PQ-Mist: Priority Queueing-Assisted Mist–Cloud–Fog System for Geospatial Web Services
Abstract
:1. Introduction
1.1. Contributions
- It presents a description of geospatial computing paradigms, geospatial web services, and different performance evaluations strategies, with varieties of queueing approaches associated with edge, mist, fog, and cloud computing perspectives.
- It introduces the priority queueing-assisted mist–cloud–fog system for geospatal web services.
- It provides the analytical queueing approach along with performance analysis for the proposed system.
- It also carries the performance measurement and experimental results of the proposed system with the variability of arithmetic outcomes in graphs.
1.2. Organizations
2. Related Work
2.1. Geospatial Computing Paradigms
2.1.1. Geospatial Edge Computing
2.1.2. Geospatial Mist Computing
2.1.3. Geospatial Fog Computing
2.1.4. Geospatial Cloud Computing
2.2. Geospatial Web Services
2.3. Performance Evaluations Strategies
3. Proposed Model
- There is more than one class of tasks on the basis of their demands or significance to the system.
- The tasks of one class are more important than the other. When there are more than two classes, it is possible to organize them into a hierarchy of service priorities.
- The priority that agrees with a class of tasks may or may not be preemptive. If one task is prioritized in relation to another, the priority task will prevent the non-priority task from obtaining service.
- When service preemption is permitted, it can resume the service to the preempted task after the priority tasks are processed, from when the service was preempted or initiated from the start. They are disciplines of preventive recovery and preventive repetition, respectively.
Optimal Cost for Task of Priorities
Algorithm 1 Algorithm for finding optimal cost for task of priorities |
Input: , , . Output: ,
|
4. Numerical Results
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Armstrong, M.P. High performance computing for geospatial applications: A retrospective view. In High Performance Computing for Geospatial Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 9–25. [Google Scholar]
- Barik, R.K.; Dubey, H.; Mankodiya, K.; Sasane, S.A.; Misra, C. Geofog4health: A fog-based sdi framework for geospatial health big data analysis. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 551–567. [Google Scholar] [CrossRef]
- Goswami, V.; Sharma, B.; Patra, S.S.; Chowdhury, S.; Barik, R.K.; Dhaou, I.B. Iot-fog computing sustainable system for smart cities: A queueing-based approach. In Proceedings of the 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC), Jeddah, Saudi Arabia, 23–25 January 2023; pp. 1–6. [Google Scholar]
- Mukherjee, M.; Guo, M.; Lloret, J.; Iqbal, R.; Zhang, Q. Deadline-aware fair scheduling for offloaded tasks in fog computing with inter-fog dependency. IEEE Commun. Lett. 2019, 24, 307–311. [Google Scholar] [CrossRef]
- Nikoui, T.S.; Rahmani, A.M.; Balador, A.; Javadi, H.H.S. Analytical model for task offloading in a fog computing system with batch-size-dependent service. Comput. Commun. 2022, 190, 201–215. [Google Scholar] [CrossRef]
- Geobuiz 23: Global Geospatial Industry Market Size, Forecast, and Growth Trends Report. Available online: https://geospatialworld.net/consulting/reports/geobuiz/2023/index.html (accessed on 17 March 2023).
- Geospatial Analytics Market Size & Share Analysis—Growth Trends & Forecasts (2023–2028). Available online: https://www.mordorintelligence.com/industry-reports/geospatial-analytics-market (accessed on 17 March 2023).
