Compression Reconstruction Network with Coordinated Self-Attention and Adaptive Gaussian Filtering Module
Abstract
:1. Introduction
- We propose a coordinated self-attention module (CSAM), which not only introduces information into the channel and the spatial domain but also captures the global information of the image, improving the network’s ability to capture long-range relationships for better imaging results.
- We propose an adaptive Gaussian filter sub-network in the frequency domain to make up for the defect of global average pooling in the CSAM. It can capture information on different frequency components of the image selectively when the measurement rate is changed.
- We propose a loss function with attention based on the traditional MSE-Loss (AMLoss) to match the gradient descent algorithm with the attention mechanism and focus more on the important parts of the image during optimization. Extensive experiments prove that the AMLoss can significantly improve the reconstruction quality.
2. Background and Related Work
2.1. Deep Learning Based on Compressed Sensing Reconstruction
2.2. Attention
3. The Proposed Method
3.1. Overall Network Framework
3.2. Coordinated Self-Attention Module
- is a convolutional layer with a convolution kernel size of ,
- represents the connection operation along one dimension,
- and are the input feature maps,
- is the nonlinear activation function ,
- is the output feature map,
- is a reduction ratio to reduce the amount of computation.
3.3. Adaptive Gaussian Filter Sub-Networks
3.4. AMLoss (Attention MSE Loss)
4. Experiments and Results
4.1. Comparison of Different Attention Mechanism Modules
4.2. Optimization Comparison of the AMLoss in Different Attention Mechanism Networks
4.3. Comparison of Different Compressed Sensing Networks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kasin, B. The widths of certain finite-dimensional sets and classes of smooth functions. Izv. Akad. Nauk SSSR Ser. Mat. 1977, 41, 334–351. [Google Scholar]
- Candes, E.; Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Probl. 2007, 23, 969. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Tsaig, Y.; Donoho, D.L. Extensions of compressed sensing. Signal Process. 2006, 86, 549–571. [Google Scholar] [CrossRef]
- Candès, E.J. Compressive sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 22–30 August 2006; pp. 1433–1452. [Google Scholar]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef]
- Li, W.; Hu, X.; Wu, J.; Fan, K.; Chen, B.; Zhang, C.; Hu, W.; Cao, X.; Jin, B.; Lu, Y. Dual-color terahertz spatial light modulator for single-pixel imaging. Light Sci. Appl. 2022, 11, 191. [Google Scholar] [CrossRef]
- Lin, J.; Yan, Q.; Lu, S.; Zheng, Y.; Sun, S.; Wei, Z. A Compressed Reconstruction Network Combining Deep Image Prior and Autoencoding Priors for Single-Pixel Imaging. Photonics 2022, 9, 343. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Vasudeva, B.; Deora, P.; Bhattacharya, S.; Pradhan, P.M. Compressed Sensing MRI Reconstruction with Co-VeGAN: Complex-Valued Generative Adversarial Network. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 672–681. [Google Scholar]
- Liu, X.-J.; Xia, S.-T.; Fu, F.-W. Reconstruction guarantee analysis of basis pursuit for binary measurement matrices in compressed sensing. IEEE Trans. Inf. Theory 2017, 63, 2922–2932. [Google Scholar] [CrossRef]
- Nguyen, N.; Needell, D.; Woolf, T. Linear convergence of stochastic iterative greedy algorithms with sparse constraints. IEEE Trans. Inf. Theory 2017, 63, 6869–6895. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Li, C.; Yin, W.; Jiang, H.; Zhang, Y. An efficient augmented Lagrangian method with applications to total variation minimization. Comput. Optim. Appl. 2013, 56, 507–530. [Google Scholar] [CrossRef]
- Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. Reconnet: Non-iterative reconstruction of images from compressively sensed measurements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 449–458. [Google Scholar]
- Yao, H.; Dai, F.; Zhang, S.; Zhang, Y.; Tian, Q.; Xu, C. Dr2-net: Deep residual reconstruction network for image compressive sensing. Neurocomputing 2019, 359, 483–493. [Google Scholar] [CrossRef]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian compressive sensing using Laplace priors. IEEE Trans. Image Process. 2009, 19, 53–63. [Google Scholar] [CrossRef]
