is defined on a domain S ⊂ R2. Let the transformation
function Ψ : I → S be defined as follows:

S(i, j) = Ψ(I(i, j)) =
bd/2c

∑
l=1

∣∣∣cl
ij

∣∣∣ cl
ij. (11)

As shown in Equation (11), S(i, j) quantifies the “signed energy” of the local energy element cij,
which is rational for practical applications since the pixels with continuous directed difference are
more likely to be a target.

d

(i,j)

P(i,j)

I

(a)

1

(i, j)
P

(i,j)

l

(i, j)
P

(b)

Figure 1. Schematic diagram for constructing the local contrast element: (a) the nested structure of the
image; and (b) the diffusion structure of sub-patch P(i,j).

To demonstrate the validity of SSM, some SSM examples of representative infrared images are
displayed in Figure 2. It can be seen in Figure 2 that the targets in these infrared images are buried in
extremely complex background clutters and are barely distinguishable. After transforming the raw
images into seeds selection maps, the background clutters are fairly suppressed and the targets are well
enhanced. However, some pixels of irregular edges and heavy noise are also enhanced, which leads to
a high false alarm rate. Thus, further processing is needed.
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(a) (b) (c) (d)

Figure 2. Some seeds selection map (SSM) examples of the representative infrared images with small
targets in (a) the sunlit lake, (b) the country road, (c) the twilight sky and (d) the sea-sky background.
The first row contains four input images with small targets embedded in complicated backgrounds
and heavy noise. The second row consists of the corresponding SSM. The red circles indicate the
ground-true targets.

2.2.2. Adaptive Seeds Selection for Random Walks

As discussed previously, the validity of the user-defined seeds has a great effect on the performance
of the random walks algorithm. Note that the SSM achieved in Section 2.2.1 greatly enhances the potential
small targets, thus we can select seeds for random walks based on SSM. We define the thresholds t f ore
as follows:

t f ore = mean(S) + λ ∗ std(S), (12)

where λ is an empirical constant that is discussed in Section 3. The threshold is utilized to select
pixels with S > t f ore as foreground seeds. For convenience of implementation of the random walks
algorithm, the selected seeds with Chebyshev distances between each other within 5 are considered
as one effective seed, which is placed in the seed with greatest value of S. Specifically, the progress
of selecting seeds from SSM is as follows: (1) Given an SSM S, select candidate pixels and group
them into a set T = {(x, y)|S(x, y) > t f ore}. (2) If there exists two pixels (x1, y1), (x2, y2) ∈ T
with max(|x1 − x2|, |y1 − y2|) ≤ 5, remove the pixel with smaller S, e.g., if S(x1, y1) < S(x2, x2),
remove (x1, y1) from T. (3) Repeat Step 2 until all redundant pixels are removed.

The next step is to apply the random walks model to assign the unlabeled pixels to the labeled
seeds. As a first impression, the process of random walks is similar to clustering. However, they are
different statistical models in many aspects. Here, we take the well-known k-means clustering [50] as
an example of clustering model and summarize the major differences of these two models as follows:

1. The goals of these two methods are different. Random walk searches the optimal path from one
state to another state, that is, leads one state to another state with highest probability. In the
proposed algorithm, the random walks model finds the optimal paths from unlabeled pixels
to the labeled pixels and obtains the probabilities of walking unlabeled pixels to labeled pixels.
On the other hand, k-means aims to group scattered samples to several clutters with respect to
the similarity of samples.

2. The random walk process is a kind of Markov process, that is, every state of the model is only
allowed to be transited to its adjacent states. For example, if state i and state j are not adjacent,
the transition probability of moving from state i to state j is 0. Therefore, the weight wuv of pixels
xu and xv are set to 0 if they are not adjacent. However, the process of k-means clustering has no
such limitation.
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3. The geographical information of states (pixels in the image) is involved in the random walks
algorithm. The father the distance between two states i and j, the longer is the optimal path,
thus the smaller is the probability of leading state i to state j. On the other hand, k-means does
not consider the geographical information of the pixels.