- Bhushan, S.; Mat, M. Priority-queue based dynamic scaling for efficient resource allocation in fog computing. In Proceedings of the 2021 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), Delhi, India, 2–4 December 2021; pp. 1–6. [Google Scholar]
- Golkar, A.; Malekhosseini, R.; RahimiZadeh, K.; Yazdani, A.; Beheshti, A. A priority queue-based telemonitoring system for automatic diagnosis of heart diseases in integrated fog computing environments. Health Inform. J. 2022, 28, 14604582221137453. [Google Scholar] [CrossRef] [PubMed]
- Barik, R.K.; Dubey, A.C.; Tripathi, A.; Pratik, T.; Sasane, S.; Lenka, R.K.; Dubey, H.; Mankodiya, K.; Kumar, V. Mist data: Leveraging mist computing for secure and scalable architecture for smart and connected health. Procedia Comput. Sci. 2018, 125, 647–653. [Google Scholar] [CrossRef]
- Hmissi, F.; Ouni, S. An mqtt brokers distribution based on mist computing for real-time iot communications. Res. Sq. preprint. 2021. [Google Scholar] [CrossRef]
- Maiti, P.; Sahoo, B.; Turuk, A.K.; Kumar, A.; Choi, B.J. Internet of things applications placement to minimize latency in multi-tier fog computing framework. ICT Express 2022, 8, 166–173. [Google Scholar] [CrossRef]
- Mallick, S.R.; Lenka, R.K.; Goswami, V.; Sharma, S.; Dalai, A.K.; Das, H.; Barik, R.K. Bcgeo: Blockchain-assisted geospatial web service for smart healthcare system. IEEE Access 2023, 11, 58610–58623. [Google Scholar] [CrossRef]
- Arefian, Z.; Khayyambashi, M.R.; Movahhedinia, N. Delay reduction in mtc using sdn based offloading in fog computing. PLoS ONE 2023, 18, e0286483. [Google Scholar] [CrossRef]
- Cai, P.; Jiang, Q. Gis spatial information sharing of smart city based on cloud computing. Clust. Comput. 2019, 22, 14435–14443. [Google Scholar] [CrossRef]
- Das, J.; Ghosh, S.K.; Buyya, R. Geospatial edge-fog computing: A systematic review, taxonomy, and future directions. In Mobile Edge Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 47–69. [Google Scholar]
- Fareed, N.; Rehman, K. Integration of remote sensing and gis to extract plantation rows from a drone-based image point cloud digital surface model. ISPRS Int. J. Geo-Inf. 2020, 9, 151. [Google Scholar] [CrossRef]
- Shahid, H.; Shah, M.A.; Almogren, A.; Khattak, H.A.; Din, I.U.; Kumar, N.; Maple, C. Machine learning-based mist computing enabled internet of battlefield things. ACM Trans. Internet Technol. (TOIT) 2021, 21, 1–26. [Google Scholar] [CrossRef]
- He, Z.; Xu, Y.; Liu, D.; Zhou, W.; Li, K. Energy-efficient computation offloading strategy with task priority in cloud assisted multi-access edge computing. Future Gener. Comput. Syst. 2023, 148, 298–313. [Google Scholar] [CrossRef]
- Chavhan, S.; Gupta, D.; Gochhayat, S.P.; Khanna, A.; Shankar, K.; Rodrigues, J.J. Edge computing ai-iot integrated energy-efficient intelligent transportation system for smart cities. ACM Trans. Internet Technol. 2022, 22, 1–18. [Google Scholar] [CrossRef]
- Bouanaka, C.; Laouir, A.E.; Medkour, R. Iedss: Efficient scheduling of emergency department resources based on fog computing. In Proceedings of the 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA), Antalya, Turkey, 2–5 November 2020; pp. 1–6. [Google Scholar]
- Dutta, A.; Misra, C.; Barik, R.K.; Mishra, S. Enhancing mist assisted cloud computing toward secure and scalable architecture for smart healthcare. In Advances in Communication and Computational Technology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1515–1526. [Google Scholar]
- Barik, R.K.; Misra, C.; Lenka, R.K.; Dubey, H.; Mankodiya, K. Hybrid mist-cloud systems for large scale geospatial big data analytics and processing: Opportunities and challenges. Arab. J. Geosci. 2019, 12, 32. [Google Scholar] [CrossRef]
