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Abstract: The complex Hirota-dynamical Model (HDM) finds multifarious applications in fields such
as plasma physics, fusion energy exploration, astrophysical investigations, and space studies. This
study utilizes several soliton-type solutions to HDM via the modified simple equation and generalized
and modified Kudryashov approaches. Modulation instability (MI) analysis is investigated. We also
offer visual representations for the HDM.
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1. Introduction

Mathematical models provide the most effective explanations for natural physical
phenomena, and these models often involve the formulation of both linear and nonlinear
differential equations to represent dynamical systems [1,2]. The examination of results
derived from nonlinear partial differential equations (NPDEs) has become a crucial com-
ponent across various fields of science and technology, including physical sciences, fluid
mechanics, fiber optics, solid-state mechanics, and material sciences [3,4]. As a result of
continuous research efforts, a great number of efficient methods for solving these equations
have been developed [5,6]. A few of these methods can be outlined as follows: Kudryashov
method [7], Darboux transformation [8], extended mapping scheme [9], Jacobi elliptic func-
tion expansion scheme [10], unified method [11], lie symmetry technique [12], exp(-φ(ξ))-
expansion technique [13], (G’/G, 1/G)-expansion method [14], auto-Backlund transfor-
mations [15], sine-Gordon equation expansion method [16], transformed rational function
algorithm [17], Hirota bilineer approach [18], Painleve’ approach [19,20], truncated Painlevé
technique [21], modified simple equation technique [22], and so on [23,24].

Due to the importance of the complex HDM problem, researchers employ a wide range
of approaches to examine solutions. For example, Sugati et al. [25] utilized the variational
principle and computational methods to obtain novel solutions, including chirp optical
and numerical wave solutions, and to investigate synonyms for existence, uniqueness,
and stability. Ali et al. [26] utilized the unified auxiliary equation method, Seadawy and
Abdullah [27] employed the extended mapping technique, and Bekir and Zahran [28]
utilized the solitary wave ansatz and extended simple equation techniques.

In this paper, we have acquired analytical solutions for traveling waves in the complex
HDM through the utilization of a modified simple equation and generalized and modified
Kudryashov methods. We also have given graphical representations of the obtained results.

The structure of this paper is as follows: Section 2 offers a concise introduction to the
considered methods. Section 3 outlines the formulation of soliton solutions for the problem.
Section 4 demonstrates the graphical representation of specific solutions. Section 5 gives
the modulation instability (MI) analysis. Lastly, Section 6 contains the conclusions.
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2. Methods

This section contains explanations of the modified simple equation (MSE), general-
ized Kudryashov approach (GKA), and modified Kudryashov approach (MKA). For this
purpose, the general form of a partial differential equation is presented as follows:

P(ϑ, ϑt, ϑx, ϑtt, ϑxt, ϑxx, ...) = 0, (1)

where P is a polynomial of ϑ(x, t) and its partial derivatives and ϑ(x, t) is defined as a
complex valued function. If we employ wave transformation in the following manner:

ϑ(x, t) = ϕ(ξ)eiς(x,t), ς(x, t) = −cx + wt + Φ, ξ = x− νt (2)

to Equation (1), setting equal zero to the real and imaginary parts, we obtain a nonlinear
ordinary differential equation (ODE) as follows:

Q
(

ϕ, ϕ
′
, ϕ
′′

, ϕ
′′′

, . . .
)
= 0. (3)

It is worth mentioning that, in Equation (3), the differentiation of ϕ with respect to ξ is
represented by prime. Every term in Equation (3) will be integrated.

2.1. Modified Simple Equation Approach

Using to MSE method, the solutions to Equation (3) in terms of Ω
′
(ξ)

Ω(ξ)
will be examined

as follows [22]:

ϕ(ξ) =
N

∑
n=0

αn

[
Ω
′
(ξ)

Ω(ξ)

]n

, αn = const.,αN 6= 0. (4)

Here, Ω(ξ) is a function to be determined. (Ω
′
(ξ) 6= 0).