2.3. Modified Random Walks (MRW)

Based on the seeds determined in Section 2.2.2, the seeded pixels in the input infrared image I
correspond to the marked nodes in XM (see Section 2.1). Assume that there are K seeds. The seeds are
then combined into pk

M obtained by Equation (4), where k ∈ {1, . . . , K} corresponds to the label of the
kth seed. Since the small targets are strongly related to their local regions, we modify the Laplacian
matrix of Equation (5) as

Luv =


du if u = v,

−wuv if xv ∈ Pxu ,

0 otherwise,

(13)

where L is an N × N matrix, N = m× n is the number of pixels in I, wuv is obtained by substituting
the intensity of pixel xu and xv to Equation (1), and du is calculated by Equation (2). Instead of
measuring the connection between adjacent nodes (please refer to the second condition of Equation (5)),
the modified Laplacian matrix measures the connection among the nodes belonging to the same
local region. It is rational since the small targets usually occupy few pixels and highly relate to
their surrounding pixels. Then, the probability vector pk

U of XU for label k is computed according
Equations (6) and (7).

As discussed previously, the pixels of the background clutter and noise are distributed all over
the image and exhibit similar patterns. In contrast, pixels of the small targets are rather unique in
the image and only relate to their neighboring pixels. Correspondingly, if the kth seed xk ∈ XM is a
ground-true target, then there only exists few unseeded pixels with high probability in pk

U . Otherwise,
there will be numerous unseeded pixels with high probability in pk

U . Briefly, pk
U is sparse if xk is a

ground-true target, while it is non-sparse if xk is a false alarm. Therefore, we reconstruct a composite p̃
by taking the global uniqueness into consideration, and we have

p̃u = max
k∈{1,...,K}

pk
u

∑N
v=1 pk

v
, ∀xu ∈ X . (14)

That is, the final probability p̃u of xu is considered as the maximal normalized probability of xu.
Then, we reshape p̃ to a matrix C with same size of the input image I as the final confidence map for
small target detection.

The confidence maps of the representative infrared image in Figure 2 are displayed in Figure 3.
As shown in Figure 3, the targets are greatly enhanced, while the background clutter and noise are
perfectly suppressed in the map. The red circles indicate where the ground-true targets are.
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(a) (b) (c) (d)

Figure 3. (a–d) are the confidence maps of the representative infrared images in Figure 2a–d. The first
row shows the normalized gray image of the confidence maps and the second row shows the
three-dimensional mesh images of the confidence maps. The red circles indicate where the ground-true
targets are.

2.4. Small Target Detection Algorithm Based on MRW

It can be seen in Figure 3 that the contrast between the dim-small targets and the background is
greatly enlarged in the confidence map C obtained by MRW, which makes it easy to detect the target.
Similar to Equation (12), we segment the target with an adaptive threshold defined by

tseg = mean(C) + λ ∗ std(C), (15)

where λ is the same constant in Equation (12).
Based on the aforementioned preparation, a small target detection algorithm is designed.

The flowchart of the proposed method is depicted in Figure 4 and can be summarized as five
steps: (1) Construct a multi-dimensional image with the input infrared image using the method
in Section 2.2.1. As shown in Figure 4, there are totally bd/2c layers of the transformed image and each
layer has the same size as the input image. (2) Transform the multi-dimensional image into the seeds
selection map according to Equation (11). (3) Select the foreground seeds with the seeds selection map
according to Section 2.2.2. (4) Perform the modified random walks algorithm with the selected seeds
and reconstruct a confidence map using the method in Section 2.3. (5) Segment the small targets from
the confidence map by Equation (15). The detailed algorithm is presented in Algorithm 1, where d is
the sub-patch size (see Figure 1a), N = m× n is the number of pixels in the input image, and K is the
number of selected seeds.
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Figure 4. Flowchart of the proposed algorithm.

Algorithm 1 Small target detection based on MRW
Input: Input image I
Output: Position of the target (it, jt)

1: Initialization: S = 0m×n, C = 0m×n;
2: Construct the seeds selection map (SSM):
3: for i = bd/2c+ 1 : m do
4: for j = bd/2c+ 1 : n do
5: for l = 1 : bd/2c do
6: Construct a sub-patch Pl

