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Abstract: In this paper, a relationship between the spectral zeta series of a class of higher order
self-adjoint differential operators on the unit circle and the integral of Green functions is established
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1. Introduction

Let f (x) and g(x) be polynomials in Q[x] with deg f < deg g so that g(x) has no
integral zeros. Murty and Weatherby [1] and Nesterenko [2] studied the infinite series

∑
k∈Z

f (k)
g(k)

(1)

and related the transcendental nature of the sum to Schneider’s conjecture and Gel’fond–
Schneider’s conjecture. In the case that f (x) = 1 and g(x) = ax2 + bx + c, differentiating
the series successively with respect to c, Murty and Weatherby [3], ([4], §6) deduced an
explicit formula for

∑
k∈Z

1
(ak2 + bk + c)n , (2)

and proved that the sum is transcendental if a, b, c ∈ Z and b2 − 4ac < 0.
Saradha and Tigdeman [5] proved that

+∞

∑
k=0

(−1)n(ak + b)
(qk + s1)(qk + s2)

, a, b, s1, s2 ∈ Z, s1 6= s2,

with |a|+ |b| > 0 and −s1/q, −s2/q never being a non-negative integer, is transcendental
except when s1 ≡ s2 (mod q) and a = 0. Moreover, under the similar conditions, Saradha
and Tigdeman ([5], Theorem 2) obtained that

+∞

∑
k=0

(ak + b)
(qk + s1)(qk + s2)(qk + s3)

is transcendental.
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In [6], Weatherby proved that the sums

∑
k∈Z

1
(k4 − q4)2n , ∑

k∈Z

1
(k6 − q6)2n , ∑

k∈Z

1
(k3 ± q3)2n , q ∈ Q\Z, (3)

are transcendental, and the series

∑
k∈Z, k 6=±1

1
kn − 1

, (4)

is transcendental for n = 3, 4, 6.
In this paper, thanks to Mercer’s Theorem (cf. ([7], §3.5.4), we use the following

self-adjoint differential operator of order m ≥ 2

Tmu := (−i)mu(m) + αu = λu (5)

on the circle S1 to investigate the following spectral series:

+∞

∑
k=−∞

1
[(2kπ)m + α]n

, (6)

and give an explicit formula. When m = 1, for any n ≥ 1, in the paper ([8], Theorem 2.4),
the special values of the series

+∞

∑
k=−∞

1
(2kπ + α)n ,

were studied, and an expression was obtained by the combined method. When m = 2, the
series (6) is a special case of (2). For higher order m ≥ 3, the series (3) are special cases
of (6); however, the case (6) cannot include the series (4).

The self-adjoint differential operators (5) on S1 are equivalent to the boundary value
problems

Tmu = (−i)mu(m) + αu = λu, on (0, 1), (7)

with the periodic boundary condition

u(0) = u(1), · · · , u(m−1)(0) = u(m−1)(1),

where α 6= −(2kπ)m, k = 0,±1,±2, · · · . Its k-th eigenvalue is

λ
(m)
k = (2kπ)m + α, k =

{
0,±1,±2, · · · , for odd m;
0, 1, 2, · · · , for even m.

In the case that m is even, the eigenvalues {λ(m)
k } of Tm have lower bounds and tend

to infinity as k→ ∞,

−∞ < λ
(m)
0 < λ

(m)
1 ≤ λ

(m)
2 ≤ · · · ≤ λ

(m)
k → +∞.

In the case that m is odd, the corresponding eigenvalues have neither upper nor lower
bounds, and satisfy

−∞← λ
(m)
−k ≤ · · · ≤ λ

(m)
−2 ≤ λ

(m)
−1 < λ

(m)
0 < λ

(m)
1 ≤ λ

(m)
2 ≤ · · · ≤ λ

(m)
k → +∞.
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For any positive integer n, the k-th eigenvalue of Tn
m is [λ(m)

k ]n. Then, Mercer’s Theorem
(cf. [7] §3.5.4, [9]) tells us that

+∞

∑
k=−∞

1
[(2kπ)m + α]n

=
+∞

∑
k=−∞

1

[λ
(m)
k ]n

=
∫ 1

0
· · ·

∫ 1

0
G(x1, x2) · · ·G(xn, x1)dx1 · · ·dxn,

(8)

where G(·, ·) is the Green function of problem (7).
In this paper, we use differential operators (7) to give an explicit formula for series (8),

and study whether the sums of the series

∞

∑
k=−∞

1
(2mkm − qm)n and

∞

∑
k=−∞

1
(2mkm + qm)n

are transcendental numbers. This series is closely related to the Dirichlet series and L-
functions (cf. [4,10,11] §16), which arise out of number theory and other considerations, see
Soulé [12] and Ramakrishnan [13].

The rest of this paper is organized as follows: In Section 2, first, some preliminary
work is given, including some properties of differential operator spectral theory, Green
function, and Mercer’s Theorem. Then, a relationship between spectral zeta series and the
integral of Green function is established by using Mercer’s Theorem. Moreover, the explicit
expressions and transcendentality of the spectral series of second and third order differential
operators on S1 are obtained. The main results are given in Section 3. In this section, using
the same method in Section 2, we can obtain an integral representation of spectral series of
higher order self-adjoint differential operators; see (8). Using the integral representation,
we prove that the spectral series is a linear combination of {π, · · · , πn}. In the last section,
we make a summary of the conclusion of this paper and give some applications in physics.
Furthermore, according to these applications and the problems discussed in this paper,
some possible further work related to the special value and transcendental nature of zeta
series is listed.

2. The Second and Third Order Differential Operators

In this section, we consider the second and third order self-adjoint differential opera-
tors on a circle S1. Using Mercer’s Theorem, we will calculate the sum of the spectral series
from (8),

∞

∑
k=−∞

1
(2mkm ± qm)n ,

where m = 2, 3 and n is any positive integer.

2.1. The Second Order Case

In the second order case, the conclusions of the special value and transcendentality
of series

+∞

∑
k=−∞

1
[k2 + α]n

, α ∈ Q, α > 0,

are very complete (cf. [3,4,6]). In this subsection, we will consider the case α < 0 and show
the process of connecting the integral of Green function with the series by using Mercer’s
Theorem.