To find the positive integer N in Equation (4), we compare the highest power of the
nonlinear term(s) to the highest power of the highest order derivative in Equation (3).
Once N is determined, Equation (4) is substituted into Equation (3) and all the coefficients
Ωj(ξ) (j = 0,−1,−2, ...) are gathered. Each equation in the resulting system of determining
equations must be set to zero. Then, symbolic computation is employed to solve this
system of equations and find solutions. Subsequently, we plug these solutions back into
Equation (4) to obtain the exact solutions for Equation (1).

2.2. The Generalized Kudryashov Approach

Following this approach, the required solution for the simplified equation is con-
structed as a polynomial in Υ(ξ)

ϕ(ξ) =

N
∑

i=0
$iΥi(ξ)

M
∑

j=0
ρjΥj(ξ),

(5)

where $i(i = 0, 1, ..., N), ρj(j = 0, 1, ..., M) are variables awaiting determination ($N 6= 0,
ρM 6= 0) and Υ = Υ(ξ) is the solution of

dΥ
dξ

= Υ2(ξ)− Υ(ξ). (6)

The solution for Equation (6) is written as

Υ(ξ) =
1

1 + Ceξ
, C is the integration constant.
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Here, the homogeneous balance principle allows us to find the positive integers N and
M in Equation (5) by using (3). Ultimately, a polynomial of Υ is obtained by substituting
Equation (5) into Equation (3) together with Equation (6). In this step, all the coefficients of
polynomial Υ are equated to zero to derive a set of algebraic equations. The utilization of
computer software in solving this system provides the values for $i(where i ranges from 0
to N), ρj(where j ranges 0 to M). To conclude, the solutions for the reduced Equation (3)
can be ascertained by plugging in these values and Equation (6) into Equation (5) [29,30].

2.3. The Modified Kudryashov Approach

By following the modified Kudryashov approach, the solution for Equation (3) is
assumed as follows:

ϕ(ξ) =
N

∑
i=0

$i(R(ξ))i, $N 6= 0, (7)

where $i(i = 0, 1, ..., N) are constants which will be established at a later stage, is deter-
mined using the principle of homogeneous balance, and the function R(ξ) is defined by:

R(ξ) =
1

1 + C1aξ
, (8)

where (8) satisfies the following ODE:

R
′
(ξ) =

(
R2(ξ)− R(ξ)

)
ln a. (9)

Substituting Equation (7) into Equation (3) without ignoring Equation (9), a set of
algebraic equations is obtained for $i, a, C1, c, w, and v. Ultimately, by solving this resulting
system, we compute the exact solutions for Equation (1) [31–33].

3. Implementations

Firstly, we will give the formulation of the solutions to the complex HDM, and then
we will apply the methods described above.

3.1. The Formulation of the Solutions to the Complex HDM

A complex Hirota-dynamical model equation can be effectively employed to analyze
turbulent flows, study phenomena like shocks and other nonlinear events, and perceive
the behavior of light waves propagating through optical fibers. Given the contemporary
fascination with plasma physics, fusion energy, astrophysical studies, and space research,
there is a growing necessity for further in-depth exploration and advancement of the HDM
equation. The equation representing the complex HDM is as follows:

iϑt + ϑxx + 2|ϑ|2ϑ + iγϑxxx + 6iγ|ϑ|2ϑx = 0. (10)

where γ is a real number [26]. We examine a solution in the form of a complex-valued
wave, which is subsequently followed by

ϑ(x, t) = ϕ(ξ)eiς(x,t), ς(x, t) = −cx + wt + Φ, ξ = x− νt, (11)

which represents the motion of a wave by means that involve both space and time. The
complex phase function ς(x, t) introduces the modulation of the wave’s phase during its
propagation, where ν represents the wave velocity. Additionally, it mentions the complex
amplitude function ϕ(ξ), which only relies on the distance of the wavefront from an
observer. Here, w is the angular velocity, Φ is the beginning phase of a propagating wave,
and c is the wave number. From the application of Equation (12) into Equation (10),
the following ODE is verified.