(i,j) according to Equation (8);
7: Find the pixel in Pl

(i,j) that has minimum difference with (i, j), see Equation (9);
8: The lth value of the local contrast element (i.e., cl

ij) is calculated by Equation (10);
9: end for

10: The value of the pixel (i, j) in the SSM (i.e., S(i, j)) is obtained by Equation (11).
11: end for
12: end for
13: Adaptive seeds selection:
14: Select the pixels in I with S > t f ore (refer to Equation (12) for t f ore) as the foreground seeds.
15: Modified random walks (MRW):
16: for u = 1 : N do
17: for v = 1 : N do
18: Construct the modified Laplacian matrix Luv according to Equation (13);
19: end for
20: end for
21: for k = 1 : K do
22: Assign the label k to the kth foreground seed;
23: The probability vector for the seeds pk

M is obtained by Equation (4);
24: The probability vector for the unseeded pixels pk

U is computed by Equation (7);
25: end for
26: The composite p̃ is obtained by Equation (14).
27: Reconstruct p̃ to a confidence map C with the same size of the input image I.
28: Adaptive target segmentation:
29: Segment the target placed in (it, jt) with C(it, jt) > tseg (refer to Equation (15) for tseg).



Remote Sens. 2018, 10, 2004 10 of 21

3. Experimental Results

In this section, we first introduce the test dataset and the evaluation metrics . Then, we analyze
the sensitivity of the crucial parameters of the proposed method and present the experimental results
on the test dataset with the optimized parameters.

3.1. Dataset and Evaluation Metrics

In our experiment, three real consecutive infrared images sequences and a set of single frame
infrared images were used. Hereinafter, these sequences are named Seq 1, Seq 2, and Seq 3, and the
set of single frame images is referred to as Set R. There were, respectively, 30, 300, 100, and 26 images
included in Seq 1, Seq 2, Seq 3 and Set R. Seq 1 records an aircraft flying through the heavy clouds. The
aircraft is buried in the thick clouds in the first 15 frames. In Seq 2, an airplane is flying in the sky, and
almost every image is damaged. A bird flying at low altitude is recorded in Seq 3, and the images are
overexposed. Set R contains some representative single-frame infrared images with dim-small targets
embedded in diverse backgrounds, and most of them are available in [51].

The performance of a small target algorithm is generally evaluated on the basis of three criteria:
target enhancement, background suppression, and detection accuracy. The signal-to-clutter gain
(SCRG) is widely used for evaluating the performance of target enhancement [40]. However, the
clutter around targets is purely clean after using our method, which makes the SCRG approach infinity.
Thus, we adopted the local contrast gain (LCG) to evaluate the target enhancement ability. The LCG is
defined as:

LCG =
LCout

LCin
,

LC =
|µt − µb|
µt + µb

,
(16)

where LCout and LCin are the local contrast (LC) of the output and original images, respectively; and
µt and µb are the mean gray levels of the target region and the neighboring regions, respectively. The
performance of the background suppression was evaluated by the background suppression factor
(BSF), defined as

BSF =
σout

σin
, (17)

where σout and σin, respectively, denote the standard deviation of the whole output and original images.
In addition, the probability of detection Pd and the false alarm rate Pf were utilized to evaluate

the detection accuracy of the proposed method, and are expressed as [16]:

Pd =
Ntrue

Nact
,

Pf =
N f alse

Nimg
,

(18)

where Ntrue, Nact, N f alse and Nimg denote the numbers of true detections, actual targets, false detections
and frames, respectively.

3.2. Sensitivity Analysis of Crucial Parameters

Basically, there are three parameters involved in our algorithm: the size of the sub-patch P
(see d in Figure 1a), the weight constant λ in Equations (12) and (15), and the controlling parameter
σ of Equation (1). The sub-patch size d determines the dimension of the local contrast element c,
and thus indirectly determines the validity of the seeds selection map. Additionally, d is involved
in constructing the modified Laplacian matrix (see Equation (13)). The weight constant λ is mainly
used for seeds selection and target segmentation. Though large λ can suppress more clutter and noise,
it may fail in selecting the seed placed in the target. We found that the proposed algorithm is effective
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for detecting small targets when weight constant λ varies in a wide range of [3, 12]. The controlling
parameter σ controls the weighting degree of the connection between any two nodes, and it produced
satisfactory results when we selected σ in an interval [0.2, 0.45]. Here, we set λ = 5 and σ = 0.2 in
our implementation.