As m = 2, problem (7) becomes as (cf. [14], (1.2))

T2u = −u′′ + αu = λu, on (0, 1), (9)
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with the boundary condition

u(0) = u(1), u′(0) = u′(1), (10)

where α 6= −(2kπ)2, k = 0, 1, 2, · · · . Then, the k-th eigenvalue is

λk = (2kπ)2 + α, k = 0, 1, 2, · · · ,

and the corresponding eigenfunctions are

ϕ±k(x) = e±i2kπx or cos(2kπx), sin(2kπx).

Hence, for k ≥ 1, the geometric multiplicity of eigenvalue λk is 2.
Since we assume that α 6= −(2kπ)2, k = 0, 1, · · · . We know that 0 is not the eigenvalue

of T2. Hence, T−1
2 exists and is a bounded linear operator on L2[0, 1], and the Green function

G(s, t) = G(t, s) of (9) at λ = 0 is defined as that for any fixed s ∈ [0, 1], the function G(s, t)
satisfies the boundary condition (10) and for any f ∈ L2[0, 1],

(T−1
2 f )(s) =:

∫ 1

0
G(s, t) f (t)dt, s ∈ [0, 1]. (11)

Here,

L2[0, 1] := {u is measurable :
∫ 1

0
|u|2dx < ∞}.

The definition (11) is equivalent to for any fixed s ∈ [0, 1],

T2G(s, t) = δs(t),

where δs(t) is the Delta function at s (cf. [15]). By the definition, we can obtain that the
Green function of (9) at 0 is

G(s, t) =
1

2
√

α


e
√

α(t−s)

e
√

α−1
− e−

√
α(t−s)

e−
√

α−1
, 0 ≤ s ≤ t ≤ 1;

e
√

α(t−s+1)

e
√

α−1
− e−

√
α(t−s+1)

e−
√

α−1
, 0 ≤ t ≤ s ≤ 1.

(12)

Mercer’s Theorem (cf. [7], §3.5.4) tells us that

1
α
+ 2

∞

∑
k=1

1
(2kπ)2 + α

=
∫ 1

0
G(t, t)dt =

1
2
√

α

(
e
√

α + 1
e
√

α − 1

)
. (13)

In fact, we have

G(s, t) =
+∞

∑
k=−∞

ϕk(s)ϕk(t)
λk

=
+∞

∑
k=−∞

ϕk(s)ϕk(t)
(2kπ)2 + α

=
+∞

∑
k=−∞

ηk(s, t)
(2kπ)2 + α

,

where ϕk(x) = ei2kπx and η(s, t) := ei2π(s−t). Then, the identification (13) follows from (12).
Taking

√
α = iθ, i.e., α = −θ2, we have

1√
α

(
e
√

α + 1
e
√

α − 1

)
= −1

θ
cot
(

θ

2

)
.

Set θ = qπ, α = −q2π2. Then,

−1
q2 + 2

∞

∑
k=1

1
4k2 − q2 = π2

∫ 1

0
G(t, t)dt = − π

2q
cot
( q

2
π
)

.
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Hence, for any q, such that q tan
( q

2 π
)
∈ Q, we have that

−1
q2 + 2

∞

∑
k=1

1
4k2 − q2

is a rational multiple of π. Moreover, for any q ∈ Q, cot
( q

2 π
)

is an algebraic number.
Similarly, as α = q2π2, we can obtain that

1
q2 + 2

∞

∑
k=1

1
4k2 + q2 = π2 1

2
√

α

(
e
√

α + 1
e
√

α − 1

)
=

π

2q
coth

( q
2

π
)

.

In summary, we have the following lemma.

Lemma 1. For any q ∈ Q\{±2k, k = 0, 1, · · · }, we have

−1
q2 + 2

∞

∑
k=1

1
4k2 − q2 = − π

2q
cot
( q

2
π
)
= − π

2q
1 + cos(qπ)

sin(qπ)
=: c1π,

as q 6= 2k for any k ∈ Z, and

1
q2 + 2

∞

∑
k=1

1
4k2 + q2 =

π

2q
coth

( q
2

π
)
=

π

2q

(
eqπ + 1
eqπ − 1

)
=: c̃1π,

where c1 ∈ Q(sin(qπ), cos(qπ)) ⊂ Q and c̃1 ∈ Q(eqπ).

In fact, using the Fourier series of cos(z x),

cos(z x) =
2 z
π

sin(π z)

(
1

2 z2 +
∞

∑
n=1

(−1)n cos(n x)
z2 − n2

)
,

the following identities of cot(z π) and coth(z π) can be proved (cf. [16] §8.5)

cot(z π) =
2
π

(
1

2 z
+

∞

∑
k=1

z
z2 − k2

)
,

coth(z π) =
2
π

(
1

2 z
+

∞

∑
k=1

z
z2 + k2

)
.

These two identities can also express Lemma 2. In the following, we consider the case
m ≥ 2.

Firstly, we calculate integral
∫ 1

0

∫ 1
0 |G(s, t)|2dsdt. Suppose α = −q2π2. Then, the

Green function can be rewritten as

G(s, t) =
1

2iqπ

 eiqπ(t−s)

eiqπ−1
+ eiqπ(s−t)

1−e−iqπ , 0 ≤ s ≤ t ≤ 1;
eiqπ(s−t)

eiqπ−1
+ eiqπ(t−s)

1−e−iqπ , 0 ≤ t ≤ s ≤ 1.
(14)
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Hence,

4q2π2|eiqπ − 1|2
∫ 1

0

∫ 1

0
|G(s, t)|2dsdt

=
∫ 1

0
dt
{∫ t

0
[2 + 2 cos(2s− 2t + 1)qπ]ds +

∫ 1

t
[2 + 2 cos(2s− 2t− 1)qπ]ds

}
=
∫ 1

0

{
2 +

1
qπ

sin[(2s− 2t + 1)qπ]

∣∣∣∣t
0
+

1
qπ

sin[(2s− 2t− 1)qπ]

∣∣∣∣1
t

}
dt

=
∫ 1

0

{
2 + 2

1
qπ

sin[qπ]

}
dt

= 2
[

1 +
1

qπ
sin(qπ)

]
.