(−c2 − w− c3γ)ϕ + (2 + 6cγ)ϕ3 − i(c(2 + 3cγ) + ν)ϕ′ + 6iγϕ2 ϕ′ + (1 + 3cγ)ϕ′′ + iγϕ′′′ = 0. (12)
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The equations below are derived by setting equal zero to the real and imaginary parts
of Equation (12)

(−c2 − w− c3γ)ϕ + (2 + 6cγ)ϕ3 + (1 + 3cγ)ϕ′′ = 0, (13)

and
−(c(2 + 3cγ) + ν)ϕ′ + 6γϕ2 ϕ′ + γϕ′′′ = 0. (14)

We get

c = − 1
3γ

, w = − 2
27γ2 , (15)

by setting the coefficient in equation Equation (13) to zero. Then, we find the following
equation from the values above:

−(c(2 + 3cγ) + ν)ϕ′ + 6γϕ2 ϕ′ + γϕ′′′ = 0. (16)

3.2. Implementation of MSE Approach

In this section, we derive the exact solutions for Equation (16) by MSE. Since the
balancing number is 1, the solution is given by:

Ω(ξ) = α0 + α1

(
Ω
′
(ξ)

Ω(ξ)

)
. (17)

Substituting Equation (17) into Equation (16),we get:

Ω−1(ξ) : −να1Ω′′ − 2cα1Ω′′ + 6γα1Ω′′α2
0 − 3c2γα1Ω′′ + γα1Ω(4) = 0,

Ω−2(ξ) : −4γα1Ω′′′Ω′ + να1(Ω′)
2 − 3γα1(Ω′′)2 + 3c2γα1(Ω′)

2

−6γα1(Ω′)
2
α2

0 + 2cα1(Ω′)
2 + 12γα2

1Ω′′α0Ω′ = 0,
Ω−3(ξ) : 6γα3

1Ω′′(Ω′)2 + 12γα1Ω′′(Ω′)2 − 12γα2
1(Ω

′)3
α0 = 0,

Ω−4(ξ) : −6γα1(Ω′)
4 − 6γα3

1(Ω
′)4 = 0,

(18)

where Ω(4) = d4Ω
dξ4 . We derive from the system of equations that

α0 = ∓ i
√
−2γν− 4γc− 6c2γ2

2γ
, α1 = ±i, (19)

and

Ω(ξ) = C1 + C2e±
√
−2γν−4γc−6c2γ2

γ , (20)

where C1 and C2 are arbitrary constants. Finally, we find the solution for HDM as

ϑ(x, t) = ±
iΨ
(
−C1 + C2 cosh

(
Ψ
γ (x− νt)

)
+ C2 sinh

(
Ψ
γ (x− νt)

))
γ
(

C1 + C2 cosh
(

Ψ
γ (x− νt)

)
+ C2 sinh

(
Ψ
γ (x− νt)

)) ei(−cx+wt+Φ), (21)

where Ψ =
√
−2γ(ν + 2c + 3c2γ).

3.3. Implementation of the GKA

From the implementation of the homogeneous balance principle, we have the bal-
ancing number as N = M + 1. By specifying M as 1, N is determined to be 2. Therefore,
the solution can be formed as

ϕ(ξ) =
$0 + $1Υ + $2Υ2

ρ0 + ρ1Υ
, (22)
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where Υ = Υ(ξ) is the solution for Equation (6). Taking this into account, Equation (22)
will be inserted into Equation (16) and Equation (6) will be applied. Subsequently, we set
all the coefficients of the functions Rk to zero, leading to the following system of equations.
Here, $0, $1, $2, ρ0, and ρ1 are parameters.