The evaluated performance on the three sequences and Set R is reported in Table 1 and Figure 5.
It can be seen in Table 1 that the proposed algorithm was effective for target enhancement and
background suppression under various background conditions if the sub-patch size d was a member of
{7, 9, 11, 13}. The receiver operating characteristic (ROC) curve is a graphical plot of the true detection
rate Pd against the false alarm rate Pf , and is popularly used for intuitively evaluating the validity
of target detection algorithms. ROC curves for different sub-patch sizes are displayed in Figure 5.
With sub-patch size d set to 11 or 13, the proposed algorithm had better ROC performance for the test
images than d of 7 or 9. Additionally, we can learn from the performances of LCG, BSF, and ROC curves
that our algorithm is moderately sensitive to the sub-patch size, since we represent the local structure
of the small target by a local contrast element instead of the raw image patch. For comprehensive
consideration, we set the sub-patch size d to 11.

3.3. Analysis of Robustness to Noise

Since the small targets are photographed under various intricate scenes by the thermal cameras, it
is inevitable that the infrared images are polluted by noise, which results in rather low SCR of the small
targets in the infrared images. Therefore, whether a small target detection method is robust to heavy
noise is quite an important issue. To demonstrate the robustness to noise of the proposed MRW-based
algorithm, we artificially added zero-mean Gaussian white noise to the input images and tested our
algorithm on them, as shown in Figure 6. We repeatedly tested our method on the noised-added
images 50 times; Table 2 contains the information of the mean LC (defined by Equation (16)) of the
unprocessed and processed images in Figure 6. According to Table 2, the intensity difference between
the targets and their neighboring backgrounds of the raw images was rather low. It became even worse
after we added Gaussian white noise to them. However, the proposed MRW-based method could
greatly enhance the targets despite the heavy noise. Most of the clutters and noise were suppressed, as
seen from the three-dimensional meshes of the confidence maps in Figure 6. This indicates that our
method is insensitive to noise.

Table 1. Average background suppression factor (BSF) and local contrast gain (LCG) of the three
sequences and Set R processed by the proposed modified random walks (MRW)-based small target
detection algorithm with variation of the sub-patch size d.

d = 3 d = 5 d = 7 d = 9 d = 11 d = 13

Seq 1 LCG 8.4383 11.8134 12.3235 13.2478 13.2818 12.9601
BSF 15.2645 17.9574 19.6027 19.6489 18.2879 18.2440

Seq 2 LCG 10.4703 10.8178 15.1055 15.8983 15.9998 16.0171
BSF 53.5936 50.5754 57.2290 55.6125 53.9464 52.9188

Seq 3 LCG 6.7753 6.8763 7.2176 7.3431 7.3740 7.3768
BSF 54.3929 61.5580 72.5739 74.3424 73.8086 72.9750

Set R LCG 5.0603 5.9314 6.0667 6.0954 6.0439 6.0453
BSF 16.0908 19.5771 21.0352 20.3556 19.4511 18.6230

The bolder data means the maximum of indicators.
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(a) (b)

(c) (d)

Figure 5. The receiver operating characteristic (ROC) performances for different sub-patch sizes d on
the test dataset by using the proposed method: (a) Seq 1; (b) Seq 2; (c) Seq 3; and (d) Set R.

Table 2. Mean local contrast (LC) of the images in Figure 6.

Raw Image Confidence Map Noise-Added Image Confidence Map

Figure 6a 0.1120 0.9716 0.1001 0.8543

Figure 6b 0.1360 0.9863 0.1278 0.9562

Figure 6c 0.1491 0.9895 0.0992 0.9685

Figure 6d 0.0920 0.9776 0.0837 0.9603
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(a) (b) (c) (d)

Figure 6. Noise-added images and their confidence maps obtained by applying the proposed algorithm:
(a–d) correspond to the raw images of the first row in Figure 2, respectively. The first row is the
noise-added images, and the variances of the added noise were: (a–d) 0.005, 0.01, 0.005, and 0.0002,
respectively. The second row displays the confidence maps of the noise-added images, and the
three-dimensional meshes of the confidence maps are placed in the third row.

