Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws
Abstract
:1. Introduction
2. Preliminaries
3. Methodology
4. Lie Symmetry Reduction in Nonlinear System of Hirota Equations
5. Application of EK Differ-Integral Operators
6. Power Series Solution of the System and Its Convergence
7. Conservation Laws
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Oldham, K.B.; Spanial, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Srivastava, H.M.; Raina, R.K.; Yang, X.J. Special Functions in Fractional Calculus and Related Fractional Differ-Integral Equations; World Scientific Publishing Company: Hackensack, NJ, USA, 2014. [Google Scholar]
- Debnath, L. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003, 54, 3413–3442. [Google Scholar] [CrossRef]
- Gandhi, H.; Tomar, A.; Singh, D. A predicted mathematical cancer tumor growth model of brain and its analytical solution by reduced differential transform method. AISC Springer 2020, 1169, 203–213. [Google Scholar]
- Bluman, G.W.; Kumei, S. Use of group analysis in solving overdetermined systems of ordinary differential equations. J. Math. Anal. Appl. 1989, 138, 95–105. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Zaman, F.D. A fractional diffusion equation model for cancer tumor. AIP Adv. 2014, 4, 107–121. [Google Scholar] [CrossRef]
- Iomin, A. Super diffusion of cancer on a comb structure. J. Phys. Conf. Ser. 2005, 7, 57–67. [Google Scholar] [CrossRef]
- Lukashchuk, S.Y. Conservation laws for time fractional sub diffusion and diffusion-wave equations. Nonlinear Dyn. 2015, 80, 791–802. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D.; Srivastava, H.M. Series representations for fractional-calculus operators Involving Generalised Mittag-Leffler Functions. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 517–527. [Google Scholar] [CrossRef]
- Guariglia, E.; Cattani, C.; Srivastava, H.M. Fractional Derivative of the Riemann Zeta Function; De Gruyter: Berlin, Germany, 2015; Volume 21, pp. 357–368. [Google Scholar]
- Srivastava, H.M.; Dubey, V.P.; Kumar, R.; Singh, J.; Kumar, D.; Baleanu, D. An efficient computational approach for a fractional-order Biological population model with carrying capacity. Chaos Solitons Fractals 2020, 138, 109880. [Google Scholar] [CrossRef]
- Arora, R.; Tomar, A.; Singh, V.P. Similarity Solutions for Strong Shocks in a Non-Ideal Gas. Math. Model. Anal. 2012, 17, 351–365. [Google Scholar] [CrossRef]
- Arora, R.; Tomar, A.; Singh, V.P. Numerical simulation of Ito coupled system by homotopy analysis method. Adv. Sci. Eng. Med. 2012, 4, 522–529. [Google Scholar] [CrossRef]
- Bakkyaraj, T.; Sahdevan, R. Group formalism of lie transformations to time fractional partial differential equations. Parmana J. Phys. 2015, 85, 849–860. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Exact solutions for the ZKMEW equation by using the tanh and sine-cosine methods. Int. J. Comput. Math. 2005, 82, 699–707. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Gapreel, G.A. Reduced differential transform method for nonlinear integral member of Kadomtsev-Petviashvilihierchy differential equations. J. Egypt. Math. Soc. 2017, 25, 1–7. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The variational iteration method for solving linear and nonlinear systems of PDEs. J. Comput. Math. Appl. 2007, 54, 895–902. [Google Scholar] [CrossRef]
- Jafari, H.; Nazarib, M.; Baleanuc, D.; Khalique, C.M. A new approach for solving a system of fractional partial differential equations. J. Comput. Math. Appl. 2013, 66, 838–843. [Google Scholar] [CrossRef]
- Iyiola, O.S.; Olyinka, O.G. Analytical solutions of time fractional models for homogeneous Gardner equation and nonhomogeneous differential equations. Ain Shams Eng. J. 2014, 5, 2090–4479. [Google Scholar] [CrossRef]
- Singla, K.; Gupta, R.K. Conservation laws for certain time fractional nonlinear systems of partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2017, 53, 10–21. [Google Scholar] [CrossRef]
- Olver, P.J. Application of Lie Group Symmetries to Differential Equations. Graduated Text in Mathematics; Springer: Berlin/Heidelberg, Germany, 2002; p. 107. [Google Scholar]