- Das, J.; Mukherjee, A.; Ghosh, S.K.; Buyya, R. Spatio-fog: A green and timeliness-oriented fog computing model for geospatial query resolution. Simul. Model. Pract. Theory 2020, 100, 102043. [Google Scholar] [CrossRef]
- Etemadi, M.; Ghobaei-Arani, M.; Shahidinejad, A. Resource provisioning for iot services in the fog computing environment: An autonomic approach. Comput. Commun. 2020, 161, 109–131. [Google Scholar] [CrossRef]
- Silva, F.A.; Fé, I.; Gonçalves, G. Stochastic models for performance and cost analysis of a hybrid cloud and fog architecture. J. Supercomput. 2021, 77, 1537–1561. [Google Scholar] [CrossRef]
- Sharma, S.; Saini, H. A novel four-tier architecture for delay aware scheduling and load balancing in fog environment. Sustain. Comput. Inform. Syst. 2019, 24, 100355. [Google Scholar] [CrossRef]
- Wang, T.; Liang, Y.; Jia, W.; Arif, M.; Liu, A.; Xie, M. Coupling resource management based on fog computing in smart city systems. J. Netw. Comput. Appl. 2019, 135, 11–19. [Google Scholar] [CrossRef]
- Alli, A.A.; Alam, M.M. Secoff-fciot: Machine learning based secure offloading in fog-cloud of things for smart city applications. Internet Things 2019, 7, 100070. [Google Scholar] [CrossRef]
- El Kafhali, S.; Salah, K. Efficient and dynamic scaling of fog nodes for iot devices. J. Supercomput. 2017, 73, 5261–5284. [Google Scholar] [CrossRef]
- El Kafhali, S.; Salah, K. Modeling and analysis of performance and energy consumption in cloud data centers. Arab. J. Sci. Eng. 2018, 43, 7789–7802. [Google Scholar] [CrossRef]
- Zhang, C. Design and application of fog computing and internet of things service platform for smart city. Future Gener. Comput. Syst. 2020, 112, 630–640. [Google Scholar] [CrossRef]
- Ghobaei-Arani, M.; Souri, A.; Rahmanian, A.A. Resource management approaches in fog computing: A comprehensive review. J. Grid Comput. 2019, 18, 1–42. [Google Scholar] [CrossRef]
- Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [Google Scholar] [CrossRef]
- Evangelidis, K.; Ntouros, K.; Makridis, S.; Papatheodorou, C. Geospatial services in the cloud. Comput. Geosci. 2014, 63, 116–122. [Google Scholar] [CrossRef]
- Barik, R.K. Cloudganga: Cloud computing based sdi model for ganga river basin management in india. In Geospatial Intelligence: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 278–297. [Google Scholar]
- Wieclaw, L.; Pasichnyk, V.; Kunanets, N.; Duda, O.; Matsiuk, O.; Falat, P. Cloud computing technologies in “smart city” projects. In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017; Volume 1, pp. 339–342. [Google Scholar]
- Liang, J.; Jin, F.; Zhang, X.; Wu, H. Ws4gee: Enhancing geospatial web services and geoprocessing workflows by integrating the google earth engine. Environ. Model. Softw. 2023, 161, 105636. [Google Scholar] [CrossRef]
- AL Kharouf, R.A.; Alzoubaidi, A.R.; Jweihan, M. An integrated architectural framework for geoprocessing in cloud environment. Spat. Inf. Res. 2017, 25, 89–97. [Google Scholar] [CrossRef]
- Barik, R.K.; Lenka, R.; Sahoo, S.; Das, B.; Pattnaik, J. Development of educational geospatial database for cloud sdi using open source gis. In Progress in Advanced Computing and Intelligent Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 685–695. [Google Scholar]
- Goldberg, D.; Olivares, M.; Li, Z.; Klein, A.G. Maps & gis data libraries in the era of big data and cloud computing. J. Map Geogr. Libr. 2014, 10, 100–122. [Google Scholar]
- Zhang, J.; Xu, L.; Zhang, Y.; Liu, G.; Zhao, L.; Wang, Y. An on-demand scalable model for geographic information system (gis) data processing in ancloud gis. ISPRS Int. J. Geo-Inf. 2019, 8, 392. [Google Scholar] [CrossRef]