Then, Mercer’s Theorem tells us that

1
q4 + 2

∞

∑
k=1

1
(4k2 − q2)2 = π4

∫ 1

0

∫ 1

0
|G(s, t)|2dsdt =

π2

4q2[1− cos(qπ)]

[
1 +

1
qπ

sin(qπ)

]
.

Similarly, for α = q2π2, the Green function is

G(s, t) =
1

2qπ

{
eqπ(t−s)

eqπ−1 −
e−qπ(t−s)

e−qπ−1 , 0 ≤ s ≤ t ≤ 1;
eqπ(t−s+1)

eqπ−1 −
e−qπ(t−s+1)

e−qπ−1 , 0 ≤ t ≤ s ≤ 1.
(15)

Then,∫ 1

0

∫ 1

0
|G(s, t)|2dsdt

=
1

4q2π2

∫ 1

0
dt


∫ t

0

[
eqπ(t−s)

eqπ − 1
− e−qπ(t−s)

e−qπ − 1

]2

ds +
∫ 1

t

[
eqπ(t−s+1)

eqπ − 1
− e−qπ(t−s+1)

e−qπ − 1

]2

ds


Set τ := t− s, as 0 ≤ s ≤ t ≤ 1 and τ := t− s + 1, as 0 ≤ t ≤ s ≤ 1; then,

π4
∫ 1

0

∫ 1

0
|G(s, t)|2dsdt =

π2

4q2

∫ 1

0
dt
∫ 1

0

[
eqπτ

eqπ − 1
− e−qπτ

e−qπ − 1

]2

dτ

=
π2

4q2(eqπ − 1)2

∫ 1

0

[
eqπτ + eqπ(1−τ)

]2
dτ

=
π2

4q2(eqπ − 1)2

[
2eqπ +

e2qπ − 1
qπ

]
.

(16)

Again Mercer’s Theorem tells us that

1
q4 + 2

∞

∑
k=1

1
(4k2 + q2)2 = π4

∫ 1

0

∫ 1

0
|G(s, t)|2dsdt =

π2

4q2(eqπ − 1)2

[
2eqπ +

e2qπ − 1
qπ

]
.

Therefore, we obtain the following conclusions.

Lemma 2. [cf. [3] Theorem 4, [6] Theorem 3.2 (ii)] For any q ∈ Q, we have

1
q4 + 2

∞

∑
k=1

1
(4k2 − q2)2 =

π2

4q2[1− cos(qπ)]

[
1 +

1
qπ

sin(qπ)

]
= c2π2 + c1π, (17)
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as q 6= 2k for any k ∈ Z, and

1
q4 + 2

∞

∑
k=1

1
(4k2 + q2)2 =

π2

4q2(eqπ − 1)2

[
2eqπ +

e2qπ − 1
qπ

]
= c̃2π2 + c̃1π, (18)

where ci ∈ Q(sin(qπ), cos(qπ)) ⊂ Q, and c̃i ∈ Q(eqπ), i = 1, 2.

Now, we consider the property of the coefficient of

πn
∫ 1

0
· · ·

∫ 1

0
G(x1, x2) · · ·G(xn, x1)dx1 · · ·dxn. (19)

First, from the expression of Green function (12), we know that the coefficient of Green
function of operator T2

2 , i.e.,

π2
∫ 1

0
G(s, τ)G(τ, t)dτ,

must be c1 + c0/π. Then, by induction, the coefficient of

πn
∫ 1

0
· · ·

∫ 1

0
G(x1, x2) · · ·G(xn−1, xn)G(xn, x1)dx1 · · ·dxn−1 (20)

must be cn + cn−1/π · · ·+ c1/πn−1. Applying the substitution in (16), we set

τn−1 :=
{

xn − xn−1, 0 ≤ xn−1 ≤ xn ≤ 1;
xn − xn−1 + 1, 0 ≤ xn ≤ xn−1 ≤ 1;

and

τ1 :=
{

xn − x1, 0 ≤ x1 ≤ xn ≤ 1;
xn − x1 + 1, 0 ≤ xn ≤ x1 ≤ 1.

Then, G(xn−1, xn) = G(τn−1), G(xn, x1) = G(τ1). Hence, the integral (20) is indepen-
dent of variable xn, and the coefficients of integral (19) are also cn + cn−1/π · · ·+ c1/πn−1,
which are the same as the coefficients of integral (20).

Moreover, similar to the above two lemmas, for any q ∈ Q\{±2k, k = 0, 1, · · · }, the
coefficients

ci ∈ Q(sin(qπ), cos(qπ)), α = −q2π2, i = 1, · · · , n,

and
ci ∈ Q(eqπ), α = q2π2, i = 1, · · · , n.

Therefore, we obtain a more general conclusion which includes Lemmas 2 and 2 as
special cases.

Theorem 1. For any q ∈ Q, and any positive integer n, we have that

1
(−q2)n + 2

∞

∑
k=1

1
(4k2 − q2)n = cnπn + · · ·+ c1π, q 6= 2k, k ∈ Z,

and
1

q2n + 2
∞

∑
k=1

1
(4k2 + q2)n = c̃nπn + · · ·+ c̃1π,

where ci ∈ Q(sin(qπ), cos(qπ)) ⊂ Q, and c̃i ∈ Q(eqπ), i = 0, 1, · · · , n.
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Murty and Weatherby [1], ([4] §6), ([3] Theorem 4) or ([6] Theorem 3.2 (i)) obtained the
expression

∑
k∈Z

1
k2 + c

=
π(e2π

√
c + 1)

√
c(e2π

√
c − 1)

, for c ≥ 0.

Using the derivative of the series to c, the transcendentality of sum

∑
k∈Z

1
(k2 + q2)n , q ∈ Q\{0},

can be derived (cf. [6] Theorem 3.2 (ii)). In Theorem 1, a calculation method of series
∑k∈Z

1
(k2±q2)n is obtained. Furthermore, by this calculation formula, we can find the tran-

scendentality of the series.

2.2. The Third Order Case

In the following, we consider Problem (7) in the case m = 3.