Υ8 : 6γ$3
2ρ1 + 6γ$2ρ3

1 = 0,

Υ7 : 24γ$2ρ0ρ2
1 − 6γ$3

2ρ1 + 12γ$3
2ρ0 − 12γ$2ρ3

1 + 12γ$2
2ρ1$1 = 0,

Υ6 : −2c$2ρ3
1 + 6γ$2ρ1$2

1 − 12γ$3
2ρ0 − ν$2ρ3

1 − 3c2γ$2ρ3
1 + 30γ$1ρ0$2

2 − 12γ$2
2ρ1$1

+6γ$2
2ρ1$0 + 7γ$2ρ3

1 − 48γ$2ρ0ρ2
1 + 36γ$2ρ2

0ρ1 = 0,

Υ5 : −72γ$2ρ2
0ρ1 + 24γ$2ρ3

0 + 2c$2ρ3
1 + ν$2ρ3

1 + 24γ$2
1ρ0$2

−γ$2ρ3
1 − 6γ$2ρ1$2

1 − 4ν$2ρ0ρ2
1 − 12c2γ$2ρ0ρ2

1 + 28γ$2ρ0ρ2
1

+24γ$2
2ρ0$0 − 30γ$1ρ0$2

2 − 8c$2ρ0ρ2
1 + 3c2γ$2ρ2

1 − 6γ$2
2ρ1$0 = 0,

Υ4 : −3c2γ$1ρ0ρ2
1 − 15c2γ$2ρ2

0ρ1 + 12c2γ$2ρ0ρ2
1 + 36γ$1ρ0$0$2 + 6γ$1ρ3

0

+2cρ3
1$0 + νρ3

1$0 + 6γ$3
1ρ0 − 54γ$2ρ3

0 − γρ3
1$0 − 6γρ1$0ρ2

0 − 2c$1ρ0ρ2
1

−ν$1ρ0ρ2
1 − 5ν$2ρ2

0ρ1 + 4ν$2ρ0ρ2
1 − 24γ$2

1ρ0$2 − 24γ$2
2ρ0$0 − 6γ$2ρ1$2

0

+6γ$1ρ2
0ρ1 + γ$1ρ0ρ2

1 + 41γ$2ρ2
0ρ1 − 4γ$2ρ0ρ2

1 − 6γρ2
1$0ρ0 − 6γρ1$0$2

1

+8c$2ρ0ρ2
1 + 3c2γρ3

1$0 − 10c$2ρ2
0ρ1 = 0,

Υ3 : −6c2γ$1ρ2
0ρ1 + 3c2γ$1ρ0ρ2

1 + 15c2γ$2ρ2
0ρ1 + 6c2γρ2

1$0ρ0 + 38γ$2ρ3
0

−36γ$1ρ0$0$2 − 12γ$1ρ3
0 − 4c$2ρ3

0 − 2cρ3
1$0 − 2ν$2ρ3

0 − νρ3
1$0 − 6γ$3

1ρ0

+12γρ1$0ρ2
0 − 4c$1ρ2

0ρ1 + 2c$1ρ0ρ2
1 + 10c$2ρ2

0ρ1 + 4cρ2
1$0ρ0 − 6c2γ$2ρ3

0

+γρ3
1$0 − 3c2γρ3

1$0 − 2ν$1ρ2
0ρ1 + ν$1ρ0ρ2

1 + 5ν$2ρ2
0ρ1 + 2νρ2

1$0ρ0 + 12γ$2
1ρ0$0

−12γρ1$2
0$1 + 6γρ1$0$2

1 − 10γ$1ρ2
0ρ1 − γ$1ρ0ρ2

1 − 5γ$2ρ2
0ρ1 + 10γρ2

1$0ρ0

+6γ$2ρ1$2
0 + 12γ$2ρ0$2

0 = 0,

Υ2 : 3c2γρ1$0ρ2
0 + 6c2γ$1ρ2

0ρ1 − 6c2γρ2
1$0ρ0 − 2c$1ρ3

0 − p$1ρ3
0

+7γ$1ρ3
0 + 4c$2ρ3

0 + 2ν$2ρ3
0 − 8γ$2ρ3

0 + 2cρ1$0ρ2
0

−6γρ1$3
0 − 7γρ1$0ρ2

0 + 4c$1ρ2
0ρ1 − 4cρ2

1$0ρ0 + 6c2γ$2ρ3
0

−3c2γ$1ρ3
0 + νρ1$0ρ2

0 + 6γ$1ρ0$2
0 + 2ν$1ρ2

0ρ1 − 2νρ2
1$0ρ0

−12γ$2
1ρ0$0 − 12γ$2ρ0$2

0 + 12γρ1$2
0$1 + 4γ$1ρ2

0ρ1 − 4γρ2
1$0ρ0 = 0,

Υ1 : −3c2γρ1$0ρ2
0 + 2c$1ρ3

0 − 2cρ1$0ρ3
0 + 6γρ1$3

0 − γ$1ρ3
0 − 6γ$1ρ0$2

0

+γρ1$0ρ2
0 − νρ1$0ρ2

0 + ν$1ρ3
0 + 3c2γ$1ρ3

0 = 0
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Subsequently, we set all the coefficients of the functions Υ to zero, leading to the
following system of equations. We discover various cases which are subsequently elabo-
rated upon.