- Wang, G.; Xu, T. Symmetry properties and explicit solutions of the nonlinear time fractional KdV equation. Bound. Value Probl. 2013, 2013, 232–245. [Google Scholar] [CrossRef]
- Wang, G.; Hashemi, M.S. Lie symmetry analysis and soliton solutions of time fractional K(m,n) equation. Pramana J. Phys. 2017, 88, 88–95. [Google Scholar] [CrossRef]
- Singla, K.; Gupta, R.K. On invariant analysis of sometime fractional nonlinear systems of partial differential equations. J. Math. Phys. 2016, 57, 101504. [Google Scholar] [CrossRef]
- Garrido, T.M.; Bruzon, M.S. Lie point symmetries and travelling wave solutions for the generalized drinfeld-sokolov system. J. Comput. Theor. Transp. 2016, 45, 290–298. [Google Scholar] [CrossRef]
- Zhang, Y. Lie symmetry analysis to general time fractional Korteweg-de-Varies equation. Fract. Differ. Calc. 2015, 5, 125–135. [Google Scholar]
- Huang, Q.; Zhdanov, R. The efficiency of lie group approach analysis of Harry-dym equation with Riemann-Liouvelle derivative. Phys. A 2014, 209, 110–118. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Liu, L. Lie symmetry analysis, optimal system and exact solution to fifth order KdV types of equations. J. Math. Anal. Appl. 2010, 368, 551–558. [Google Scholar] [CrossRef]
- Cicogna, G.; Gaeta, G. Noether theorem for µ-symmetries. J. Phys. A 2007, 40, 11899–11921. [Google Scholar] [CrossRef]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, Y.L.; Wang, X.T. Lie symmetry analysis of time fractional generalized KdV equations with variable coefficients. Symmetry 2019, 11, 1281. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S. Invariant analysis with Conservation laws for the time fractional Drinfeld-Sokolov-Satsuma-Hirota equations. Choas Solitons Fractals 2017, 104, 725–733. [Google Scholar] [CrossRef]
- Adem, K.; Khalique, M. On the solutions and conservation laws of the coupled Drinfeld-Sokolov-Satsuma-Hirota system. Bound. Value Probl. 2014, 1, 248. [Google Scholar] [CrossRef]
- Saberi, E.; Hejazi, S.R. Lie symmetry analysis, conservation laws and exact solutions of time fractional generalized Hirota-Satsoma coupled KdV system. Phys. A 2017, 492, 296–307. [Google Scholar] [CrossRef]
- Jena, R.M.; Chakeraverty, S.; Baleanu, D. Solitary wave solution for a generalized Hirota-Satsuma coupled KdV and mKdV equations. Alex. Eng. J. 2020, 59, 2877–2889. [Google Scholar] [CrossRef]
- Gulsen, S.; Yao, S.W.; Inc, M. Lie Symmetry Analysis, Conservation Laws, Power Series Solutions and Conservation Analysis of Time Fractional Generalized Drinfeld-Sokolov Systems. Symmetry 2021, 13, 874. [Google Scholar] [CrossRef]
- Biswas, A.; Song, M.; Triki, H.; Kara, A.H.; Ahmad, B.S.; Strong, A.; Hama, A. Solitons, Shock waves, Conservation laws and bifurcation analysis of Boussinesq equation with power law nonlinearity and dual dispersion. Appl. Math. Inf. Sci. 2014, 3, 949–957. [Google Scholar] [CrossRef]
- Biswas, A.; Khalique, C.M. Optical Quasi-solitons by lie symmetry analysis. J. King Saud Univ. Sci. 2012, 24, 271–276. [Google Scholar] [CrossRef]
- Bansal, A.; Kara, A.H.; Biswas, A.; Moshokoa, S.P.; Belic, M. Optical soliton perturbation, group invariants and conservation laws of perturbed Fokes-Lenells equation. Choas Soliton Fractals 2018, 114, 275–280. [Google Scholar] [CrossRef]
- Chauhan, A.; Arora, R. Time fractional Kupershmidt equation: Symmetry analysis and explicit series solution with convergence analysis. Commun. Math. 2019, 27, 171–185. [Google Scholar] [CrossRef]
- Gandhi, H.; Singh, D.; Tomar, A. Explicit solution to general fourth order time fractional KdV equation by Lie symmetry analysis. AIP 2020, 2253, 020012. [Google Scholar]
- Gandhi, H.; Tomar, A.; Singh, D. Lie symmetry analysis to general fifth order time fractional Korteweg-de-Vriesequation and Its explicit solution. AISC Springer 2020, 1169, 189–201. [Google Scholar]
- Gandhi, H.; Tomar, A.; Singh, D. Conservation laws and exact series solution of fractional order Hirota-Satsoma coupled Korteveg-de-Vries system by symmetry analysis. Math. Methods Appl. Sci. 2021, 44, 14356–14370. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zheng, J.; Guo, L.L.; Wu, H.F. Lie symmetries and conservation laws of theFokker-Planck equation with power diffusion. Math. Methods Appl. Sci. 2020, 43, 8894–8905. [Google Scholar] [CrossRef]
