# On the Dynamics of the Complex Hirota-Dynamical Model

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Modified Simple Equation Approach

#### 2.2. The Generalized Kudryashov Approach

#### 2.3. The Modified Kudryashov Approach

## 3. Implementations

#### 3.1. The Formulation of the Solutions to the Complex HDM

#### 3.2. Implementation of MSE Approach

#### 3.3. Implementation of the GKA

**Case**

**1.**

**Case**

**2.**

**Case**

**3.**

#### 3.4. Implementation of the MKA

## 4. The Graphical Representations

## 5. Modulation Instability (MI) Analysis

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Ghanim, F.; Batiha, B.; Ali, A.H.; Darus, M. Geometric Properties of a Linear Complex Operator on a Subclass of Meromorphic Functions: An Analysis of Hurwitz-Lerch-Zeta Functions. Appl. Math. Nonlinear Sci.
**2023**. [Google Scholar] [CrossRef] - Nuaimi, M.A.; Jawad, S. Modelling and stability analysis of the competitional ecological model with harvesting. Commun. Math. Biol. Neurosci.
**2022**, 2022, 47. [Google Scholar] - Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput.
**2023**, 457, 128192. [Google Scholar] [CrossRef] - Wang, W.; Zhang, H.; Jiang, X.; Yang, X. A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor. Ann. Nucl.
**2024**, 195, 110163. [Google Scholar] [CrossRef] - Zhou, Z.; Zhang, H.; Yang, X. H
^{1}-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems. Numer. Algor.**2023**, 1–19. [Google Scholar] [CrossRef] - Zhang, H.; Yang, X.; Tang, Q.; Xu, D. A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation. Comput. Math. Appl.
**2022**, 109, 180–190. [Google Scholar] [CrossRef] - Srivastava, H.M.; Baleanu, D.; Machado, J.A.T.; Osman, M.S.; Rezazadeh, H.; Arshed, S.; Gunerhan, H. Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method. Phys. Scr.
**2020**, 95, 075217. [Google Scholar] [CrossRef] - Rizvi, S.T.R.; Khan, S.U.D.; Hassan, M.; Fatima, I.; Khan, S.U.D. Stable propagation of optical solitons for nonlinear Schrdinger equation with dispersion and self phase modulation. Math. Comput. Simul.
**2021**, 179, 126–136. [Google Scholar] [CrossRef] - Seadawy, A.; Alamri, S.Z. Mathematical methods via the nonlinear two-dimensional water waves of Olver dynamical equation and its exact solitary wave solutions. Results Phys.
**2018**, 8, 286–291. [Google Scholar] [CrossRef] - Zhang, Z. Jacobi elliptic function expansion method for the mKdVZK and the Hirota equations. Rom. J. Phys.
**2015**, 60, 1384–1394. [Google Scholar] - Raza, N.; Kazmi, S.S. Qualitative analysis and stationary optical patterns of nonlinear Schrödinger equation including nonlinear chromatic dispersion. Opt. Quantum Electron.
**2023**, 55, 718. [Google Scholar] [CrossRef] - Hashemi, M.S.; Mirzazadeh, M. Optical solitons of the perturbed nonlinear Schrdinger equation using Lie symmetry method. Optik
**2023**, 281, 170816. [Google Scholar] [CrossRef] - Gao, W.; Ismael, H.F.; Husien, A.M.; Bulut, H.; Baskonus, H.M. Optical soliton solutions of the cubic-quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation with the parabolic law. Appl. Sci.
**2019**, 10, 219. [Google Scholar] [CrossRef] - Akbulut, A.; Kaplan, M.; Tascan, F. Conservation laws and exact solutions of Phi-Four (Phi-4) equation via the (G’/G, 1/G)-expansion method. Z. für Naturforschung A
**2016**, 71, 439–446. [Google Scholar] [CrossRef] - Kaplan, M.; Ozer, M.N. Multiple-soliton solutions and analytical solutions to a nonlinear evolution equation. Opt. Quantum Electron.
**2018**, 50, 2. [Google Scholar] [CrossRef] - Zhou, Q.; Kumar, D.; Mirzazadeh, M.; Eslami, M.; Rezazadeh, H. Optical soliton in nonlocal nonlinear medium with cubic-quintic nonlinearities and spatio-temporal dispersion. Acta Phys. Pol. A
**2018**, 134, 1204–1210. [Google Scholar] [CrossRef] - Ma, W.X.; Lee, J.H. A transformed rational function method and exact solutions to the dimensional Jimbo-Miwa equation. Chaos Solitons Fractals
**2009**, 42, 1356–1363. [Google Scholar] [CrossRef] - Hereman, W.; Zhuang, W. Symbolic Computation of Solitons via Hirota’s Bilinear Method; Department of Mathematical and Computer Sciences, Colorado School of Mines: Golden, CO, USA, 1994. [Google Scholar]
- Alotaibi, M.F.; Raza, N.; Rafiq, M.H.; Soltani, A. New solitary waves, bifurcation and chaotic patterns of Fokas system arising in monomode fiber communication system. Alex. Eng. J.