Case 1.

$0 =
iρ0

2
, $1 = − i(2ρ0 − ρ1)

2
, $2 = −ρ1i, ν = −3c2γ− γ

2
− 2c. (23)

Next, by inserting these acquired values into Equation (22) with Equations (11) and (15),
the solution for the complex HDM is calculated as follows:

ϑ(x, t) =
i(C(cosh(x+(3c2γ+ γ

2 +2c)t)+sinh(x+(3c2γ+ γ
2 +2c)t))−1)

2(C(cosh(x+(3c2γ+ γ
2 +2c)t)+sinh(x+(3c2γ+ γ

2 +2c)t))+1)

×e
i
(

1
3γ x+ 2

27γ2 t+Φ
)

.

(24)

Case 2.

$0 = 0, $1 = −iρ1, $2 = iρ1, ρ0 = − ρ1
2 , ν = −2c− 3c2γ + γ, (25)

Next, by inserting these acquired values into Equation (22) with Equations (11) and (15),
the solution for the complex HDM is calculated as follows:

ϑ(x, t) =
2iC(cosh(x+(2c+3c2γ−γ)t)+sinh(x+(2c+3c2γ−γ)t))

C2(cosh(2x+(4c+6c2γ−2γ)t)+sinh(2x+(4c+6c2γ−2γ)t))−1

×e
i
(

1
3γ x+ 2

27γ2 t+Φ
)

.

(26)

Case 3.

$0 =
iρ1

2
, $1 = −ρ1i, $2 = ρ1i, ρ0 = −ρ1

2
, ν = −2c− 3c2γ− 2γ, (27)

Next, by inserting these acquired values into Equation (22) with Equations (11) and (15),
the solution for the complex HDM is derived as follows:

ϑ(x, t) =
−i(1+C2(cosh(2x+(4c+6c2γ+4γ)t)+sinh(2x+(4c+6c2γ+4γ)t)))

C2(cosh(2x+(4c+6c2γ+4γ)t)+sinh(2x+(4c+6c2γ+4γ)t))−1

×e
i
(

1
3γ x+ 2

27γ2 t+Φ
)

.

(28)

3.4. Implementation of the MKA

From the implementation of the homogeneous balancing principle, we identify the
balancing number as N = 1. Hence, the solution can be expressed as:

ϕ(ξ) = $0 + $1R. (29)

When we substitute Equations (9) and (29) into Equation (16) and set all the coefficients
of the functions Rk to zero, we derive the following set of equations:
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R4 : 6γ$1(ln a)3 + 6γ$3
1(ln a),

R3 : −12γ$1(ln a)3 + 12γ$2
1(ln a)$0 − 6γ$3

1(ln a),

R2 : $1 ln a
3γ − $1(ln a)v + 6γ$1$2

0(ln a)− 12γ$0$2
1(ln a) + 7γ$1(ln a)3,

R1 : − $1 ln a
3γ + $1(ln a)v− 6γ$1$2

0(ln a)− γ$1(ln a)3.

(30)

Upon resolving the derived system, we get the following values for constants:

$0 = ∓ i(ln a)
2

, $1 = ±i(ln a), v = −3γ2(ln a)2 − 2
6γ

. (31)

Ultimately, the solution to Equation (10) is presented as follows:

ϑ(x, t) =

∓ i(ln a)
2
± i(ln a)

1 + C1a

(
x+ 3γ2(ln a)2−2

6γ t
)
 exp

(
i
(

x
3γ
− 2t

27γ2 + Φ
))

. (32)

4. The Graphical Representations

In this section, we give the 2D, 3D, and contour plots of some of the results. Plots of
the solutions have an important place for understanding the motion of the wave. Firstly,
plots were drawn for Equation (21) when c1 = 0.1, c2 = 1, γ = 2.1, ν = 0.9, Φ = 0.6 as
follows (Figure 1):

Figure 1. 2D and 3D plots of Equation (21).

