Next Article in Journal
Kit of Uniformly Deployed Sets for p-Location Problems
Next Article in Special Issue
Subclasses of p-Valent κ-Uniformly Convex and Starlike Functions Defined by the q-Derivative Operator
Previous Article in Journal
TRX Cryptocurrency Profit and Transaction Success Rate Prediction Using Whale Optimization-Based Ensemble Learning Framework
Previous Article in Special Issue
Application of the Quasi-Hadamard Product to Subclasses of Analytic Functions Involving the q-Difference Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Properties of Certain Multivalent Harmonic Functions

1
Department of Mathematics and Computer Science, Faculty of Informatics and Sciences, University of Oradea, 410087 Oradea, Romania
2
Department of Mathematics, Faculty of Arts and Sciences, Bursa Uludag University, Bursa 16059, Turkey
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(11), 2416; https://doi.org/10.3390/math11112416
Submission received: 20 April 2023 / Revised: 17 May 2023 / Accepted: 21 May 2023 / Published: 23 May 2023
(This article belongs to the Special Issue New Trends in Complex Analysis Research, 2nd Edition)

Abstract

:
In this paper, various features of a new class of normalized multivalent harmonic functions in the open unit disk are analyzed, including bounds on coefficients, growth estimations, starlikeness and convexity radii. It is further demonstrated that this class is closed when its members are convoluted. It can also be seen that various previously introduced and investigated classes of multivalent harmonic functions appear as special cases for this class.
MSC:
30C45; 30C50