- Khazaei, H.; Misic, J.; Misic, V.B. Performance analysis of cloud computing centers using M/G/m/m+ r queuing systems. IEEE Trans. Parallel Distrib. Syst. 2011, 23, 936–943. [Google Scholar] [CrossRef]
- Ellens, W.; Akkerboom, J.; Litjens, R.; Van Den Berg, H. Performance of cloud computing centers with multiple priority classes. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012; pp. 245–252. [Google Scholar]
- Do, C.T.; Tran, N.H.; VanNguyen, M.; Hong, C.S.; Lee, S. Social optimization strategy in unobserved queueing systems in cognitive radio networks. IEEE Commun. Lett. 2012, 16, 1944–1947. [Google Scholar] [CrossRef]
- Salah, K. A queueing model to achieve proper elasticity for cloud cluster jobs. In Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing, Santa Clara, CA, USA, 28 June–3 July 2013; pp. 755–761. [Google Scholar]
- Pal, R.; Hui, P. Economic models for cloud service markets: Pricing and capacity planning. Theor. Comput. Sci. 2013, 496, 113–124. [Google Scholar] [CrossRef]
- Mohanty, S.; Pattnaik, P.K.; Mund, G.B. A comparative approach to reduce the waiting time using queuing theory in cloud computing environment. Int. J. Inf. Comput. Technol. 2014, 4, 469–474. [Google Scholar]
- Chiang, Y.J.; Ouyang, Y.C.; Hsu, C.H. Performance and cost-effectiveness analyses for cloud services based on rejected and impatient users. IEEE Trans. Serv. Comput. 2014, 9, 446–455. [Google Scholar] [CrossRef]
- Evangelin, K.R.; Vidhya, V. Performance measures of queuing models using cloud computing. Asian J. Eng. Appl. Technol. 2015, 4, 8–11. [Google Scholar] [CrossRef]
- Cheng, C.; Li, J.; Wang, Y. An energy-saving task scheduling strategy based on vacation queuing theory in cloud computing. Tsinghua Sci. Technol. 2015, 20, 28–39. [Google Scholar] [CrossRef]
- Bai, W.H.; Xi, J.Q.; Zhu, J.X.; Huang, S.W. Performance analysis of heterogeneous data centers in cloud computing using a complex queuing model. Math. Probl. Eng. 2015, 2015, 980945. [Google Scholar] [CrossRef]
- Kirsal, Y.; Ever, Y.K.; Mostarda, L.; Gemikonakli, O. Analytical modelling and performability analysis for cloud computing using queuing system. In Proceedings of the 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), Limassol, Cyprus, 7–10 December 2015; pp. 643–647. [Google Scholar]
- Guo, L.; Yan, T.; Zhao, S.; Jiang, C. Dynamic performance optimization for cloud computing using M/M/m queueing system. J. Appl. Math. 2014, 2014, 756592. [Google Scholar] [CrossRef]
- Akbari, E.; Cung, F.; Patel, H.; Razaque, A.; Dalal, H.N. Incorporation of weighted linear prediction technique and M/M/1 queuing theory for improving energy efficiency of cloud computing datacenters. In Proceedings of the 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 29 April 2016; pp. 1–5. [Google Scholar]
- Chang, Z.; Zhou, Z.; Ristaniemi, T.; Niu, Z. Energy efficient optimization for computation offloading in fog computing system. In Proceedings of the GLOBECOM 2017–2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Liu, L.; Chang, Z.; Guo, X.; Mao, S.; Ristaniemi, T. Multiobjective optimization for computation offloading in fog computing. IEEE Internet Things J. 2017, 5, 283–294. [Google Scholar] [CrossRef]
- Safvati, M.; Sharzehei, M. Analytical review on queuing theory in clouds environments. In Proceedings of the Third National Conference on New Approaches in Computer and Electrical Engineering Young Researchers and Elite Club, Tehran, Iran, 1 May 2017; Available online: https://www.researchgate.net/publication/316438195_Analytical_Review_on_Queuing_Theory_in_Clouds_Enviroments (accessed on 17 March 2023).