T3u = iu′′′ + αu = λu, on (0, 1), (21)

with the boundary condition

u(0) = u(1), u′(0) = u′(1), u′′(0) = u′′(1),

where α 6= −(2kπ)3, k = 0,±1,±2, · · · . Then, the k-th eigenvalue is λk = (2kπ)3 + α,
k = 0,±1,±2, · · · , the corresponding eigenfunction is ϕk(x) = ei2kπx. Hence, for any
integer k, the geometric multiplicity of eigenvalue λk is simple.

Set α = −q3π3. Then, the Green function of (21) at 0 is

G(s, t) =
i

3q2π2



exp
(
−(
√

3
2 + 1

2 i)qπ(t−s)
)

( 1
2+
√

3
2 i)

{
1−exp

(
−(
√

3
2 + 1

2 i)qπ
)} +

exp
(
(
√

3
2 −

1
2 i)qπ(t−s)

)
( 1

2−
√

3
2 i)

{
1−exp

(
(
√

3
2 −

1
2 i)qπ

)} +
exp(iqπ(t−s))
−{1−exp(iqπ)} ,

0 ≤ s ≤ t ≤ 1;

exp
(
−(
√

3
2 + 1

2 i)qπ(t−s+1)
)

( 1
2+
√

3
2 i)

{
1−exp

(
−(
√

3
2 + 1

2 i)qπ
)} +

exp
(
(
√

3
2 −

1
2 i)qπ(t−s+1)

)
( 1

2−
√

3
2 i)

{
1−exp

(
(
√

3
2 −

1
2 i)qπ

)} +
exp(iqπ(t−s+1))
−{1−exp(iqπ)} ,

0 ≤ t ≤ s ≤ 1.

Set

z1 =

(√
3

2
− 1

2
i

)
qπ, z2 = −z̄1 = −

(√
3

2
+

1
2

i

)
qπ, and z3 = iqπ.

Then,

G(s, t) =
1

3qπ


exp(z2(t−s))

z1(1−exp(z2))
+

exp(z1(t−s))
z2(1−exp(z1))

+
exp(z3(t−s))

z3(1−exp(z3))
, 0 ≤ s ≤ t ≤ 1;

exp(z2(t−s+1))
z1[1−exp(z2)]

+
exp(z1(t−s+1))
z2[1−exp(z1)]

+
exp(z3(t−s+1))
z3[1−exp(z3)]

, 0 ≤ t ≤ s ≤ 1.
(22)

In particular, we have that, for any t ∈ [0, 1],

G(t, t) =
−1

3q3π3

3

∑
j=1

zj

1− exp(zj)

=
1

6q2π2

[√
3 sinh(

√
3

2 qπ) + sin( 1
2 qπ)

cosh(
√

3
2 qπ)− cos( 1

2 qπ)
+ cot(

1
2

qπ)

]
.

(23)
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As q = 1, for any t ∈ [0, 1],

G(t, t) =
1

3π2

[√
3

2
tanh(

√
3

2
π) +

1
2

cosh−1(

√
3

2
π)

]
,

and Mercer’s Theorem tells us that

∞

∑
k=−∞

1
(2k)3 − 1

=
π

3

[√
3

2
tanh(

√
3

2
π) +

1
2

cosh−1(

√
3

2
π)

]
=: c1π, (24)

where

c1 ∈ Q
(√

3
2

; exp(

√
3

2
qπ)

)
⊂ Q

(
exp(

√
3

2
qπ)

)
.

In the following lemma, we obtain the more general case.

Lemma 3. For any q ∈ Q\{±2k, k = 0, 1, · · · }, we have

∞

∑
k=−∞

1
(2k)3 − q3 =

π

6q2

[√
3 sinh(

√
3

2 qπ) + sin( 1
2 qπ)

cosh(
√

3
2 qπ)− cos( 1

2 qπ)
+ cot(

1
2

qπ)

]
=: c1π + c0, (25)

where

ci ∈ Q
(√

3
2

, sin(
1
2

qπ), cos(
1
2

qπ); exp(

√
3

2
qπ)

)
⊂ Q

(
exp(

√
3

2
qπ)

)
, i = 0, 1.

Weatherby ([6], Theorem 3.2 (ii)) proved that the sums

∑
k∈Z

1
k3 + q3 , q ∈ Q\Z,

are transcendental; however, the explicit expression is not obtained in the paper.
Now, we calculate the integral

∫ 1
0

∫ 1
0 |G(s, t)|2dsdt. We note that

∫ 1

0

∫ 1

t
|G(s, t)|2dsdt =

∫ 1

0

∫ s

0
|G(s, t)|2dtds =

∫ 1

0

∫ t

0
|G(s, t)|2dsdt.

Hence, ∫ 1

0

∫ 1

0
|G(s, t)|2dsdt = 2

∫ 1

0

∫ t

0
|G(s, t)|2dsdt.

Recall the Green function, we obtain that, for any 0 ≤ s ≤ t ≤ 1,

9q2π2|G(s, t)|2 =

∣∣∣∣ exp(z2(t− s))
z1[1− exp(z2)]

+
exp(z1(t− s))
z2[1− exp(z1)]

+
exp(z3(t− s))
z3[1− exp(z3)]

∣∣∣∣2,

where z1 =
(√

3
2 −

1
2 i
)

qπ, z2 = −z̄1 = −
(√

3
2 + 1

2 i
)

qπ, and z3 = iqπ.
First, we calculate three square terms.

∫ 1

0

∫ t

0

∣∣∣∣ exp(z2(t− s))
z1[1− exp(z2)]

∣∣∣∣2dsdt

=
1

q2π2|1− exp(z2)|2
∫ 1

0

∫ t

0
exp(
√

3qπ(s− t))dsdt

=
1

q2π2|1− exp(z2)|2

[
1√
3qπ
− 1

3q2π2 +
exp(−

√
3qπ)

3q2π2

]
,
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where

|1− exp(z2)|2 = 2 exp

(
−
√

3
2

qπ

)[
cosh(

√
3

2
qπ)− cos(

1
2

qπ)

]
.