1. Introduction

A complex-valued harmonic function  ⨍  in the open unit disk  E = z C : z < 1  is given by  ( z ) = h ( z ) + g ( z ) ¯  where  h ( z )  and  g ( z )  are analytic in  E . We call h the analytic part and g is co-analytic part of  . A necessary and sufficient condition for  ( z )  to be locally univalent and sense-preserving in  E  is  g ( z ) < h ( z )  for all  z E  (see [1]). Let  H ( m ) m Z + = 1 , 2 , 3 ,  denote the class of functions  ( z )  of the form
( z ) = h ( z ) + g ( z ) ¯ = z m + ƙ = m + 1 a ƙ z ƙ + ƙ = m + 1 b ƙ z ƙ ¯
which are harmonic in  E .  We next denote by  S H ( m )  the subclass of functions  ( z ) H ( m )  which are m-valent and sense-preserving in  E . Then, we say that  ( z ) S H ( m )  is a m-valently harmonic function in  E . The functions in  S H ( m )  are harmonic and sense-preserving in  E  if  J = h 2 g 2 > 0  in  E . The class  S H ( 1 ) S H 0  of the harmonic univalent and sense-preserving functions was studied in detail by Clunie and Sheil-Small [1]. Furthermore, note that  H ( 1 )  reduces to the class  A  of normalized analytic univalent functions in  E , if  g ( z ) 0 .  Let  K ( m )  and  S ( m )  be the subclasses of  H ( m )  mapping  E  onto convex and starlike domains, respectively.
In [2], Owa et al. investigated the class  A m ( γ , δ , λ ; j )  for  γ ( γ > 0 ) , δ ( δ > 0 )  and  λ 0 λ < m ! [ γ + ( m j ) δ ] / ( m j ) !  and  z E ,  which consisted of analytic functions
h ( z ) = z m + ƙ = m + 1 a ƙ z ƙ
such that
Re γ h ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) z m j 1 > λ , where j = 0 , 1 , 2 , , m 1 .
The research described in the present paper is motivated by this work and focuses on analyzing the new class of multivalent harmonic functions that is introduced in the following definition:
Definition 1. 
Denote by  G H ( m ) ( γ , δ , λ ; j )  the class of functions  = h + g ¯ H ( m )  and satisfy
R e γ h ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) z m j 1 λ > γ g ( j ) ( z ) z m j + δ g ( j + 1 ) ( z ) z m j 1 ( z E ) ,
for some  γ ( γ > 0 ) , δ ( δ > 0 )  and  λ 0 λ < m ! [ γ + ( m j ) δ ] / ( m j ) ! ,  where  j = 0 , 1 , 2 , , m 1 .
Remark 1. 
If  m = 1  and  j = 0 , then the class  G H ( 1 ) ( γ , δ , λ ; 0 ) G H 0 ( γ , δ , λ )  is defined by
R e γ h ( z ) z + δ h ( z ) λ > γ g ( z ) z + δ g ( z ) ( z E ) ,
for some  γ 0 , δ > 0  and  0 λ < γ + δ 1 .  This class was studied by Çakmak et al. (see [3]).
It is evident that, for  γ > 0 , δ 0 , α > 0  and  0 λ < 1 . Here, the following classes are obtained when special values are given to the variables:
G H ( 1 ) ( 0 , 1 , 0 ; 0 ) = H ( 1 ) : Re h ( z ) > g ( z ) , z E ([4]),