- Tadakamalla, U.; Menascé, D. Fogqn: An analytic model for fog/cloud computing. In Proceedings of the 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December 2018; pp. 307–313. [Google Scholar]
- Sthapit, S.; Thompson, J.; Robertson, N.M.; Hopgood, J.R. Computational load balancing on the edge in absence of cloud and fog. IEEE Trans. Mob. Comput. 2018, 18, 1499–1512. [Google Scholar] [CrossRef]
- Chunxia, Y.; Shunfu, J. An energy-saving strategy based on multi-server vacation queuing theory in cloud data center. J. Supercomput. 2018, 74, 6766–6784. [Google Scholar] [CrossRef]
- Sopin, E.S.; Daraseliya, A.V.; Correia, L.M. Performance analysis of the offloading scheme in a fog computing system. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; pp. 1–5. [Google Scholar]
- Vasconcelos, D.R.D. Smart Shadow-Predictive Computing Resources Allocation for Smart Devices in the Mist Computing Environment. Ph.D. Dissertation, Universidade Federal Do Ceará, Fortaleza, Brazil, 2018. [Google Scholar]
- Jafarnejad Ghomi, E.; Rahmani, A.M.; Qader, N.N. Applying queue theory for modeling of cloud computing: A systematic review. Concurr. Comput. Pract. Exp. 2019, 31, e5186. [Google Scholar] [CrossRef]
- Li, G.; Yan, J.; Chen, L.; Wu, J.; Lin, Q.; Zhang, Y. Energy consumption optimization with a delay threshold in cloud-fog cooperation computing. IEEE access 2019, 7, 159688–159697. [Google Scholar] [CrossRef]
- Kumar, M.S.; Raja, M.I. A queuing theory model for e-health cloud applications. Int. J. Internet Technol. Secur. Trans. 2020, 10, 585–600. [Google Scholar] [CrossRef]
- Xu, R.; Wu, J.; Cheng, Y.; Liu, Z.; Lin, Y.; Xie, Y. Dynamic security exchange scheduling model for business workflow based on queuing theory in cloud computing. Secur. Commun. Netw. 2020, 2020, 8886640. [Google Scholar] [CrossRef]
- Patra, S.; Amodi, S.A.; Goswami, V.; Barik, R. Profit maximization strategy with spot allocation quality guaranteed service in cloud environment. In Proceedings of the 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India, 13–14 March 2020; pp. 1–6. [Google Scholar]
- Sedaghat, S.; Jahangir, A.H. Rt-telsurg: Real time telesurgery using sdn, fog, and cloud as infrastructures. IEEE Access 2021, 9, 52238–52251. [Google Scholar] [CrossRef]
- Sufyan, F.; Banerjee, A. Computation offloading for smart devices in fog-cloud queuing system. IETE J. Res. 2021, 69, 1509–1521. [Google Scholar] [CrossRef]
- Tadakamalla, U.; Menasce, D.A. Autonomic resource management for fog computing. IEEE Trans. Cloud Comput. 2021, 11, 2334–2350. [Google Scholar] [CrossRef]
- Feitosa, L.; Santos, L.; Gonçalves, G.; Nguyen, T.A.; Lee, J.W.; Silva, F.A. Internet of robotic things: A comparison of message routing strategies for cloud-fog computing layers using m/m/c/k queuing networks. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 2049–2054. [Google Scholar]
- Panigrahi, S.K.; Barik, R.K.; Behera, S.; Barik, L.; Patra, S.S. Performability analysis of foggis model for geospatial web services. In Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 239–243. [Google Scholar]