**2023**, 67, 583–595. [Google Scholar] [CrossRef] - Raza, N.; Seadawy, A.R.; Kaplan, M.; Butt, A.R. Symbolic computation and sensitivity analysis of nonlinear Kudryashov’s dynamical equation with applications. Phys. Scr.
**2021**, 96, 105216. [Google Scholar] [CrossRef] - Raza, N.; Rani, B.; Chahlaoui, Y.; Shah, N.A. A variety of new rogue wave patterns for three couplednonlinear Maccari’s models in complex form. Nonlinear Dyn.
**2023**, 111, 18419–18437. [Google Scholar] [CrossRef] - Zayed, E.M.E.; Ibrahim, S.H. Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method. Chin. Phys. Lett.
**2012**, 29, 060201. [Google Scholar] [CrossRef] - Xia, F.L.; Jarad, F.; Hashemi, M.S.; Riaz, M.B. A reduction technique to solve the generalized nonlinear dispersive mK(m,n) equation with new local derivative. Results Phys.
**2022**, 38, 105512. [Google Scholar] [CrossRef] - Hashemi, M.S.; Malekinagad, J.; Marasi, H.R. Series solution of the system of fuzzy differential equations. Adv. Fuzzy Syst.
**2012**, 2012, 407647. [Google Scholar] [CrossRef] - Sugati, T.G.; Seadawy, A.R.; Alharbey, R.; Albarakati, W. Nonlinear physical complex hirota dynamical system: Construction of chirp free optical dromions and numerical wave solutions. Chaos Solitons Fractals
**2022**, 156, 111788. [Google Scholar] [CrossRef] - Ali, K.K.; Tarla, S.; Ali, M.R.; Yusuf, A.; Yilmazer, R. Consistent solitons in the plasma and optical fiber for complex hirota-dynamical model. Results Phys.
**2023**, 47, 106393. [Google Scholar] [CrossRef] - Seadawy, A.R.; Abdullah, A. Nonlinear complex physical models: Optical soliton solutions of the complex hirota dynamical model. Indian J. Phys.
**2021**, 95, 489–498. [Google Scholar] [CrossRef] - Bekir, A.; Zahran, E. New description for the bright, dark periodic solutions to the complex hirota-dynamical model. Authorea Prepr.
**2020**. [Google Scholar] - Kudryashov, N.A. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber. Optik
**2019**, 194, 163060. [Google Scholar] [CrossRef] - Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul.
**2012**, 17, 2248–2253. [Google Scholar] [CrossRef] - Hosseini, K.; Ansari, R. New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves Random Complex Media
**2017**, 27, 628–636. [Google Scholar] [CrossRef] - Akbulut, A.; Arnous, A.H.; Hashemi, M.S.; Mirzazadeh, M. Solitary waves for the generalized nonlinear wave equation in (3+1) dimensions with gas bubbles using the Nnucci’s reduction, enhanced and modified Kudryashov algorithms. J. Ocean. Eng. Sci.
**2022**. [Google Scholar] [CrossRef] - Karakoc, S.B.G.; Ali, K.K. Theoretical and computational structures on solitary wave solutions of Benjamin Bona Mahony-Burgers equation. Tbil. Math. J.
**2021**, 14, 33–50. [Google Scholar] [CrossRef] - Ay, N.G.; Yasar, E. Multi wave, kink, breather, interaction solutions and modulation instability to a conformable third order nonlinear Schrödinger equation. Opt. Quantum Electron.
**2023**, 55, 360. [Google Scholar] - Tariq, K.U.; Inc, M.; Kazmi, S.M.R.; Alhefth, R.K. Modulation instability, stability analysis and soliton solutions to the resonance nonlinear Schrödinger model with Kerr law nonlinearity. Opt. Quantum Electron.
**2023**, 55, 838. [Google Scholar] [CrossRef] - Xiang, Y.; Wen, S.; Dai, X.; Tang, Z.; Su, W.; Fan, D. Modulation instability induced by nonlinear dispersion in nonlinear metamaterials. Opt. Soc. Am.
**2007**, 24, 3058–3063. [Google Scholar] [CrossRef]

**Figure 1.**2D and 3D plots of Equation (21).

**Figure 2.**2D and 3D plots of Equation (24).

**Figure 3.**2D and 3D plots of Equation (26).

**Figure 4.**2D and 3D plots of Equation (32).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Akbulut, A.; Kaplan, M.; Alqahtani, R.T.; Ahmed, W.E.
On the Dynamics of the Complex Hirota-Dynamical Model. *Mathematics* **2023**, *11*, 4851.
https://doi.org/10.3390/math11234851

**AMA Style**

Akbulut A, Kaplan M, Alqahtani RT, Ahmed WE.
On the Dynamics of the Complex Hirota-Dynamical Model. *Mathematics*. 2023; 11(23):4851.
https://doi.org/10.3390/math11234851

**Chicago/Turabian Style**

Akbulut, Arzu, Melike Kaplan, Rubayyi T. Alqahtani, and W. Eltayeb Ahmed.
2023. "On the Dynamics of the Complex Hirota-Dynamical Model" *Mathematics* 11, no. 23: 4851.
https://doi.org/10.3390/math11234851