G H ( 1 ) ( 0 , 1 , λ ; 0 ) = H ( 1 ) : Re h ( z ) λ > g ( z ) , z E ([5,6]),
G H ( 1 ) ( 1 , 0 , 0 ; 0 ) = H ( 1 ) : Re h ( z ) z > g ( z ) z , z E ([7]),
G H ( 1 ) ( 1 , 0 , λ ; 0 ) = H ( 1 ) : Re h ( z ) z λ > g ( z ) z , z E ([7]),
G H ( 1 ) ( 1 α , α , 0 ; 0 ) = H ( 1 ) : Re ( 1 α ) h ( z ) z + α h ( z ) > ( 1 α ) g ( z ) z + α g ( z ) , z E ([8]),
G H ( 1 ) ( 1 , 1 , 0 ; 1 ) = H ( 1 ) : Re h ( z ) + z h ( z ) > g ( z ) + z g ( z ) , z E ([9]),
G H ( 1 ) ( 1 , δ , 0 ; 1 ) = H ( 1 ) : Re h ( z ) + δ z h ( z ) > g ( z ) + δ z g ( z ) , z E ([10]),
G H ( 1 ) ( 1 , δ , λ ; 1 ) = H ( 1 ) : Re h ( z ) + δ z h ( z ) λ > g ( z ) + δ z g ( z ) , z E ([11]),
for  g ( z ) 0 , G H ( m ) ( γ , δ , λ ; j ) A m ( γ , δ , λ ; j )  ([2]) and
G H ( 1 ) ( 0 , 1 , 0 ; 0 ) = h A : Re h ( z ) > 0 , z E ([12]),
G H ( 1 ) ( 0 , 1 , λ ; 0 ) = h A : Re h ( z ) > λ , z E ([13]),
G H ( 1 ) ( 1 , 0 , 0 ; 0 ) = h A : Re h ( z ) z > 0 , z E ([12]),
G H ( 1 ) ( 1 , 0 , λ ; 0 ) = h A : Re h ( z ) z > λ , z E ([12]),
G H ( 1 ) ( 1 α , α , 0 ; 0 ) = h A : Re ( 1 α ) h ( z ) z + α h ( z ) > 0 , z E ([12]),
G H ( 1 ) ( 1 , 1 , 0 ; 1 ) = h A : Re h ( z ) + z h ( z ) > 0 , z E ([12,14]),
G H ( 1 ) ( 1 , δ , 0 ; 1 ) = h A : Re h ( z ) + δ z h ( z ) > 0 , z E ([12]),
G H ( 1 ) ( 1 , δ , λ ; 1 ) = h A : Re h ( z ) + δ z h ( z ) > λ , z E ([15]),
G H ( 1 ) ( γ , δ , λ ; 0 ) = h A : Re γ h ( z ) z + δ h ( z ) > λ , z E ([16]).
In order to better understand the importance of this subclass analysis, the important subclasses of the multivalent harmonic functions are mentioned first. The subclasses of multivalent harmonic functions are used in a wide range of mathematical and physical contexts, and each subclass has its own unique properties and applications. By studying these subclasses, researchers can gain insights into the behavior and structure of multivalent harmonic functions, and develop new techniques and tools for analyzing complex systems. Some important subclasses are quasiconformal maps, modular forms, harmonic morphisms, multidimensional harmonic functions, elliptic functions. For more information about these classes, see [17,18,19,20,21,22,23,24,25].
In Section 2, the necessary and sufficient conditions are specified for certain functions to belong to the class  G H ( m ) ( γ , δ , λ ; j ) . For the functions of the class, coefficient bounds and growth predictions are also given. The starlikeness and convexity characteristics of the class  G H ( m ) ( γ , δ , λ ; j )  are examined in Section 3. In Section 4, convolution properties involving the functions of the class  G H ( m ) ( γ , δ , λ ; j )  are examined.