Then, plots were drawn for Equation (24) when ρ0 = 0.2, ρ1 = 0.8, C = 1, γ = 0.4,
Φ = 0.6 as follows (Figure 2):
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Figure 2. 2D and 3D plots of Equation (24).

Then, plots were drawn for Equation (26) when ρ1 = 0.1, C = 0.1, γ = 2, Φ = 0.1
as follows (Figure 3):

Figure 3. 2D and 3D plots of Equation (26).

Finally, plots were drawn for Equation (32) when a = 2.7, C1 = 1, γ = 0.1, Φ = 0.8
as follows (Figure 4):
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Figure 4. 2D and 3D plots of Equation (32).

5. Modulation Instability (MI) Analysis

MI will be investigated in this section and a steady-state solution to Equation (10) is
given as follows [34–36]:

ϑ(x, t) = (ψ(x, t) +
√

ϕ)eiϕx. (33)

If we are substituting Equation (33) into Equation (10) and linearising the equation,
the following ODE is obtained

i(γψxxx + ψt + 2ϕψx)− 3γϕψxx + ψxx + 4ϕψ + 2ϕψ∗, (34)

where ψ∗(x, t) is the conjugate of ψ(x, t). For solving Equation (34), we suppose the general
solutions of the following form:

ψ(x, t) = α1ei(ρx−νt) + α2e−i(ρx−νt), (35)

where ρ and ν denote, respectively, the wave number and the frequency of the perturbations.
Putting the supposed solution to Equation (35) into Equation (34), and seperating the
coefficients of the ei(ρx−νt) and e−i(ρx−νt), the following relation is obtained:

−3ϕγρ2 + ρ3γ− 2ρϕ + ρ2 + ν = 0. (36)

If we solve the dispersion relation as above for ρ, we get:

Ψ(v) =
36ϕ2γ2+6ϕγ(216ϕ3γ3−108γ2ν+12γ

√
∆−8)

1/3−2(216ϕ3γ3−108γ2ν+12γ
√

∆−8)
1/3

6γ(216ϕ3γ3−108γ2ν+12γ
√

∆−8)
1/3

+(216ϕ3γ3−108γ2ν+12γ
√

∆−8)
1/3

+4

6γ(216ϕ3γ3−108γ2ν+12γ
√

∆−8)
1/3 ,

(37)
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where ∆ = −108ϕ4γ2 +
(
−324γ3ν− 24γ

)
ϕ3 − 12ϕ2 + 81γ2ν2 + 12ν.

We can say that from the dispersion relation, if

−108ϕ4γ2 +
(
−324γ3ν− 24γ

)
ϕ3 − 12ϕ2 + 81γ2ν2 + 12ν > 0,

and
6γ
(

216ϕ3γ3 − 108γ2ν + 12γ
√

∆− 8
)1/3

6= 0, Ψ(v),

is real. Then, against small perturbations, the steady state is stable. In contrast, the steady-
state solution is always unstable if

−108ϕ4γ2 +
(
−324γ3ν− 24γ

)
ϕ3 − 12ϕ2 + 81γ2ν2 + 12ν < 0,

and
6γ
(

216ϕ3γ3 − 108γ2ν + 12γ
√

∆− 8
)1/3

6= 0.

The rate of growth of the MI gives spectrum G(Ω) as

G(Ω) = 2IM(ρ).

The MI gain spectrum for ϕ = 9, γ = 3 is given by Figure 5 as follows:

Figure 5. The MI gain spectrum.

6. Conclusions

In our paper, we have successfully derived closed-form traveling wave solutions for
complex HDM by using a straightforward approach via the modified simple equation and
generalized and modified Kudryashov methods. When we compared our findings to the
previous literature, we discovered a diverse range of solutions, each showcasing distinct
behaviors. These newly derived solutions are both novel and unique, as they have not been
reported before and they hold great promise for addressing real-world challenges related
to complex HDM in diverse domains of physics and engineering. In other words, these
innovative soliton-type solutions have the potential to make significant contributions to
fields like plasma physics, fusion energy research, astrophysics, and space studies. The tech-
niques employed are shown to be robust and highly efficient. Modulation instability (MI)
analysis is examined. We also offer visual representations, namely 2D, 3D, and contour
plots for the acquired solutions. Graphical representations are valuable for comprehending
wave motions.
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