A Class of Singular Sturm–Liouville Problems with Discontinuity and an Eigenparameter-Dependent Boundary Condition
Abstract
:1. Introduction
2. Operator Formulation
- (i)
- are absolutely continuous on ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- .
3. Fundamental Solutions and Properties of Eigenvalues
4. Asymptotic Formulas of the Fundamental Solutions and Eigenvalues
5. Green’s Function and the Resolvent Operator
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Likov, A.V.; Mikhailov, Y.A. The Theory of Heat and Mass Transfer; Qosenerqoizdat: Moscow, Russian, 1963. [Google Scholar]
- Akdoǧan, Z.; Demirci, M.; Mukhtarov, O.S. Sturm-Liouville problems with eigendependent boundary and transmissions conditions. Acta Math. Scientia 2005, 25, 731–740. [Google Scholar] [CrossRef]
- Li, K.; Sun, J.; Hao, X.; Bao, Q. Spectral analysis for discontinuous non-self-adjoint singular Dirac operators with eigenparameter dependent boundary condition. J. Math. Anal. Appl. 2017, 453, 304–316. [Google Scholar] [CrossRef]
- Aydemir, K.; Mukhtarov, O.S. Variational principles for spectral analysis of one Sturm-Liouville problem with transmission conditions. Adv. Differ. Equ. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Aydemir, K.; Mukhtarov, O.S. Qualitative analysis of eigenvalues and eigenfunctions of one boundary value transmission problem. Bound. Value. Probl. 2016, 2016, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kadakal, M.; Mukhtarov, O.S. Sturm-Liouville problems with discontinuities at two points. Comput. Math. Appl. 2017, 54, 1367–1379. [Google Scholar] [CrossRef] [Green Version]
- Mukhtarov, O.S.; Aydemir, K. Minimization principle and generalized Fourier series for discontinuous Sturm-Liouville systems in direct sum spaces. J. Appl. Anal. Comput. 2018, 8, 1511–1523. [Google Scholar]
- Mukhtarov, O.S.; Aydemir, K. Two-linked periodic Sturm-Liouville problems with transmission conditions. Math. Methods Appl. Sci. 2021, 44, 14664–14676. [Google Scholar] [CrossRef]
- Olğar, H.; Mukhtarov, O.S. Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions. J. Math. Phys. 2017, 58, 042201-1–042201-13. [Google Scholar] [CrossRef]
- Mukhtarov, O.S.; Aydemir, K. Spectral analysis of α-semi periodic 2-interval Sturm-Liouville problems. Qual. Theory Dyn. Syst. 2022, 21, 62. [Google Scholar] [CrossRef]
- Kobayashi, M. Eigenvalues of discontinuous Sturm-Liouville problems with symmetric potential. Comput. Math. Appl. 1989, 18, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Wang, W. Asymptotic behavior of a differential operator with discontinuities at two points. Math. Methods Appl. Sci. 2010, 34, 373–383. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, W. Spectral properties of Sturm-Liouville operators with discontinuities at finite points. Math. Sci. 2012, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hao, X.; Li, K.; Yao, S. The finite spectrum of Sturm-Liouville problems with n transmission conditions and quadratic eigenparameter-dependent boundary conditions. Open Math. 2021, 19, 1736–1745. [Google Scholar] [CrossRef]
- Zettl, A. Sturm-Liouville Theory; Rhode Island, Mathematical Surveys and Monographs; America Mathematical Society: Providence, RI, USA, 2005; Volume 121. [Google Scholar]
- Cao, Z. Ordinary Differential Operator; Sciences Press: Beijing, China, 1986. (In Chinese) [Google Scholar]
- Naimark, M.A. Linear Differential Operators, Part 2; Harrap: London, UK, 1968. [Google Scholar]
- Fulton, C.T. Singular eigenvalue problems with eigenvalue-parameter contained in the boundary conditions. Proc. R. Soc. Edinb. 1980, 87, 1–34. [Google Scholar] [CrossRef]
- Fulton, C.T.; Pruess, S. Numerical methods for a singular eigenvalue problems with eigenparameter in the boundary conditions. J. Math. Anal. Appl. 1979, 71, 431–462. [Google Scholar] [CrossRef] [Green Version]
- Feller, W. The parabolic differential equations and the associated semi-groups of transforms. Ann. Math. 1952, 55, 468–519. [Google Scholar] [CrossRef]
- Feller, W. On differential operators and boundary conditions. Comm. Pure Appl. Math. 1955, 8, 203–216. [Google Scholar] [CrossRef]
- Collatz, L. Eigenwertaufgaben mit technischen Anwendungen, Akad; Verlagsgesellschaft Geest Portig: Leipzig, Germany, 1963. [Google Scholar]
- Walter, J. Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math. Z. 1973, 133, 301–312. [Google Scholar] [CrossRef]
- Zhang, H.; Ao, J.; Mu, D. Eigenvalues of discontinuous third-order boundary value problems with eigenparameter-dependent boundary conditions. J. Math. Anal. Appl. 2022, 506, 125680. [Google Scholar] [CrossRef]
- Guliyev, N.J. Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter. J. Math. Phys. 2019, 60, 063501. [Google Scholar] [CrossRef] [Green Version]
- Guliyev, N.J. Essentially isospectral transformations and their applications. Ann. Mat. Pura Appl. 2020, 199, 1621–1648. [Google Scholar] [CrossRef]
- Allahverdiev, B.P. A nonself-adjoint 1D singular Hamiltonian system with an eigenparameter in the boundary condition. Potential Anal. 2013, 38, 1031–1045. [Google Scholar] [CrossRef]
- Cai, J.; Li, K.; Zheng, Z. A singular Sturm-Liouville problem with limit circle endpoint and boundary conditions rationally dependent on the eigenparameter. Mediterr. J. Math. 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Titchmarsh, E.C. Eigenfunctions Expansion Associated with Second Order Differential Equations, Part 1; Oxford University Press: London, UK, 1962. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Zheng, Z.; Li, K. A Class of Singular Sturm–Liouville Problems with Discontinuity and an Eigenparameter-Dependent Boundary Condition. Mathematics 2022, 10, 4430. https://doi.org/10.3390/math10234430
Cai J, Zheng Z, Li K. A Class of Singular Sturm–Liouville Problems with Discontinuity and an Eigenparameter-Dependent Boundary Condition. Mathematics. 2022; 10(23):4430. https://doi.org/10.3390/math10234430
Chicago/Turabian StyleCai, Jinming, Zhaowen Zheng, and Kun Li. 2022. "A Class of Singular Sturm–Liouville Problems with Discontinuity and an Eigenparameter-Dependent Boundary Condition" Mathematics 10, no. 23: 4430. https://doi.org/10.3390/math10234430
APA StyleCai, J., Zheng, Z., & Li, K. (2022). A Class of Singular Sturm–Liouville Problems with Discontinuity and an Eigenparameter-Dependent Boundary Condition. Mathematics, 10(23), 4430. https://doi.org/10.3390/math10234430