- Behera, S.; Al Amodi, S.; Patra, S.S.; Lenka, R.K.; Goje, N.S.; Barik, R.K. Profit maximization scheme in iot assisted mist computing healthcare environment using M/G/c/N queueing model. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021; pp. 1–6. [Google Scholar]
- Mas, L.; Vilaplana, J.; Mateo, J.; Solsona, F. A queuing theory model for fog computing. J. Supercomput. 2022, 78, 11138–11155. [Google Scholar] [CrossRef]
- Rodrigues, L.; Rodrigues, J.J.; Serra, A.D.B.; Silva, F.A. A queueing-based model performance evaluation for internet of people supported by fog computing. Future Internet 2022, 14, 23. [Google Scholar] [CrossRef]
- Hamdi, A.M.A.; Hussain, F.K.; Hussain, O.K. Task offloading in vehicular fog computing: State-of-the-art and open issues. Future Gener. Comput. Syst. 2022, 133, 201–212. [Google Scholar] [CrossRef]
- Hazra, A.; Rana, P.; Adhikari, M.; Amgoth, T. Fog computing for next-generation internet of things: Fundamental, state-of-the-art and research challenges. Comput. Sci. Rev. 2023, 48, 100549. [Google Scholar] [CrossRef]
- Yazdani, A.; Dashti, S.F.; Safdari, Y. A fog-assisted information model based on priority queue and clinical decision support systems. Health Inform. J. 2023, 29, 14604582231152792. [Google Scholar] [CrossRef] [PubMed]
- Saif, F.A.; Latip, R.; Hanapi, Z.M.; Alrshah, M.A.; Shafinah, K. Workload allocation towards energy consumption-delay trade-off in cloud-fog computing using multi-objective npso algorithm. IEEE Access 2023, 11, 45393–45404. [Google Scholar] [CrossRef]
- Saif, F.A.; Latip, R.; Hanapi, Z.M.; Shafinah, K. Multi-objective grey wolf optimizer algorithm for task scheduling in cloud-fog computing. IEEE Access 2023, 11, 20635–20646. [Google Scholar] [CrossRef]
- Munir, A.; Kansakar, P.; Khan, S. Ifciot: Integrated fog cloud iot architectural paradigm for future iots. arXiv 2017, arXiv:1701.08474. [Google Scholar]
- Adhikari, M.; Mukherjee, M.; Srirama, S.N. Dpto: A deadline and priority-aware task offloading in fog computing framework leveraging multilevel feedback queueing. IEEE Internet Things J. 2019, 7, 5773–5782. [Google Scholar] [CrossRef]
- Jaiswal, N.K. Priority Queues; Academic Press: New York, NY, USA, 1968; Volume 50. [Google Scholar]
Features | Cloud | Fog | Mist | Edge |
---|---|---|---|---|
Mobility management | No | Yes | Yes | Yes |
Computing resources | Yes | Yes | Yes | Yes |
Virtualization mechanism | Yes | Yes | Yes | No |
Scalability support | Yes | Yes | Yes | Yes |
IoT uses | Yes | Yes | Yes | Yes |
Large-scale storage | Yes | No | No | No |
Real time applications | No | Yes | Yes | Yes |
Inter-operability support | No | Yes | Yes | Yes |
High energy consumption | Yes | No | No | No |
Low latency | No | Yes | Yes | Yes |
Location awareness | No | Yes | Yes | Yes |
Standardized | Yes | Yes | No | No |
Geographically distributed | No | Yes | Yes | Yes |
Large-scale processing power | Yes | No | No | No |
Various Queuing Approach | |||||||
---|---|---|---|---|---|---|---|
Year | Author | Reference | Edge | Mist | Fog | Cloud | Approach |
2011 | Khazaei et al. | [43] | ✗ | ✗ | ✗ | ✓ | M/M/1 |
2011 | Khazaei et al. | [43] | ✗ | ✗ | ✗ | ✓ | M/G/s |
2012 | Ellens et al. | [44] | ✗ | ✗ | ✗ | ✓ | M/M/c/N |
2012 | Do et al. | [45] | ✗ | ✗ | ✗ | ✓ | M/M/m/m |