∫ 1

0

∫ t

0

∣∣∣∣ exp(z1(t− s))
z2[1− exp(z1)]

∣∣∣∣2dsdt

=
1

q2π2|1− exp(z1)|2
∫ 1

0

∫ t

0
exp(
√

3qπ(t− s))dsdt

=
1

q2π2|1− exp(z1)|2

[
− 1√

3qπ
− 1

3q2π2 +
exp(
√

3qπ)

3q2π2

]
,

where

|1− exp(z1)|2 = 2 exp

(√
3

2
qπ

)[
cosh(

√
3

2
qπ)− cos(

1
2

qπ)

]
.

Therefore, we have

∫ 1

0

∫ t

0

∣∣∣∣ exp(z2(t− s))
z1[1− exp(z2)]

∣∣∣∣2 + ∣∣∣∣ exp(z1(t− s))
z2[1− exp(z1)]

∣∣∣∣2dsdt

=
1

√
3q3π3

[
cosh(

√
3

2 qπ)− cos( 1
2 qπ)

] sinh

(√
3

2
qπ

)
.

(26)

The last square term is

∫ 1

0

∫ t

0

∣∣∣∣ exp(z3(t− s))
z3[1− exp(z3)]

∣∣∣∣2dsdt =
1/2

q2π2|1− exp(z3)|2
=

1
4q2π2[1− cos(qπ)]

. (27)

In the next, we will calculate the three cross terms:

2
∫ 1

0

∫ t

0

exp(z2(t− s))
z1[1− exp(z2)]

exp(z̄1(t− s))
z̄2[1− exp(z̄1)]

dsdt =
1

z1z̄2[1− exp(z2)][1− exp(z̄1)]
,

then we can obtain the real part of the integral

2<
∫ 1

0

∫ t

0

exp(z2(t− s))
z1[1− exp(z2)]

exp(z̄1(t− s))
z̄2[1− exp(z̄1)]

dsdt

=
−1 + cosh(

√
3

2 qπ) cos( 1
2 qπ) +

√
3 sinh(

√
3

2 qπ) sin( 1
2 qπ)

q2π2|1− exp(z2)|2|1− exp(z̄1)|2

=
−1 + cosh(

√
3

2 qπ) cos( 1
2 qπ) +

√
3 sinh(

√
3

2 qπ) sin( 1
2 qπ)

4q2π2
[
cosh(

√
3

2 qπ)− cos( 1
2 qπ)

]2 .

(28)
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We will calculate the remaining two cross terms:

2
∫ 1

0

∫ t

0

exp(z2(t− s))
z1[1− exp(z2)]

exp(z̄3(t− s))
z̄3[1− exp(z̄3)]

dsdt

=
2

z1z̄3[1− exp(z2)][1− exp(z̄3)]

∫ 1

0

∫ t

0
exp((z2 + z̄3)(t− s))dsdt

=
2

z1z̄3[1− exp(z2)][1− exp(z̄3)]

exp(z2 + z̄3)− 1− (z2 + z̄3)

(z2 + z̄3)2

=
2

3q4π4
exp(z2 + z̄3)− 1− (z2 + z̄3)

[1− exp(z2)][1− exp(z̄3)]

=
2

3q4π4

{
1− 1

1− exp(z2)
− 1

1− exp(z̄3)
− z2 + z̄3

[1− exp(z2)][1− exp(z̄3)]

}
,

< 1
1− exp(z̄3)

=
1− cos(qπ)

|1− exp(−iqπ)|2 =
1
2

,

< 1
1− exp(z2)

=
1
2

exp(
√

3
2 qπ)− cos( 1

2 qπ)

cosh(
√

3
2 qπ)− cos( 1

2 qπ)
,

and

< z2 + z̄3

[1− exp(z2)][1− exp(z̄3)]

=
−
√

3qπ
[

1
2 exp(

√
3

2 qπ)− exp(
√

3
2 qπ) cos(qπ + π

3 )− cos( 1
2 qπ + π

3 ) + cos( 3
2 qπ + π

3 )
]

4[1− cos(qπ)]
[
cosh(

√
3

2 qπ)− cos( 1
2 qπ)

] .

Similarly, we can obtain that

2
∫ 1

0

∫ t

0

exp(z1(t− s))
z2[1− exp(z1)]

exp(z̄3(t− s))
z̄3[1− exp(z̄3)]

dsdt

=
2

3q4π4

{
1− 1

1− exp(z1)
− 1

1− exp(z̄3)
− z1 + z̄3

[1− exp(z1)][1− exp(z̄3)]

}
.

Note that

< 1
1− exp(z1)

=
1
2

exp(−
√

3
2 qπ)− cos( 1

2 qπ)

cosh(
√

3
2 qπ)− cos( 1

2 qπ)
,

and

< z1 + z̄3

[1− exp(z1)][1− exp(z̄3)]

=

√
3qπ

[
1
2 exp(−

√
3

2 qπ)− exp(−
√

3
2 qπ) cos(qπ − π

3 )− cos( 1
2 qπ − π

3 ) + cos( 3
2 qπ − π

3 )
]

4[1− cos(qπ)]
[
cosh(

√
3

2 qπ)− cos( 1
2 qπ)

] .

Summing the above two cross terms respectively, we obtain

< 1
1− exp(z1)

+< 1
1− exp(z1)

=
1
2

,

and
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< z2 + z̄3

[1− exp(z2)][1− exp(z̄3)]
+< z1 + z̄3

[1− exp(z1)][1− exp(z̄3)]

=
√

3qπ
[cos(qπ)− 1] sinh(

√
3

2 qπ) +
√

3
[
sin( 3

2 qπ)− sin( 1
2 qπ)

]
−
√

3 sin(qπ) cosh(
√

3
2 qπ)

4[1− cos(qπ)]
[
cosh(

√
3

2 qπ)− cos( 1
2 qπ)

]
=
√

3qπ
[cos(qπ)− 1]

[
sinh(

√
3

2 qπ) +
√

3 sin( 1
2 qπ)

]
+
√

3 sin(qπ)
[
cos( 1

2 qπ)− cosh(
√

3
2 qπ)

]
4[1− cos(qπ)]

[
cosh(

√
3

2 qπ)− cos( 1
2 qπ)

]
=
−
√

3qπ
[
sinh(

√
3

2 qπ) +
√

3 sin( 1
2 qπ)

]
4
[
cosh(

√
3

2 qπ)− cos( 1
2 qπ)

] − 3qπ sin(qπ)

4[1− cos(qπ)]
.