- Bruzón, M.S.; Recio, E.; Garrido, T.M.; Márquez, A.P.; de la Rosa, R. On the similarity solutions and conservation laws of the Cooper-Shepard-Sodano equation. Math. Methods Appl. Sci. 2018, 41, 7325–7332. [Google Scholar] [CrossRef]
- Ray, S.S.; Giri, S. New soliton solution of time fractional Drinfeld-Sokolov-Satsuma-Hirota system in dispersive water waves. Math. Methods Appl. Sci. 2021, 44, 14217–14235. [Google Scholar] [CrossRef]
- Yang, H.; Liu, W.; Zaho, Y. Lie symmetry reductions and exact solutions to a generalized two-component Hunter-Saxton system. AIMS Math. 2021, 6, 1087–1100. [Google Scholar] [CrossRef]
- Dubey, V.P.; Singh, J.; Alshehri, A.M.; Dubey, S.; Kumar, D. A comparative analysis of schemes for solving local fractional Laplace equations. Math. Methods Appl. Sci. 2021, 44, 13540–13559. [Google Scholar] [CrossRef]
- Chatibi, Y.; Kinani, E.E.; Ouhadan, A. On the discrete symmetry analysis of some classical and fractional differential equations. Math. Methods Appl. Sci. 2020, 44, 2868–2878. [Google Scholar] [CrossRef]
- Chauhan, A.; Sharma, K.; Arora, R. Lie symmetry analysis, optimal system, and generalized group invariant solutions of the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Math. Methods Appl. Sci. 2020, 43, 8823–8840. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Tian, S.F.; Cheng, J. The Dbar-dressing method and soliton solutions for the three-component coupled Hirota equations. J. Math. Phys. 2021, 62, 093510. [Google Scholar] [CrossRef]
- Tian, S.; Xu, M.; Zang, T.T. A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation. Proc. R. Soc. Lond. A 2021, 477, 20210455. [Google Scholar] [CrossRef]
- Li, Y.; Tian, S.; Yang, J. Riemann-Hilbert problem and interactions of solitons in the n-component nonlinear Schrödinger equations. Stud. Appl. Math. 2022, 148, 577–605. [Google Scholar] [CrossRef]
- Yang, J.; Tian, S.; Li, Z. Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple-order poles under nonzero boundary conditions. Phys. D 2022, 432, 133162. [Google Scholar] [CrossRef]
- Wu, S.; Tang, S. On long-time asymptotics to the nonlocal short pulse equation with the Schwartz-type initial data: With out solitons. Phys. D 2023, 448, 133733. [Google Scholar] [CrossRef]
- Li, Z.; Tang, S.; Yang, J. On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions. Adv. Math. 2022, 409, 108639. [Google Scholar] [CrossRef]
- Li, Z.; Tang, S.; Yang, J. Soliton Resolution for the Wadati-Konno-Ichikawa Equation with Weighted Sobolev Initial Data. Ann. Henri Poincaré 2022, 23, 2611–2655. [Google Scholar] [CrossRef]
- Li, Z.; Tang, S.; Yang, J. Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions. J. Differ. Equ. 2022, 329, 31–88. [Google Scholar] [CrossRef]
- Biswas, A.; Daniela, M.; Matthew, E. Mathematical Theory of Dispersion-Managed Optical Solitons; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Zayed, E.M.E.; Shohib, R.M.A.; Alngar, M.E.M.; Biswas, A.; Yildirim, Y.; Alzahrani, A.K. Optical solitons in the Sasa-Satsuma model with multiplicative noise via Ito calculus. Ukr. J. Phys. Opt. 2022, 23, 9–14. [Google Scholar] [CrossRef]
- Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186–207. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Gandhi, H.; Tomar, A.; Singh, D. Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws. Mathematics 2023, 11, 2465. https://doi.org/10.3390/math11112465
Ali M, Gandhi H, Tomar A, Singh D. Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws. Mathematics. 2023; 11(11):2465. https://doi.org/10.3390/math11112465
Chicago/Turabian StyleAli, Musrrat, Hemant Gandhi, Amit Tomar, and Dimple Singh. 2023. "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws" Mathematics 11, no. 11: 2465. https://doi.org/10.3390/math11112465
APA StyleAli, M., Gandhi, H., Tomar, A., & Singh, D. (2023). Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws. Mathematics, 11(11), 2465. https://doi.org/10.3390/math11112465