2013 | Salah | [46] | ✗ | ✗ | ✗ | ✓ | M/M/1 |
2013 | Pal and Hui | [47] | ✗ | ✗ | ✗ | ✓ | M/M/1 |
2014 | Mohanty et al. | [48] | ✓ | ✗ | ✗ | ✓ | M/M/1 |
2014 | Chiang et al. | [49] | ✗ | ✗ | ✗ | ✓ | M/M/c/N |
2015 | Evangelin and Vidhya | [50] | ✗ | ✗ | ✗ | ✓ | M/M/1 |
2015 | Cheng et al. | [51] | ✗ | ✗ | ✗ | ✓ | M/M/1 |
2015 | Bai et al. | [52] | ✗ | ✗ | ✗ | ✓ | M/M/c |
2015 | Kirsal et al. | [53] | ✗ | ✗ | ✗ | ✓ | M/M/c |
2015 | Guo et al. | [54] | ✗ | ✗ | ✗ | ✓ | M/M/1 |
2016 | Akbari et al. | [55] | ✗ | ✗ | ✗ | ✓ | M/M/1 |
2017 | Chang et al. | [56] | ✗ | ✗ | ✗ | ✓ | M/M/1 |
2017 | Liu et al. | [57] | ✗ | ✗ | ✓ | ✓ | M/M/1 |
2017 | El Kafhali and Salah | [30] | ✗ | ✗ | ✓ | ✓ | M/M/c |
2017 | Safvati and Sharzehei | [58] | ✗ | ✗ | ✓ | ✓ | M/M/1 |
2018 | Tadakamalla et al. | [59] | ✗ | ✗ | ✓ | ✗ | M/M/1 |
2018 | Sthapit et al. | [60] | ✗ | ✗ | ✓ | ✗ | M/M/c |
2018 | Chunxia and Shunfu | [61] | ✗ | ✗ | ✓ | ✗ | M/M/1 |
2018 | Sophin et al. | [62] | ✗ | ✗ | ✓ | ✗ | M/M/c |
2018 | Vasconcelos | [63] | ✗ | ✗ | ✓ | ✓ | M/M/1 |
2019 | Barik et al. | [2] | ✗ | ✓ | ✗ | ✗ | M/M/c |
2019 | Jafarnejad et al. | [64] | ✓ | ✗ | ✓ | ✓ | M/M/1 |
2019 | Barik et al. | [23] | ✗ | ✓ | ✓ | ✓ | M/M/c |
2019 | Li et al. | [65] | ✗ | ✓ | ✓ | ✗ | M/M/1 |
2020 | Kumar and Raja | [66] | ✗ | ✗ | ✓ | ✓ | M/M/1 |
2020 | Xu et al. | [67] | ✓ | ✗ | ✓ | ✓ | M/M/1 |
2020 | Patra et al. | [68] | ✗ | ✓ | ✗ | ✗ | M/M/1 |
2020 | Bouanaka et al. | [21] | ✗ | ✓ | ✓ | ✗ | M/M/1 |
2021 | Sedaghat et al. | [69] | ✗ | ✗ | ✓ | ✓ | M/M/1 |
2021 | Sufyan and Banerjee | [70] | ✗ | ✗ | ✓ | ✗ | M/M/1 |
2021 | Tadakamalla and Menasce | [71] | ✗ | ✗ | ✓ | ✗ | M/M/1 |
2021 | Feitosa et al. | [72] | ✗ | ✗ | ✓ | ✗ | M/M/1 |
2021 | Panigrahi et al. | [73] | ✗ | ✓ | ✓ | ✗ | M/M/1 |
2021 | Behera et al. | [74] | ✗ | ✗ | ✓ | ✗ | M/M/c/N |
2021 | Hmissi and Ouni | [11] | ✗ | ✓ | ✓ | ✗ | M/M/1 |
2021 | Dutta et al. | [22] | ✗ | ✗ | ✓ | ✓ | M/M/1 |
2021 | Shahid et al. | [18] | ✗ | ✓ | ✓ | ✗ | M/M/1 |
2022 | Mas et al. | [75] | ✗ | ✗ | ✓ | ✓ | M/M/1 |
2022 | Rodrigues et al. | [76] | ✗ | ✗ | ✓ | ✓ | M/M/c/K |
2022 | Hamdi et al. | [77] | ✗ | ✗ | ✓ | ✓ | M/M/1 |
2022 | Nikoui et al. | [5] | ✗ | ✗ | ✓ | ✓ | G/G/1 |
2022 | Golkaret al. | [9] | ✗ | ✗ | ✓ | ✓ | Multi Queue Priority |
2022 | Maiti et al. | [76] | ✗ | ✗ | ✓ | ✓ | M/M/c |
2023 | Arefian et al. | [14] | ✗ | ✓ | ✗ | ✓ | M/M/1 |
2023 | Hazra et al. | [78] | ✗ | ✓ | ✗ | ✓ | M/M/k |
2023 | Goswami et al. | [3] | ✗ | ✓ | ✗ | ✓ | M/M/c |
2023 | Yazdani et al. | [79] | ✗ | ✓ | ✗ | ✓ | M/M/1 |
2023 | Saif et al. | [80] | ✗ | ✓ | ✗ | ✓ | M/M/1 and M/M/c |
2023 | Saif et al. | [81] | ✗ | ✓ | ✗ | ✓ | M/M/1 and M/M/c |
2023 | Mallick et al. | [13] | ✗ | ✓ | ✗ | ✓ | M/M/c |
Notation | Representation |
---|---|
High-priority task arrival rate | |
Low-priority task arrival rate | |
Service rate of high-priority task | |
Service rate of low-priority task | |
Total task arrival rate | |
Service rate of total task | |
System utilization factor | |
Average number of high-priority tasks in the system | |
Average number of low-priority tasks in the system | |
Average sojourn time of high-priority tasks in the system | |
Average sojourn time of low-priority tasks in the system | |