4. Comparison and Discussion

To demonstrate the superiority of the proposed small target detection method based on modified
random walks, several state-of-the-art methods were adopted for comparison. Specifically, some
representative and advanced methods were chosen as baseline methods, such as the Top-Hat
transformation-based (THT) method [20], the multiscale patch-based contrast measure-based (MPCM)
method [52], the non-negative infrared patch-image model based on partial sum minimization of
singular values-based (NIPPS) method [37], the gradient direction diversity weighted multiscale
flux density-based (GDD-MFD) method [6] and the local steering kernel (LSK) reconstruction-based
method [39]. For comprehensive comparison, we discuss the performances of these methods in three
respects: target enhancement, background suppression, and detection accuracy. Section 4.1 presents
the target enhancement performance and background suppression performance evaluated by LCG
and BSF, respectively. The detection performance on the real dataset of different methods are discussed
in detail in Section 4.2. The computational complexity of the proposed algorithm is analyzed in
Section 4.4. All experiments were implemented using MATLAB R2018a on a computer with a 3.6 GHz
Intel core i7 CPU and 8 GB RAM.

4.1. Comparison of Target Enhancement and Background Suppression

The key issue of the small target detection method is the transformation of a raw infrared image
into a confidence map in which the target region is well-enhanced while the background and the noise
are eliminated. An advanced small target detection method produces a precise map which makes the
target readily detected, thus leading to a low Pf with high Pd. More than 450 real infrared images were
tested by using the proposed MRW-based method and the baseline methods. There were various small
targets embedded in different kinds of backgrounds, including the backgrounds sky–sea, heavy cloud,
country road, daytime forest, etc.
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Visual results of the samples processed by different methods are shown in Figure 7. For fair
comparison, the output maps of all the methods were normalized to [0, 1]. It can be seen in Figure 7 that
the Top-Hat-based method could eliminate a large amount of clutters. However, it mistakenly enhanced
the strong edges, as seen from Figure 7a2,f2. The MPCM-based method was effective for enhancing
small targets embedded in rather homogeneous background. Nevertheless, it failed in eliminating
strong edges such as the heavy clouds in Figure 7a3,b3, the horizontal line of the sky-ground in
Figure 7c3, and the oblique line of the country road in Figure 7f3. Likewise, the NIPPS-based and
the GDD-MFD-based methods revealed similar drawbacks when strong edges and heterogeneous
cluttersexist; specifically, the NIPPS-based method was quite sensitive to strong edges (see Figure
7a4–c4) and the GDD-MFD-based method performed poorly in clutter suppression (see Figure 7a5–f5).
By contrast, the LSK-based method could eliminate most of the clutter and the edges. However, LSK
may fail in detecting small targets when the infrared image is of low quality. For example, this method
incorrectly eliminated the small target in Seq 2 since the images in Seq 2 were obtained by an infrared
sensor of poor signal-to-noise ratio (SNR) under atrocious weather (see Figure 7b6). Compared with
the above baseline methods, the proposed method could robustly suppress more clutter and noise
and accurately enlarged the contrast of the target and background. The same conclusion can be made
from the results in Table 3. It can be seen in Table 3 that the output maps of the proposed MRW-based
method had the greatest value of the LCG and BSF indicators for most images. It is noteworthy that the
advanced LSK-based method [39] performed better than the other baseline methods, and even had a
similar value of LCG and BSF to our method for Seq 1. However, the LSK-based method was sensitive
to the bright damaged point, as depicted in Figure 7b6 and was more time-consuming than our method
(as discussed in Section 4.4). In summary, our method noticeably outperformed the baseline methods
in both target enhancement and background suppression and was more robust to the varying scenes.

Table 3. Average LCG and BSF indicators of the output maps using different methods on the test dataset.

THT MPCM NIPPS GDD-MFD LSK MRW (Ours)

Seq 1 LCG 12.7690 1.6411 11.5069 3.2155 13.9788 13.2818
BSF 3.5883 4.0456 3.4685 3.4350 17.0702 18.2879

Seq 2 LCG 2.8119 1.7078 11.3092 2.5913 12.6941 15.9998
BSF 19.2082 7.3354 7.3544 6.7750 43.1069 53.9464

Seq 3 LCG 7.1285 1.1596 6.1982 1.6439 7.0014 7.3740
BSF 25.5728 12.4371 9.2242 9.6839 62.7293 73.8086

Set R LCG 4.7732 1.4484 4.2882 1.1869 5.7011 6.0954
BSF 5.2039 6.3063 4.8676 4.7243 17.6723 21.0352

The bolder data means the maximum of indicators.