Hence, we can obtain that

2<
∫ 1

0

∫ t

0

exp(z2(t− s))
z1[1− exp(z2)]

exp(z̄3(t− s))
z̄3[1− exp(z̄3)]

+
exp(z1(t− s))
z2[1− exp(z1)]

exp(z̄3(t− s))
z̄3[1− exp(z̄3)]

dsdt

=
2

3q4π4


√

3qπ
[
sinh(

√
3

2 qπ) +
√

3 sin( 1
2 qπ)

]
4
[
cosh(

√
3

2 qπ)− cos( 1
2 qπ)

] +
3qπ sin(qπ)

4[1− cos(qπ)]


=

1
2
√

3q3π3

sinh(
√

3
2 qπ) +

√
3 sin( 1

2 qπ)

cosh(
√

3
2 qπ)− cos( 1

2 qπ)
+

1
2q3π3

sin(qπ)

1− cos(qπ)
.

(29)

Using Mercer’s Theorem again, we have

∞

∑
k=−∞

1
(23k3 − q3)2 = π6

∫ 1

0

∫ 1

0
|G(s, t)|2dsdt = 2π6

∫ 1

0

∫ t

0
|G(s, t)|2dsdt

=
2π6

9q2π2

∫ 1

0

∫ t

0

∣∣∣∣ exp(z2(t− s))
z1[1− exp(z2)]

+
exp(z1(t− s))
z2[1− exp(z1)]

+
exp(z3(t− s))
z3[1− exp(z3)]

∣∣∣∣2dsdt.

Then, add up Equations (26), (27), (28) and (29), we can obtain that

∞

∑
k=−∞

1
(23k3 − q3)2 =

2π

9
√

3q5

sinh(
√

3
2 qπ)

cosh(
√

3
2 qπ)− cos( 1

2 qπ)
+

π2

18q4
1

1− cos(qπ)

+
π2

18q4
−1 + cosh(

√
3

2 qπ) cos( 1
2 qπ) +

√
3 sinh(

√
3

2 qπ) sin( 1
2 qπ)[

cosh
(√

3
2 qπ

)
− cos

(
1
2 qπ

)]2

+
π

9
√

3q5

sinh(
√

3
2 qπ) +

√
3 sin( 1

2 qπ)

cosh(
√

3
2 qπ)− cos( 1

2 qπ)
+

π2

9q4
sin(qπ)

1− cos(qπ)

=
π2

18q4
1 + 2 sin(qπ)

1− cos(qπ)
+

π2

18q4
−1 + cosh(

√
3

2 qπ) cos( 1
2 qπ) +

√
3 sinh(

√
3

2 qπ) sin( 1
2 qπ)[

cosh
(√

3
2 qπ

)
− cos

(
1
2 qπ

)]2

+
π

9q5

√
3 sinh(

√
3

2 qπ) + sin( 1
2 qπ)

cosh(
√

3
2 qπ)− cos( 1

2 qπ)
=: c2π2 + c1π.

(30)

Supposing that q ∈ Q, then c1, c2 in (30) satisfy that

c1, c2 ∈ Q
(√

3
2

, sin(
1
2

qπ), cos(
1
2

qπ); exp(

√
3

2
qπ)

)
⊂ Q

(
exp(

√
3

2
qπ)

)
.
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As q = 1, we have that

∞

∑
k=−∞

1
(23k3 − 1)2 =

π2

18

[
1
2
+
√

3 tanh(

√
3

2
π) cosh−1(

√
3

2
π)− cosh−2(

√
3

2
π)

]

+
π

9

[
√

3 tanh(

√
3

2
π) + cosh−1(

√
3

2
π)

]
=: c2π2 + c1π,

(31)

where

c1, c2 ∈ Q
(√

3
2

; exp(

√
3

2
π)

)
⊂ Q

(
exp(

√
3

2
π)

)
.

For the more general case, similar to Theorem 1, we can obtain that

Theorem 2. For any q ∈ Q\{±2k, k = 0, 1, · · · }, and any n ≥ 1, we have

∞

∑
k=−∞

1
(23k3 − q3)n = cnπn + · · ·+ c1π,

where

ci ∈ Q
(√

3
2

, sin(
1
2

qπ), cos(
1
2

qπ); exp(

√
3

2
qπ)

)
⊂ Q

(
exp(

√
3

2
qπ)

)
, i = 1, · · · , n.

In ([6], Theorem 3.3), Weatherby proved that the sum

∑
k∈Z

1
(k3 − q3)2n , q ∈ Q\Z,

is transcendental and the calculation formula is not obtained in this paper. In Theorem 2,
a calculation method of series ∑k∈Z

1
(k3−q3)n is obtained. Furthermore, by this calculation

formula, we can judge the transcendentality of the series.

3. The Higher Order Self-Adjoint Differential Operators

Now, let us recall Problem (7) for any self-adjoint differential operators of order m on
S1. For any positive integer m,

Tmu = (−i)mu(m) + αu = λu, on (0, 1),

with the boundary condition

u(0) = u(1), · · · , u(m−1)(0) = u(m−1)(1),

where α 6= −(2kπ)m, k = 0,±1,±2, · · · . Then, the eigenvalues of Tm are

{λk = (2kπ)m + α, k = 0,±1,±2, · · · },

and the corresponding eigenfunctions are

ϕk(x) =
{

e±i2kπx or {cos(2kπx), sin(2kπx)}, as m is even;
e−i2kπx, as m is odd.

Hence, for an even m, for any k ≥ 1, the geometric multiplicity of eigenvalue λk is 2,
and only in the case k = 0 is the geometric multiplicity of eigenvalue λ0 simple. For an
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odd m, for any k, the geometric multiplicity of λk is simple. Set α = ±qmπm, and using
Mercer’s Theorem again, we have

πnm
∫ 1

0
· · ·

∫ 1

0
G(x1, x2) · · ·G(xn, x1)dx1 · · ·dxn

=

{
(±1)n

qnm + 2 ∑∞
k=1

1
(2mkm±qm)n , if m is even;

∑∞
k=−∞

1
(2mkm±qm)n , if m is odd,

where G(s, t) is the Green function of Tm at 0 point. Note that, if m is even, we also have

(±1)n

qnm + 2
∞

∑
k=1

1
(2mkm ± qm)n =

∞

∑
k=−∞

1
(2mkm ± qm)n .

