Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators
Abstract
1. Introduction
2. The Second and Third Order Differential Operators
2.1. The Second Order Case
2.2. The Third Order Case
3. The Higher Order Self-Adjoint Differential Operators
4. Conclusions and Further Work
4.1. Conclusions
4.2. Application and Further Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murty, M.R.; Weatherby, C.J. On the transcendence of certain infinite series. Int. J. Number Theory 2011, 7, 323–339. [Google Scholar] [CrossRef]
- Nesterenko, Y.V. Algebraic Independence; Published for the Tata Institute of Fundamental Research, Bombay; Narosa Publishing House: New Delhi, India, 2009. [Google Scholar]
- Murty, M.R.; Weatherby, C.J. A generalization of Euler’s theorem for ζ(2k). Am. Math. Mon. 2016, 123, 53–65. [Google Scholar] [CrossRef]
- Murty, M.R. Transcendental numbers and special values of Dirichlet series. Number theory related to modular curves—Momose memorial volume. Contemp. Math. 2018, 701, 193–218. [Google Scholar]
- Saradha, N.; Tijdeman, R. On the Transcendence of Infinite Sums of Values of Rational Functions. J. Lond. Math. Soc. 2003, 67, 580–592. [Google Scholar] [CrossRef]
- Weatherby, C. Transcendence of series of rational functions and a problem of Bundschuh. J. Ramanujan Math. Soc. 2013, 28, 113–139. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; John Wiley and Sons: New York, NY, USA, 1989; Volume 1. [Google Scholar]
- Xie, B.; Zhao, Y.G.; Zhao, Y.Q. Special values of spectral zeta functions of graphs and Dirichlet L-functions. arXiv 2022, arXiv:2212.13687. [Google Scholar]
- Qi, J.; Li, J.; Xie, B. Extremal problems of the density for vibrating string equations with applications to gap and ratio of eigenvalues. Qual. Theory Dyn. Syst. 2020, 19, 1–12. [Google Scholar] [CrossRef]
- Murty, M.R.; Rath, P. Transcendental Numbers; Springer: New York, NY, USA, 2014. [Google Scholar]
- Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory, 2nd ed.; Graduate Texts in Mathematics, 84; Springer: New York, NY, USA, 1990. [Google Scholar]
- Soulé, C. Régulateurs, Astérisque. Semin. Bourbaki 1986, 133–134, 237–253. [Google Scholar]
- Ramakrishnan, D. Regulators, Algebraic cycles, and values of L-functions, Algebraic K-theory and algebraic number theory. Contemp. Math. 1987, 83, 183–310. [Google Scholar]
- Chu, J.; Meng, G. Sharp bounds for Dirichlet eigenvalue ratios of the Camassa–Holm equations. Math. Ann. 2022, 1–20. [Google Scholar] [CrossRef]
- Zhang, M.; Wen, Z.; Meng, G.; Qi, J.; Xie, B. On the number and complete continuity of weighted eigenvalues of measure differential equations. Differ. Integral Equ. 2018, 31, 761–784. [Google Scholar] [CrossRef]
- Duren, P. Invitation to Classical Analysis; American Mathematical Society: Providence, RI, USA, 2012. [Google Scholar]
- Carmona, R.; LaCroix, J. Spectral Theory of Random Schrödinger Operators; Birkhäuser: Basel, Switzerland, 1990. [Google Scholar]
- Schumayer, D.; Hutchinson, D.A.W. Physics of the Riemann hypothesis. Rev. Mod. Phys. 2011, 83, 769–796. [Google Scholar] [CrossRef]
- Bourgain, J. Green’s Function Estimates for Lattice Schrädinger Operators and Applications; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Wainger, S. An Introduction to the Circle Method of Hardy, Littlewood, and Ramanujan. J. Geom. Anal. 2021, 31, 9113–9130. [Google Scholar] [CrossRef]
- Meiners, A.; Vertman, B. Spectral zeta function on discrete tori and Epstein-Riemann conjecture. J. Number Theory 2023, 244, 418–461. [Google Scholar] [CrossRef]
- Zagier, D. Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula. Isr. Math. Conf. Proc. 1996, 9, 445–462. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, B.; Li, J.; Qi, J. Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators. Mathematics 2023, 11, 636. https://doi.org/10.3390/math11030636
Xie B, Li J, Qi J. Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators. Mathematics. 2023; 11(3):636. https://doi.org/10.3390/math11030636
Chicago/Turabian StyleXie, Bing, Jing Li, and Jiangang Qi. 2023. "Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators" Mathematics 11, no. 3: 636. https://doi.org/10.3390/math11030636
APA StyleXie, B., Li, J., & Qi, J. (2023). Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators. Mathematics, 11(3), 636. https://doi.org/10.3390/math11030636