Remote Sens. 2018, 10, 2004 15 of 21

(a1)

(a2)

(a6)(a5) (a7)

(b1)

(b2)

(b3)

(b5)

(c1)

(c2)

(c3)

(d2)

(d3)

(d4)

(d6)

(d5)

(f6)

(d1) (e1) (f1)

(a3)

(a4)

(a5)

(b4) (c4)

(c5)

(a6)

(a7)

(b6)

(b7)

(c6)

(c7) (d7)

(e2)

(e3)

(e4)

(e5)

(e6)

(e7)

(f2)

(f3)

(f4)

(f5)

(f7)

Figure 7. The output results of different methods on the test dataset: (a1–f1) the raw infrared
images randomly selected from the three sequences and Set R (specifically: (a1) the 3rd frame of
Seq 1; (b1) the 248th frame of Seq 2, (c1); the 57th frame of Seq 3; and (d1–f1) images from Set
R); (a2–f2) obtained using Top-Hat (THT); (a3–f3) obtained using multiscale patch-based contrast
measure (MPCM); (a4–f4) obtained using non-negative infrared patch-image model based on partial
sum minimization of singular values (NIPPS); (a5–f5) obtained using gradient direction diversity
weighted multiscale flux density (GDD-MFD); (a6–f6) obtained using local steering kernel (LSK);
and (a7–f7) obtained using the proposed MRW-based methods. The red circles indicate the position of
the ground-true targets.

4.2. Comparison of Detection Performances

To compare the detection ability of the methods, the ROC curves obtained by different methods
for the dataset were utilized as the indicator. For fair comparison, the detected results were considered
a positive result if the pixel distance between the center of the ground-true target and the detected
result was less than 4 pixels, as suggested in [28].

As depicted in Figure 8, the proposed MRW-based method performed better in detection accuracy
compared with the baseline methods. It is notable that our method always had the highest Pd under
the same Pf for Seq 2, Seq 3 and Set R. Specifically, there are a total of 44 ground-true targets in Seq 1,
and 14 of them are barely distinguishable. As shown in Figure 8a, the THT-based, NIPPS-based,
GDD-MFD-based and MRW-based methods could detect 30 targets without generating any false
alarm. In addition, except for the NIPPS-based and MRW-based methods, the Pd hardly reached 0.727
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(32 ground-true targets correctly detected) when Pf exceeded 10 (300 false alarms generated) for the
other methods, which is unacceptable. Moreover, when Pf ≤ 20, our method owned the highest Pd
under the same Pf . For Seq 2, the LSK-based method was ineffective in detecting the targets due to the
low quality of the infrared images. On the other hand, when Pd reached 0.99 (i.e., 297 of 300 targets
were detected), the Pf of our method was 5.75 while the Pf of the suboptimal THT-based method
exceeded 7.5. For Seq 3, the MRW-based method showed the best detection performance and reached
Pd = 1 when Pf = 0.01. That is, there was only one false alarm generated when all the ground-true
targets were correctly detected. In contrast, the NIPPS-based and LSK-based methods showed bad
detection performances for the dim and small targets embedded in the overexposed background.
Different from the image sequences Seq 1, Seq 2, and Seq 3, Set R contains some single-frame infrared
images with small targets buried in diverse complex and noisy backgrounds, and there are a total
of 31 targets in the 26 frames. Thus, it is convincing that a small target detection method is robust
to different backgrounds if it shows great detection performance for Set R. As shown in Figure 8d,
the proposed MRW-based method had the best detection performance for Set R. It worth noting that
the proposed method could correctly segment 29 targets with only one false alarm and achieved
Pd = 1 with only five false alarms. By way of comparison, the LSK-based method had the suboptimal
performance and reached Pd = 1 when Pf = 4.6923, and the other baseline methods showed poor
robustness for Set R. The comparison results in Figure 8 suggest that the proposed MRW-based method
is superior to the baseline methods for detecting the dim and small targets against different background
and heavy noise.