Let {ξ j, j = 1, · · · , m} be m distinct roots in C of the algebraic equation

(−i)mξm + α = 0.

Then, the Green function G(s, t) is in the following form:

G(s, t) =
im

m


∑m

j=1
exp(−ξ j(t−s))

[exp(−ξ j)−1]ξm−1
j

, 0 ≤ s ≤ t ≤ 1;

∑m
j=1

exp(−ξ j(t−s+1))

[exp(−ξ j)−1]ξm−1
j

, 0 ≤ t ≤ s ≤ 1.
(32)

Supposing α = −(qπ)m, then, for any j = 1, · · · , m, we have ξ j = iqπ exp( j
m 2πi), and

−ξ j = sin
(

j
m

2π

)
qπ − i cos

(
j

m
2π

)
qπ,

exp(−ξ j) = exp
(

sin(
j

m
2π)qπ

){
cos
(

cos(
j

m
2π)qπ

)
− i sin

(
cos(

j
m

2π)qπ

)}
.

Note that, if m is odd, we have

sin
(
(m− 1)/2

m
2π

)
= sin

(
1
m

π

)
and cos

(
(m− 1)/2

m
2π

)
= − cos

(
1
m

π

)
.

Hence, for any q ∈ Q, all the coefficients of Green function G(s, t) satisfy

ξ j, exp(ξ j) ∈ Km, j = 1, · · · , m,

where Km is a field, and is defined as

Km :=Q
(

cos(
1
m

2π), sin(
1
m

2π), {exp(sin(
j

m
2π)qπ), cos(cos(

j
m

2π)qπ),

sin(cos(
j

m
2π)qπ), j = 1, · · · , m}

)
, for any even m,

and

Km :=Q
(

cos(
1
m

π), sin(
1
m

π), {exp(sin(
j

m
2π)qπ), cos(cos(

j
m

2π)qπ),

sin(cos(
j

m
2π)qπ), j = 1, · · · , m}

)
, for any odd m.

Since

cos
(

1
m

2π

)
, sin

(
1
m

2π

)
, cos

(
1
m

π

)
, sin

(
1
m

π

)
∈ Q,



Mathematics 2023, 11, 636 15 of 19

we have that, for any m,

Km ⊂ Q
(

exp(sin(
j

m
2π)qπ), cos(cos(

j
m

2π)qπ), sin(cos(
j

m
2π)qπ), j = 1, · · · , m

)
.

If α = (qπ)m, then for any j = 1, · · · , m, we have ξ j = iqπ exp(i 2j−1
m π), and

−ξ j = sin
(

2j− 1
m

π

)
qπ − i cos

(
2j− 1

m
π

)
qπ,

exp(−ξ j) = exp
(

sin(
2j− 1

m
π)qπ

){
cos(cos(

2j− 1
m

π)qπ)− i sin(cos(
2j− 1

m
π)qπ)

}
.

Hence, for any q ∈ Q, all the coefficients of Green function G(s, t) satisfy

ξ j, exp(ξ j) ∈ K̃m, j = 1, · · · , m,

where, for any m, K̃m is defined as

K̃m :=Q
(

cos(
1
m

π), sin(
1
m

π),

{exp(sin(
2j− 1

m
π)qπ), cos(cos(

2j− 1
m

π)qπ), sin(cos(
2j− 1

m
π)qπ), j = 1, · · · , m}

)
⊂Q

(
exp(sin(

2j− 1
m

π)qπ), cos(cos(
2j− 1

m
π)qπ), sin(cos(

2j− 1
m

π)qπ), j = 1, · · · , m
)

.

Note that, for an odd m,

sin
(

2j− 1
m

π

)
= sin

(
(m + 1)/2− j

m
2π

)
, cos

(
2j− 1

m
π

)
= − cos

(
(m + 1)/2− j

m
2π

)
,

we have Km = K̃m. This is consistent with the following facts:

∞

∑
k=−∞

1
(2mkm − qm)n =

∞

∑
k=−∞

1
[2m(−k)m − qm]n

= (−1)n
∞

∑
k=−∞

1
(2mkm + qm)n ,

for an odd m.
With these preparations, similar to Theorems 1 and 2, we have the following theorem.

Theorem 3. For any q ∈ Q, and any integer m ≥ 2, n ≥ 1, we have

∞

∑
k=−∞

1
(2mkm − qm)n = cnπn + · · ·+ c1π, qm 6= 2mkm, k ∈ Z,

and
∞

∑
k=−∞

1
(2mkm + qm)n = c̃nπn + · · ·+ c̃1π, qm 6= −2mkm, k ∈ Z,

where ci ∈ Km, c̃i ∈ K̃m, i = 1, · · · , n.

In the case m ≥ 4, Weatherby ([6], Theorem 3.2 (vi)) and ([6], Theorem 3.3) proved that
the sums

∑
k∈Z

1
(k4 − q4)2n , and ∑

k∈Z

1
(k6 − q6)2n , q ∈ Q\Z,

are transcendental. These sums are special cases of Theorem 3, and a calculation method of
series ∑k∈Z

1
(km−qm)n is obtained in Theorem 3.
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In Theorem 3, for m = 2, it is easy to verify that

K2 = Q(sin(qπ), cos(qπ)) ⊂ Q.

For m = 3, since sin( 1
3 2π) = − sin( 2

3 2π) =
√

3
2 and cos( 1

3 2π) = cos( 2
3 2π) = − 1

2 , we
have

K̃3 = K3 = Q
(√

3
2

, sin(
1
2

qπ), cos(
1
2

qπ); exp(

√
3

2
qπ)

)
⊂ Q

(
exp(

√
3

2
qπ)

)
.

Therefore, Theorem 3 generalizes Theorems 1 and 2.