2. The Sharp Coefficient Estimates and Growth Theorems of  G H ( m ) ( γ , δ , λ ; j )

The first theorem of this section provides the necessary and sufficient conditions for the functions to be part of the  G H ( m ) ( γ , δ , λ ; j )  class. The following theorems concern coefficient estimations and distortion limits regarding this class.
Theorem 1. 
The mapping  = h + g ¯ G H ( m ) ( γ , δ , λ ; j )  if and only if  F ϵ = h + ϵ g A m ( γ , δ , λ ; j )  for each  ϵ ϵ = 1 .
Proof. 
Suppose that  = h + g ¯ G H ( m ) ( γ , δ , λ ; j ) .  For each  ϵ ϵ = 1 ,  
Re γ F ϵ ( j ) ( z ) z m j + δ F ϵ ( j + 1 ) ( z ) z m j 1 λ = Re γ h ( j ) ( z ) + ϵ g ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) + ϵ g ( j + 1 ) ( z ) z m j 1 λ = Re γ h ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) z m j 1 λ + Re ϵ γ g ( j ) ( z ) z m j + δ g ( j + 1 ) ( z ) z m j 1 > Re γ h ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) z m j 1 λ γ g ( j ) ( z ) z m j + δ g ( j + 1 ) ( z ) z m j 1 > 0 , z E .
Thus,  F ϵ A m ( γ , δ , λ ; j )  for each  ϵ ϵ = 1 .  Conversely, let  F ϵ = h + ϵ g A m ( γ , δ , λ ; j )  then
Re γ h ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) z m j 1 λ > Re ϵ γ g ( j ) ( z ) z m j + δ g ( j + 1 ) ( z ) z m j 1 z E .
With the convenient choice of  ϵ ϵ = 1 ,  we have
Re γ h ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) z m j 1 λ > γ g ( j ) ( z ) z m j + δ g ( j + 1 ) ( z ) z m j 1 z E ,
and hence  G H ( m ) ( γ , δ , λ ; j ) .   □
Theorem 2. 
Let  = h + g ¯ G H ( m ) ( γ , δ , λ ; j )  then for  ƙ m + 1 ,
b ƙ ( ƙ j ) ! ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] ,
where  β = m ! γ + δ ( m j ) ( m j ) ! .  This result is sharp, and equality holds for the following function
( z ) = z m + ( ƙ j ) ! ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] z ¯ ƙ .
Proof. 
Suppose that  = h + g ¯ G H ( m ) ( γ , δ , λ ; j ) .  Using the series representation of  g ( r e i θ ) , 0 r < 1  and  θ R ,  we derive
r ƙ m γ + δ ( ƙ j ) ƙ ! ( ƙ j ) ! b ƙ 1 2 π 0 2 π γ g ( j ) ( r e i θ ) ( r e i θ ) m j + δ g ( j + 1 ) ( r e i θ ) ( r e i θ ) m j 1 d θ < 1 2 π 0 2 π Re γ h ( j ) ( r e i θ ) ( r e i θ ) m j + δ h ( j + 1 ) ( r e i θ ) ( r e i θ ) m j 1 λ d θ = 1 2 π 0 2 π Re β λ + ƙ = m + 1 ƙ ! ( ƙ j ) ! [ γ + δ ( ƙ j ) ] a ƙ r ƙ m e i ( ƙ m ) θ d θ = β λ ,
where  β = m ! γ + δ ( m j ) ( m j ) ! .  Allowing  r 1 ,  we prove the result (3). Moreover, it can be easily seen that the equality is achieved for the function given in (4). □
Theorem 3. 
Let  = h + g ¯ G H ( m ) ( γ , δ , λ ; j ) .  Then, for  ƙ m + 1 ,  we have
( i ) a ƙ + b ƙ 2 ( ƙ j ) ! ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] , ( i i ) a ƙ b ƙ 2 ( ƙ j ) ! ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] , ( i i i ) a ƙ 2 ( ƙ j ) ! ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] ,
where  β = m ! γ + δ ( m j ) ( m j ) ! .  All the results given in this theorem are certain and the equations are provided for the following function
( z ) = z m + ƙ = m + 1 2 ( ƙ j ) ! ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] z ƙ .
Proof. 
( i )  Suppose that  = h + g ¯ G H ( m ) ( γ , δ , λ ; j ) ;  then, from Theorem 1,  F ϵ = h + ϵ g A m ( γ , δ , λ ; j )  for each  ϵ ϵ = 1 .  Thus, for each  ϵ = 1 ,  we have