- Mousavi, A.; Patel, A.B.; Baraniuk, R.G. A deep learning approach to structured signal recovery. In Proceedings of the 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–2 October 2015; pp. 1336–1343. [Google Scholar]
- Mousavi, A.; Baraniuk, R.G. Learning to invert: Signal recovery via deep convolutional networks. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2272–2276. [Google Scholar]
- Lohit, S.; Kulkarni, K.; Kerviche, R.; Turaga, P.; Ashok, A. Convolutional neural networks for noniterative reconstruction of compressively sensed images. IEEE Trans. Comput. Imaging 2018, 4, 326–340. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, J.; Li, H.; Xu, Z. ADMM-CSNet: A deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 521–538. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, M.; Wang, Y.; Wei, B.; Li, Y.; Wang, P.; Menpes-Smith, W.; Niu, Z.; Yang, G. SARA-GAN: Self-attention and relative average discriminator based generative adversarial networks for fast compressed sensing MRI reconstruction. Front. Neuroinform. 2020, 14, 611666. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X. Attention-guided image compression by deep reconstruction of compressive sensed saliency skeleton. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 13354–13364. [Google Scholar]
- Barranca, V.J. Neural network learning of improved compressive sensing sampling and receptive field structure. Neurocomputing 2021, 455, 368–378. [Google Scholar] [CrossRef]
- Hayhoe, M.; Ballard, D. Eye movements in natural behavior. Trends Cogn. Sci. 2005, 9, 188–194. [Google Scholar] [CrossRef]
- Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, B.; Du, X.; Lu, X. Mutual attention inception network for remote sensing visual question answering. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5606514. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, W.; Lu, X. Spectral super-resolution of multispectral images using spatial–spectral residual attention network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5404114. [Google Scholar] [CrossRef]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 3258. [Google Scholar]
- Guan, Y.; Yan, Q.; Yang, S.; Li, B.; Cao, Q.; Fang, Z. Single photon counting compressive imaging based on a sampling and reconstruction integrated deep network. Opt. Commun. 2020, 459, 124923. [Google Scholar] [CrossRef]
- Ma, X.; Guo, J.; Tang, S.; Qiao, Z.; Chen, Q.; Yang, Q.; Fu, S. DCANet: Learning connected attentions for convolutional neural networks. arXiv 2020, arXiv:2007.05099. [Google Scholar]
- Qin, Z.; Zhang, P.; Wu, F.; Li, X. Fcanet: Frequency channel attention networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 783–792. [Google Scholar]
- Abraham, N.; Khan, N.M. A novel focal tversky loss function with improved attention u-net for lesion segmentation. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 683–687. [Google Scholar]
- Wang, W.; Su, C. Convolutional neural network-based pavement crack segmentation using pyramid attention network. IEEE Access 2020, 8, 206548–206558. [Google Scholar] [CrossRef]
- Yu, J.; Wu, B. Attention and hybrid loss guided deep learning for consecutively missing seismic data reconstruction. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5902108. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Li, B.; Yan, Q.-R.; Wang, Y.-F.; Yang, Y.-B.; Wang, Y.-H. A binary sampling Res2net reconstruction network for single-pixel imaging. Rev. Sci. Instrum. 2020, 91, 033709. [Google Scholar] [CrossRef]
Methods | MR = 0.1 | MR = 0.05 | MR = 0.03 | MR = 0.01 | MR = 0.005 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
BC | 19.344 | 0.925 | 16.619 | 0.859 | 14.964 | 0.798 | 10.563 | 0.578 | 8.288 | 0.364 |
BC + SE | 19.591 | 0.932 | 16.894 | 0.882 | 15.195 | 0.821 | 10.332 | 0.561 | 8.412 | 0.381 |
BC + CBAM | 18.918 | 0.879 | 16.819 | 0.86 | 15.658 | 0.842 | 10.599 | 0.557 | 7.737 | 0.294 |
BC + GC | 21.091 | 0.953 | 18.043 | 0.912 | 15.652 | 0.844 | 10.679 | 0.584 | 8.499 | 0.382 |