4. Conclusions and Further Work

In this section, we make a summary of the conclusions of this paper and discuss
several applications in physics and possible further work.

4.1. Conclusions

In this paper, we consider the self-adjoint differential operator with order m ≥ 2

Tmu = (−i)mu(m) + αu = λu (33)

on the circle S1, where α 6= −(2kπ)m, k = 0,±1,±2, · · · . Its k-th eigenvalue is

λ
(m)
k = (2kπ)m + α, k =

{
0,±1,±2, · · · , for odd m;
0, 1, 2, · · · , for even m.

For any positive integer n, the k-th eigenvalue of Tn
m is [λ(m)

k ]n.
Then, Mercer’s Theorem tells us that the spectral zeta function of Tn

m satisfies

ζm(n) :=
+∞

∑
k=−∞

1
[(2kπ)m + α]n

=
∫ 1

0
· · ·

∫ 1

0
G(x1, x2) · · ·G(xn, x1)dx1 · · ·dxn, (34)

where G(·, ·) is the Green function of differential operator (33). The spectral zeta function is
closely related to the Dirichlet series, Bernoulli number and L-functions (cf. [4,10,11] §16),
which arise out of number theory and other considerations; see Soulé [12] and Ramakrish-
nan [13].

The formula (34) gives an integral representation of ζm(n). Using this integral repre-
sentation, we can obtain the main conclusions of the paper. See Theorem 3. For any q ∈ Q,
and any integer m ≥ 2, n ≥ 1, we have

∞

∑
k=−∞

1
(km − qm)n = cnπn + · · ·+ c1π, qm 6= km, k ∈ Z,

and
∞

∑
k=−∞

1
(km + qm)n = c̃nπn + · · ·+ c̃1π, qm 6= −km, k ∈ Z,

where ci ∈ Km, c̃i ∈ K̃m, i = 1, · · · , n. The special value and transcendental nature of the
sums are related to Schneider’s conjecture and Gel’fond–Schneider’s conjecture. See Murty
and Weatherby [1,3,4], Nesterenko [2] and Saradha and Tigdeman [5].

4.2. Application and Further Work

In this subsection, firstly, some applications about eigenvalues, eigenfunctions, Green
functions, and spectral series of self-adjoint operators in physics are given. Then, according
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to these applications and the problems discussed in this paper, some possible future work
is listed.

Consider the self-adjoint differential operator in Section 2.1,

Tu = −u′′ + αu = λu, on R. (35)

This is called the stationary Schrödinger operator (cf. Carmona and LaCroix [17]),
which was proposed by physicist Schrödinger in 1926. It describes the stable state of
microscopic particles, which is a basic assumption of quantum mechanics. The Schrödinger
operator is widely used in atomic physics, nuclear physics and solid state physics. The
results of solving a series of problems such as atoms, molecules, nuclei, solids, etc. are in
good agreement with the reality.

The eigenvalue λ and the corresponding eigenfunction ψ of (35) represent the energy
of microscopic particles and the probability of their occurrence somewhere in space, resp..
Furthermore, ψ is also called a state function, which is normalized according to the require-
ment that

∫
R |ψ|

2 = 1. The position of the particle is then determined not as a definite point;
instead, its probable location is given by the rules of quantum mechanics as follows: the
probability that the particle is located in the interval (a, b) is

∫ b
a |ψ|

2.
Riemann zeta function is a class of spectral function of Schrödinger operator,

ζ(s) :=
∞

∑
n=1

1
ns .

Physicists found that the distribution of ζ(s) zeros as energy levels is breathtakingly
similar to those of a quantum system’s, cf. Schumayer and Hutchinson [18]. This has
inspired physicists to associate a dynamic system with the spectral zeta function. Hence,
the examination of the spectral zeta function can help to understand physics and quantum
mechanics.

In 1958, the physicist P. W. Anderson found that, if impurities were added to the
conductor, the electrons would be scattered by these impurities during transmission, and
the multiple scattering waves would interfere with each other, resulting in the stopping of
the movement of the electrons, the disappearance of the conductivity of the metal and the
appearance of the nature of insulator. The phenomenon from conducting state to insulating
state caused by doping is called Anderson localization.

Anderson discussed the change of the eigenfunctions of Schrödinger operator by using
Green’s function method. The exponential decay of the Green’s fucntion is defined as

G(λ, x, y) ≤ e−γ|x−y|,

where γ > 0 and |x− y| > δ > 0. In fact, the estimation of the decay of the Green’s function
plays a key role in the exponential localization of eigenfunctions of the Schrödinger operator.
For the lattice Schrödinger operator, Bourgain [19] studied the estimations of the Green’s
function, and thus obtained Anderson localization.

In the following, some possible further work related to the eigenvalues and the spectral
zeta series ζm(n) are listed.

In [6], Weatherby proved that the series

∑
k∈Z, k 6=±1

1
km − 1

, (36)

is transcendental for m = 3, 4, 6. However, if the Mercer’s Theorem and Green function
are used, it is required that the series

∞

∑
k=−∞

1
(km − c)n
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satisfies c 6= km for any k ∈ Z. Hence, the series cannot include (36) and how to calculate
and study the transcendentality of series

∑
k∈Z, k 6=±1

1
(km − 1)n , m ≥ 2, n ≥ 2

is a problem.
Recently, many papers [8], Wainger [20], Meiners and Vertman [21] study the special

values of spectral zeta functions on the discrete tori. Recall that the spectral zeta function
associated with the Cayley graph Z/NZ is (cf. [22])

N−1

∑
m=1

1
sin2s(mπ

N )
∈ Q.

The question is how to study the the spectral zeta function associated with the more
general Cayley graph.

Murty and Weatherby [1] and Nesterenko [2] studied the transcendental nature of the
infinite series

∑
k∈Z

f (k)
g(k)

, (37)

where f (x) and g(x) are polynomials in Q[x] with deg f < deg g so that g(x) has no
integral zeros. Using the connection between series and differential operator spectral zeta
function, this paper can only study the special case f (x) = 1 and g(x) = (xm + c)n. For
more general cases, the method in this paper is difficult to implement. Therefore, it is a
further problem to find a suitable research method for the research on infinite series (37).
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