Re γ h ( j ) ( z ) + ϵ g ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) + ϵ g ( j + 1 ) ( z ) z m j 1 λ > 0
for  z E .  Therefore, there exists an analytic function of the form  p ( z ) = 1 + ƙ = 1 p ƙ z ƙ  with a positive real part in  E ,  such that
γ h ( j ) ( z ) + ϵ g ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) + ϵ g ( j + 1 ) ( z ) z m j 1 = ( β λ ) p ( z ) + λ ,
where  β = m ! γ + δ ( m j ) ( m j ) ! .  Comparing coefficients on both sides of (5), we obtain
ƙ ! [ γ + δ ( ƙ j ) ] ( ƙ j ) ! ( a ƙ + ϵ b ƙ ) = ( β λ ) p ƙ 1 for ƙ m + 1 .
According to Caratheodory [26], since  p ƙ 2  for  ƙ 1 ,  and  ϵ ϵ = 1  is arbitrary, the proof of (i) is complete. By following the methods in proof (i), proof (ii), and proof (iii) are obtained. The function
( z ) = z m + ƙ = m + 1 2 ( ƙ j ) ! ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] z ƙ
provides equations. □
We will now give a sufficient condition for a function to be of class  G H ( m ) ( γ , δ , λ ; j ) .
Theorem 4. 
Let  = h + g ¯ H ( m )  and where  β = m ! γ + δ ( m j ) ( m j ) !  with
ƙ = m + 1 ƙ ! [ γ + δ ( ƙ j ) ] ( ƙ j ) ! a ƙ + b ƙ β λ ,
then  f = h + g ¯ G H ( m ) ( γ , δ , λ ; j ) .
Proof. 
Suppose that  = h + g ¯ H ( m ) .  Then, using (6),
Re γ h ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) z m j 1 λ = Re β λ + ƙ = m + 1 ƙ ! [ γ + δ ( ƙ j ) ] ( ƙ j ) ! a ƙ z ƙ m > β λ ƙ = m + 1 ƙ ! [ γ + δ ( ƙ j ) ] ( ƙ j ) ! | a ƙ | ƙ = m + 1 ƙ ! [ γ + δ ( ƙ j ) ] ( ƙ j ) ! b ƙ > ƙ = m + 1 ƙ ! [ γ + δ ( ƙ j ) ] ( ƙ j ) ! b ƙ z ƙ m = γ g ( j ) ( z ) z m j + δ g ( j + 1 ) ( z ) z m j 1 ,
where  β = m ! γ + δ ( m j ) ( m j ) ! .  Hence,  G H ( m ) ( γ , δ , λ ; j ) .   □
Theorem 5. 
Let  = h + g ¯ G H ( m ) ( γ , δ , λ ; j )  for  γ > 0 , δ > 0  and  0 λ < β ,  where  β = m ! [ γ + ( m j ) δ ] / ( m j ) ! , j = 0 , 1 , 2 , , m 1 .  Then
m ! ( m j ) ! z m j + 2 β λ ƙ = 1 ( 1 ) ƙ z ƙ + m j δ ( ƙ + m j ) + γ ( j ) ( z ) , ( j ) ( z ) m ! ( m j ) ! z m j + 2 β λ ƙ = 1 z ƙ + m j δ ( ƙ + m j ) + γ .
Inequalities are sharp for the function
( j ) ( z ) = m ! ( m j ) ! z m j + ƙ = 1 2 ( β λ ) δ ( ƙ + m j ) + γ z ƙ + m j .
Proof. 
Let  = h + g ¯ G H ( m ) ( γ , δ , λ ; j ) .  Then, using Theorem 1,  F ϵ = h + ϵ g A m ( γ , δ , λ ; j )  for each  ϵ ϵ = 1 .  Thus, there exists an analytic function  ω z  with  ω 0 = 0  and  ω z < 1  in  E , such that
γ F ϵ ( j ) ( z ) z m j + δ F ϵ ( j + 1 ) ( z ) z m j 1 = β + β 2 λ ω ( z ) 1 ω ( z ) ,
where  β = m ! [ γ + ( m j ) δ ] / ( m j ) ! . Simplifying (8), we obtain
z γ δ F ϵ ( j ) ( z ) = 1 δ 0 z ξ γ δ + m j 1 β + β 2 λ ω ( ξ ) 1 ω ( ξ ) d ξ = 1 δ 0 z ρ e i φ γ δ + m j 1 β + β 2 λ ω ( ρ e i φ ) 1 ω ( ρ e i φ ) e i φ d ρ ,
where  ξ = ρ e i φ , 0 ρ < 1  and  φ R . Therefore, using the Schwarz lemma, we have
z γ δ F ϵ ( j ) ( z ) = 1 δ 0 z ρ e i φ γ δ + m j 1 β + β 2 λ ω ( ρ e i φ ) 1 ω ( ρ e i φ ) e i φ d ρ 1 δ 0 z ρ γ δ + m j 1 β + β 2 λ ρ 1 ρ d ρ ,
and
F ϵ ( j ) ( z ) m ! ( m j ) ! z m j + 2 β λ ƙ = 1 z ƙ + m j δ ( ƙ + m j ) + γ .
Similarly, we have
z γ δ F ϵ ( j ) ( z ) = 1 δ 0 z ρ e i φ γ δ + m j 1 β + β 2 λ ω ( ρ e i φ ) 1 ω ( ρ e i φ ) e i φ d ρ 1 δ 0 z ρ γ δ + m j 1 Re β + β 2 λ ω ( ρ e i φ ) 1 ω ( ρ e i φ ) d ρ 1 δ 0 z ρ γ δ + m j 1 β β 2 λ ρ 1 + ρ d ρ .
and
F ϵ ( j ) ( z ) m ! ( m j ) ! z m j + 2 β λ ƙ = 1 ( 1 ) ƙ z ƙ + m j δ ( ƙ + m j ) + γ .
Since  ϵ ϵ = 1  is arbitrary, we have (7). □

