On a General Formulation of the Riemann–Liouville Fractional Operator and Related Inequalities
Abstract
:1. Introduction
2. Applications
3. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- Galeano, J.; Nápoles, J.; Pérez, E. New Hermite-Hadamard inequalities in the framework of generalized fractional integrals. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2021, 48, 319–327. [Google Scholar] [CrossRef]
- Galeano, J.; Loreda, J.; Nápoles, J.; Pérez, E. Certain integral inequalities of Hermite-Hadamard type for h-convex functions. JMCSA 2021, 7, 129–140. [Google Scholar]
- Galeano, J.; Nápoles, J.; Pérez, E. Several integral inequalities for generalized Riemann–Liouville fractional operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 269–278. [Google Scholar] [CrossRef]
- Galeano, J.; Nápoles, J.; Pérez, E. A note on some integral inequalities in a generalized framework. IJAMAS 2021, 60, 45–52. [Google Scholar]
- Galeano, J.; Nápoles, J.; Pérez, E.; Vivas, M. The Minkowski Inequality for Generalized Fractional Integrals. AMIS 2021, 15, 1–7. [Google Scholar]
- Qi, F.; Guo, B.N. Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function. Rev. R Acad. Cienc. Exactas Fís. Nat. Ser. A Math. 2017, 111, 425–434. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; Macmillan Co.: New York, NY, USA, 1960. [Google Scholar]
- Yang, Z.H.; Tian, J.F. Monotonicity and inequalities for the gamma function. J. Inequal. Appl. 2017, 2017, 317. [Google Scholar] [CrossRef]
- Yang, Z.H.; Tian, J.F. Monotonicity and sharp inequalities related to gamma function. J. Math. Inequal. 2018, 12, 1–22. [Google Scholar] [CrossRef]
- Díaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. K-fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies; Elsevier: New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for (k,h)-Riemann–Liouville fractional integral. New Trends Math. Sci. 2016, 4, 138–146. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann–Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Rashid, S.; Hammouch, Z.; Kalsoom, H.; Ashraf, R.; Chu, Y.M. New Investigation on the Generalized K-Fractional Integral Operators. Front. Phys. 2020, 8, 25. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Dahmani, Z.; Kiris, M.E.; Ahmad, F. (k,s)-Riemann–Liouville fractional integral and applications. HJMS 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Holambe, T.L.; Ul-Haque, M.M. A remark on semigroup property in fractional calculus. IJMCAR 2014, 4, 27–32. [Google Scholar]
- Baleanu, D.; Machado, J.A.T.; Luo, C.J. Fractional Dynamic and Control; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Dubey, R.S.; Goswami, P. Some fractional integral inequalities for the Katugampola integral operator. AIMS Math. 2019, 4, 193–198. [Google Scholar] [CrossRef]
- Chinchane, V.L.; Pachpatte, D.B. A note on some fractional integral inequalities via Hadamard integral. JFCA 2013, 4, 125–129. [Google Scholar]
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 1982, 2, 93–98. [Google Scholar]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequality. J. Inequal. Pure Appl. Math. 2009, 10, 5. [Google Scholar]
- Alsalami, O.M.; Sahoo, S.K.; Tariq, M.; Shaikh, A.A.; Cesarano, C.; Nonlaopon, K. Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator. Symmetry 2022, 14, 1691. [Google Scholar] [CrossRef]
- Jenber, D.; Haile, M.; Gizachew, A. Gizachew, Chebyshev Type Inequalities for the Riemann–Liouville Variable-Order Fractional Integral Operator. Preprints 2021, 2021010310. [Google Scholar] [CrossRef]
- Qi, F.; Habib, S.; Mubeen, S.; Naeem, M.N. Generalized k-fractional conformable integrals and related inequalities. AIMS Math. 2019, 4, 343–358. [Google Scholar] [CrossRef]
- Patel, U.D.; Todorcevic, V.; Radojevic, S.; Radenovic, S. Best Proximity Point for ΓτF-Fuzzy Proximal Contraction. Axioms 2023, 12, 165. [Google Scholar] [CrossRef]
- Patel, U.D.; Radenovic, S. An Application to Nonlinear Fractional Differential Equation via α-ΓF-Fuzzy Contractive Mappings in a Fuzzy Metric Space. Mathematics 2022, 10, 2831. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galeano Delgado, J.G.; Nápoles Valdés, J.E.; Pérez Reyes, E.E. On a General Formulation of the Riemann–Liouville Fractional Operator and Related Inequalities. Mathematics 2023, 11, 3565. https://doi.org/10.3390/math11163565
Galeano Delgado JG, Nápoles Valdés JE, Pérez Reyes EE. On a General Formulation of the Riemann–Liouville Fractional Operator and Related Inequalities. Mathematics. 2023; 11(16):3565. https://doi.org/10.3390/math11163565
Chicago/Turabian StyleGaleano Delgado, Juan Gabriel, Juan Eduardo Nápoles Valdés, and Edgardo Enrique Pérez Reyes. 2023. "On a General Formulation of the Riemann–Liouville Fractional Operator and Related Inequalities" Mathematics 11, no. 16: 3565. https://doi.org/10.3390/math11163565
APA StyleGaleano Delgado, J. G., Nápoles Valdés, J. E., & Pérez Reyes, E. E. (2023). On a General Formulation of the Riemann–Liouville Fractional Operator and Related Inequalities. Mathematics, 11(16), 3565. https://doi.org/10.3390/math11163565