BC + CA | 18.15 | 0.89 | 16.362 | 0.845 | 14.788 | 0.78 | 10.11 | 0.524 | 8.446 | 0.39 |
BC + CSAM | 21.448 | 0.953 | 18.199 | 0.92 | 15.836 | 0.856 | 10.789 | 0.595 | 8.592 | 0.416 |
Methods | MR = 0.1 | MR = 0.05 | MR = 0.03 | MR = 0.01 | MR = 0.005 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
BC | 17.284 | 0.769 | 15.88 | 0.718 | 15.031 | 0.678 | 12.686 | 0.563 | 10.729 | 0.428 |
BC + SE | 17.412 | 0.782 | 15.857 | 0.723 | 14.947 | 0.685 | 12.584 | 0.551 | 10.493 | 0.409 |
BC + CBAM | 17.493 | 0.792 | 15.947 | 0.731 | 15.093 | 0.687 | 12.34 | 0.543 | 10.79 | 0.453 |
BC + GC | 17.481 | 0.787 | 16.053 | 0.729 | 15.137 | 0.689 | 12.653 | 0.568 | 10.665 | 0.42 |
BC + CA | 17.303 | 0.784 | 15.924 | 0.726 | 14.695 | 0.659 | 12.657 | 0.556 | 10.805 | 0.441 |
BC + CSAM | 17.636 | 0.791 | 16.151 | 0.739 | 15.183 | 0.689 | 12.885 | 0.656 | 10.821 | 0.45 |
Methods | MR = 0.1 | MR = 0.05 | MR = 0.03 | MR = 0.01 | MR = 0.005 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
BC + CSAM | 17.636 | 0.791 | 16.151 | 0.739 | 15.183 | 0.689 | 12.885 | 0.656 | 10.821 | 0.45 |
BC + CSAM + AGF | 17.964 | 0.802 | 16.334 | 0.752 | 15.231 | 0.702 | 12.975 | 0.675 | 10.894 | 0.47 |
Methods | Loss | MR = 0.1 | MR = 0.05 | MR = 0.03 | MR = 0.01 | MR = 0.005 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
BC + SE | MSE-Loss | 19.591 | 0.932 | 16.894 | 0.882 | 15.195 | 0.821 | 10.332 | 0.561 | 8.412 | 0.381 |
AMLoss (2) | 20.814 | 0.943 | 17.601 | 0.894 | 15.223 | 0.821 | 10.503 | 0.564 | 8.529 | 0.382 | |
BC + CBAM | MSE-Loss | 18.918 | 0.879 | 16.819 | 0.86 | 15.658 | 0.842 | 10.599 | 0.557 | 7.737 | 0.294 |
AMLoss (1.1) | 21.042 | 0.953 | 17.512 | 0.894 | 15.824 | 0.845 | 10.721 | 0.559 | 8.32 | 0.404 | |
BC + GC | MSE-Loss | 21.091 | 0.953 | 18.043 | 0.912 | 15.652 | 0.844 | 10.679 | 0.584 | 8.499 | 0.382 |
AMLoss (1.2) | 21.210 | 0.955 | 18.244 | 0.92 | 15.739 | 0.845 | 10.758 | 0.588 | 8.553 | 0.386 | |
BC + CA | MSE-Loss | 18.15 | 0.89 | 16.362 | 0.845 | 14.788 | 0.78 | 10.11 | 0.524 | 8.446 | 0.39 |
AMLoss (1.2) | 20.395 | 0.944 | 17.6 | 0.909 | 15.042 | 0.822 | 10.24 | 0.571 | 8.521 | 0.41 | |
BC + CSAM | MSE-Loss | 21.448 | 0.953 | 18.199 | 0.92 | 15.836 | 0.856 | 10.789 | 0.595 | 8.592 | 0.416 |
AMLoss (1.15) | 22.182 | 0.959 | 18.485 | 0.931 | 16.12 | 0.86 | 10.847 | 0.605 | 8.646 | 0.418 |
Methods | MR = 0.1 | MR = 0.05 | MR = 0.03 | MR = 0.01 | ||||
---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Recon-Net | 17.601 | 0.796 | 15.039 | 0.693 | 14.37 | 0.639 | 12.094 | 0.519 |
DR2-Net | 17.784 | 0.804 | 15.956 | 0.72 | 15.046 | 0.683 | 12.741 | 0.56 |
Bsr2-Net | 17.885 | 0.796 | 16.304 | 0.749 | 15.357 | 0.695 | 13.261 | 0.598 |
ACRM (1.1) | 18.12 | 0.817 | 16.673 | 0.757 | 15.743 | 0.719 | 13.438 | 0.603 |
Methods | MR = 0.1 | MR = 0.05 | MR = 0.03 | MR = 0.01 | ||||
---|---|---|---|---|---|---|---|---|
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
Recon-Net | 22.347 | 0.843 | 20.507 | 0.764 | 18.91 | 0.681 | 16.136 | 0.524 |
DR2-Net | 20.893 | 0.776 | 19.602 | 0.712 | 18.49 | 0.651 | 15.949 | 0.509 |
Bsr2-Net | 20.833 | 0.772 | 19.834 | 0.726 | 18.727 | 0.669 | 15.969 | 0.51 |
ACRM (1.2) | 22.38 | 0.843 | 20.543 | 0.767 | 19.027 | 0.69 | 16.188 | 0.535 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Yan, Q.; Lu, X.; Zheng, Y.; Sun, S.; Lin, J. Compression Reconstruction Network with Coordinated Self-Attention and Adaptive Gaussian Filtering Module. Mathematics 2023, 11, 847. https://doi.org/10.3390/math11040847
Wei Z, Yan Q, Lu X, Zheng Y, Sun S, Lin J. Compression Reconstruction Network with Coordinated Self-Attention and Adaptive Gaussian Filtering Module. Mathematics. 2023; 11(4):847. https://doi.org/10.3390/math11040847
Chicago/Turabian StyleWei, Zhen, Qiurong Yan, Xiaoqiang Lu, Yongjian Zheng, Shida Sun, and Jian Lin. 2023. "Compression Reconstruction Network with Coordinated Self-Attention and Adaptive Gaussian Filtering Module" Mathematics 11, no. 4: 847. https://doi.org/10.3390/math11040847
APA StyleWei, Z., Yan, Q., Lu, X., Zheng, Y., Sun, S., & Lin, J. (2023). Compression Reconstruction Network with Coordinated Self-Attention and Adaptive Gaussian Filtering Module. Mathematics, 11(4), 847. https://doi.org/10.3390/math11040847