(a) (b)

(c) (d)

Figure 8. ROC curves of the proposed method and the baseline methods for the real test images:
(a) ROC curves of Seq 1; (b) ROC curves of Seq 2; (c) ROC curves of Seq 3; and (d) ROC curves of Set R.
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4.3. Comparison with RX-Related Methods

As discussed previously, RX-related anomaly detection methods have proven effective for
detecting small targets from multispectral and hyperspectral images. Since the single-band infrared
image is transformed into a multi-dimensional image after the first two steps in the proposed algorithm
(see Figure 4), it is operable to directly apply these anomaly detection algorithms to the transformed
images. We tested local RX-algorithm (LRX) [44], local kernel RX-algorithm (LKRX) [45] and cluster
kernel RX-algorithm (CKRX) [46] on the seeds selection maps of the dataset. The ROC curves of the
RX-related algorithms and the proposed algorithm are presented in Figure 9. As shown in Figure 9,
our method outperformed the RX-related methods with respect to detection accuracy. RX-detector is
highly sensitive to intensity inhomogeneity, and it had the worst performances for Seq 1, Seq 3 and
Set R due to the existence of strong edges and clutters in the images. Compared with LRX, LKRX
and CKRX could suppress more clutters by using kernel functions. However, they were sensitive
to abnormal pixels, e.g., dead pixels in Seq 2. Moreover, the RX-related methods were much more
time-consuming than the proposed method, as shown in Table 4. In summary, our method is superior
to the RX-related methods both in detection ability and algorithm efficiency.

(a) (b)

(c) (d)

Figure 9. The receiver operating characteristic (ROC) performances by testing the RX-related methods
and the proposed method on the dataset: (a) Seq 1; (b) Seq 2; (c) Seq 3; and (d) Set R.
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Table 4. Average running time (s) of different methods testing on the dataset.

THT MPCM NIPPS GDD-MFD LSK LRX LKRX CKRX MRW (Ours)

Seq 1 0.0429 3.3479 3.1729 2.7777 25.5441 20.7095 119.8360 13.3303 0.4288

Seq 2 0.0303 5.2819 9.5939 4.4714 43.1069 34.6333 134.4858 31.0786 0.7543

Seq 3 0.0313 7.6518 12.8935 4.1875 66.1112 49.7072 148.9765 18.7797 0.9256

Set R 0.0442 1.6208 1.6079 1.0004 12.8281 6.1094 29.4660 4.2343 1.2653

4.4. Computational Complexity

To show the efficiency of the proposed algorithm, we analyzed the computational complexity of
the proposed algorithm and compared the running time of various methods testing on the dataset.
The major computation cost of our method arises from two parts: the reconstruction of SSM and
the inference of the MRW model. According to Algorithm 1, in each iteration, it costs O(d2) time to
construct the local contrast element for each sub-patch with size of d, and it is the major contribution
to the computational cost of the first part. As for the later part, the modified Laplacian matrix can be
constructed in O(N2) time and the optimization problem can be solved in O(N3) time, thus it costs
about O(N3) time to infer the MRW model. In summary, the computation complexity of the proposed
method is around O(Nd2 + N3) when there are total N pixels in the input image. The average running
time of different methods testing on the dataset is reported in Table 4, from which we can see that
the THT-based method has the highest computation speed for the test dataset and LKRX is the most
time-consuming method. Except for the THT-based method, the proposed method consumed the least
running time for Seq 1, Seq 2 and Seq 3, and had acceptable computation speed for Set R.

5. Conclusions

It is important that small target detection algorithms are robust and efficient to meet the
requirements of early warning systems. However, due to the long-distance imaging, the targets
in infrared images are of small size and usually with quite low signal-to-noise ratio, which makes the
detection task very difficult. To solve this problem, this paper presents a small target detection method
based on modified random walks. Different from the state-of-the-art small target detection algorithms,
we treat the dim and small target as a salient target with little prior knowledge. There are roughly two
stages in our algorithm: First, the candidate targets are determined according to the seeds selection
map (SSM), which is constructed by using the so-called local contrast element. Second, the authenticity
of the candidate targets are verified based on the modified random walks and adaptive segmentation.
Extensive experiments on a real dataset suggest that our algorithm is robust and effective for small
target detection regardless of the varying backgrounds and the poor image quality. The computation
of the proposed algorithm mainly comes from the second stage, more specifically, the evaluation of the
matrix inversion in Equation (7). Since the Laplacian matrix (see Equation (13)) is a sparse and real
symmetric matrix, the evaluation of the matrix inversion can be less time-consuming with the help
of the matrix optimization theory. Moreover, we note that the proposed algorithm is highly suited
for parallel implementation. Thus, the computing speed can be further increased by using a Graphic
Processing Unit (GPU) or Field-Programmable Gate Array (FPGA). In the future, we will continue
working on the improvement of the current algorithm and investigating a faster version.
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