Average sojourn time in the queue of high-priority task class | |
Average sojourn time in the queue of low-priority task class | |
Cost of having a task of high-priority class | |
Cost of having a task of low-priority class | |
Expected total cost |
Overall | Type-1 | Type-2 | Overall | Type-1 | Type-2 | |
1.222222 | 0.100917 | 1.121305 | 1.790698 | 0.22449 | 1.566208 | |
0.672222 | 0.009251 | 0.662971 | 1.149031 | 0.041156 | 1.107875 | |
0.203704 | 0.100917 | 0.224261 | 0.255814 | 0.112245 | 0.313242 | |
0.112037 | 0.009251 | 0.132594 | 0.164147 | 0.020578 | 0.221575 | |
Overall | Type-1 | Type-2 | Overall | Type-1 | Type-2 | |
2.75 | 0.37931 | 2.37069 | 4.714286 | 0.578947 | 4.135338 | |
2.016667 | 0.10431 | 1.912356 | 3.889286 | 0.212281 | 3.677005 | |
0.34375 | 0.126437 | 0.474138 | 0.52381 | 0.144737 | 0.827068 | |
0.252083 | 0.03477 | 0.382471 | 0.432143 | 0.05307 | 0.735401 |
Overall | Type-1 | Type-2 | Overall | Type-1 | Type-2 | |
0.165636 | 0.100917 | 0.064719 | 0.305812 | 0.224489 | 0.081322 | |
0.023970 | 0.009251 | 0.014719 | 0.072478 | 0.041156 | 0.031322 | |
0.103523 | 0.100917 | 0.107865 | 0.117619 | 0.112245 | 0.135537 | |
0.014981 | 0.009251 | 0.024532 | 0.027876 | 0.020578 | 0.052203 | |
Overall | Type-1 | Type-2 | Overall | Type-1 | Type-2 | |
0.484291 | 0.37931 | 0.104981 | 0.719247 | 0.578947 | 0.140301 | |
0.159291 | 0.10431 | 0.054981 | 0.302581 | 0.21228 | 0.090301 | |
0.134525 | 0.126436 | 0.174968 | 0.156358 | 0.144737 | 0.233834 | |
0.044247 | 0.03477 | 0.091635 | 0.065778 | 0.05307 | 0.150501 |
Overall | Type-1 | Type-2 | Type-3 | Type-4 | Type-5 | |
9 | 0.111111 | 0.31746 | 0.571429 | 1.333333 | 6.666667 | |
8.1 | 0.011111 | 0.11746 | 0.371429 | 1.133333 | 6.466667 | |
1 | 0.111111 | 0.15873 | 0.285714 | 0.666667 | 3.333333 | |
0.9 | 0.011111 | 0.05873 | 0.185714 | 0.566667 | 3.233333 | |
Overall | Type-1 | Type-2 | Type-3 | Type-4 | Type-5 | |
0.818182 | 0.052632 | 0.123839 | 0.156863 | 0.205128 | 0.27972 | |
0.368182 | 0.002632 | 0.023839 | 0.056863 | 0.105128 | 0.17972 | |
0.181818 | 0.105263 | 0.123839 | 0.156863 | 0.205128 | 0.27972 | |
0.081818 | 0.005263 | 0.023839 | 0.056863 | 0.105128 | 0.17972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panigrahi, S.K.; Goswami, V.; Apat, H.K.; Mund, G.B.; Das, H.; Barik, R.K. PQ-Mist: Priority Queueing-Assisted Mist–Cloud–Fog System for Geospatial Web Services. Mathematics 2023, 11, 3562. https://doi.org/10.3390/math11163562
Panigrahi SK, Goswami V, Apat HK, Mund GB, Das H, Barik RK. PQ-Mist: Priority Queueing-Assisted Mist–Cloud–Fog System for Geospatial Web Services. Mathematics. 2023; 11(16):3562. https://doi.org/10.3390/math11163562
Chicago/Turabian StylePanigrahi, Sunil K., Veena Goswami, Hemant K. Apat, Ganga B. Mund, Himansu Das, and Rabindra K. Barik. 2023. "PQ-Mist: Priority Queueing-Assisted Mist–Cloud–Fog System for Geospatial Web Services" Mathematics 11, no. 16: 3562. https://doi.org/10.3390/math11163562
APA StylePanigrahi, S. K., Goswami, V., Apat, H. K., Mund, G. B., Das, H., & Barik, R. K. (2023). PQ-Mist: Priority Queueing-Assisted Mist–Cloud–Fog System for Geospatial Web Services. Mathematics, 11(16), 3562. https://doi.org/10.3390/math11163562