3. Geometric Properties of Harmonic Mappings in  G H ( m ) ( γ , δ , λ ; j )

In this section, the radius of the m-valently starlikeness and convexity for functions in the class  G H ( m ) ( γ , δ , λ ; j )  will be provided.
The two following lemmas are used in order to demonstrate the key findings:
Lemma 1 
([27]). Let  H ( m ) . If  ƙ = m + 1 ƙ a ƙ + b ƙ m , then   is m-valently starlike in  E .
Lemma 2 
([28]). Let  H ( m ) . If  ƙ = m + 1 ƙ 2 a ƙ + b ƙ m 2 , then   is m-valently convex in  E .
The starlikeness result is first presented in the next theorem.
Theorem 6. 
Let  G H ( m ) ( γ , δ , λ ; j )  be a sense-preserving harmonic mapping in  E .  Then,   is m-valently starlike in  z < R ,  where
R = inf ƙ m + 1 ( ƙ 2 ) ! m 2 [ γ + δ ( ƙ j ) ] ( ƙ j ) ! 2 ( β λ ) ƙ 1 ƙ m .
Proof. 
Let  G H ( m ) ( γ , δ , λ ; j ) ,  and let  R , 0 < R < 1 ,  be fixed. Then
R ( z ) = R m ( R z ) = R m h ( R z ) + R m g ( R z ) ¯ G H ( m ) ( γ , δ , λ ; j )
and
R ( z ) = z m + ƙ = m + 1 a ƙ R ƙ m z ƙ + ƙ = m + 1 b ƙ R ƙ m z ƙ ¯ , z E .
According to Lemma 1, it suffices to show that
ƙ = m + 1 ƙ ( a ƙ + b ƙ ) R ƙ m m
for  R < R . Using Theorem 3 (i) gives that
ƙ = m + 1 ƙ ( a ƙ + b ƙ ) R ƙ m ƙ = m + 1 ƙ ( ƙ j ) ! 2 ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] R ƙ m .
Furthermore, considering that
m = m 2 ƙ = m + 1 1 ƙ ( ƙ 1 ) ,
we know that the inequality (9) can be written by
ƙ = m + 1 ƙ ( ƙ j ) ! 2 ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] R ƙ m m 2 ƙ = m + 1 1 ƙ ( ƙ 1 ) .
Thus, if
R ƙ m ( ƙ 2 ) ! [ γ + δ ( ƙ j ) ] m 2 ( ƙ j ) ! 2 ( β λ ) ƙ
for all  ƙ m + 1 , then
ƙ = m + 1 ƙ ( a ƙ + b ƙ ) R ƙ m m .
Therefore, we obtain
R = inf ƙ m + 1 ( ƙ 2 ) ! m 2 [ γ + δ ( ƙ j ) ] ( ƙ j ) ! 2 ( β λ ) ƙ 1 ƙ m .
The radius of convexity for the class  G H ( m ) ( γ , δ , λ ; j )  is determined in the next theorem.
Theorem 7. 
Let  G H ( m ) ( γ , δ , λ ; j )  be a sense-preserving harmonic mapping in  E .  Then   is m-valently convex in  z < R c ,  where
R c = inf ƙ m + 1 ( ƙ 2 ) ! m 3 [ γ + δ ( ƙ j ) ] ( ƙ j ) ! 2 ( β λ ) ƙ 2 1 ƙ m .
Proof. 
Let  G H ( m ) ( γ , δ , λ ; j ) ,  and let  R , 0 < R < 1 ,  be fixed. Then
R ( z ) = R m ( R z ) = R m h ( R z ) + R m g ( R z ) ¯ G H ( m ) ( γ , δ , λ ; j )
and
R ( z ) = z m + ƙ = m + 1 a ƙ R ƙ m z ƙ + ƙ = m + 1 b ƙ R ƙ m z ƙ ¯ , z E .
According to Lemma 2, it suffices to show that
ƙ = m + 1 ƙ 2 ( a ƙ + b ƙ ) R ƙ m m 2
for  R < R c . Using Theorem 3 (i); gives that
ƙ = m + 1 ƙ 2 ( a ƙ + b ƙ ) R ƙ m ƙ = m + 1 ƙ 2 ( ƙ j ) ! 2 ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] R ƙ m .
Furthermore, considering that
m 2 = m 3 ƙ = m + 1 1 ƙ ( ƙ 1 ) ,
we know that the inequality (10) can be written by
ƙ = m + 1 ƙ ( ƙ j ) ! 2 ( β λ ) ƙ ! [ γ + δ ( ƙ j ) ] R ƙ m m 3 ƙ = m + 1 1 ƙ ( ƙ 1 ) .
Thus, if
R ƙ m ( ƙ 2 ) ! [ γ + δ ( ƙ j ) ] m 3 ( ƙ j ) ! 2 ( β λ ) ƙ 2
for all  ƙ m + 1 , then
ƙ = m + 1 ƙ 2 ( a ƙ + b ƙ ) R ƙ m m 2 .
Therefore, we obtain
R c = inf ƙ m + 1 ( ƙ 2 ) ! m 3 [ γ + δ ( ƙ j ) ] ( ƙ j ) ! 2 ( β λ ) ƙ 2 1 ƙ m .

4. Convex Combinations and Convolutions

In this section, we show that the class  G H ( m ) ( γ , δ , λ ; j )  is closed under convex combinations and convolutions of its members.
Theorem 8. 
The class  G H ( m ) ( γ , δ , λ ; j )  is closed under convex combinations.
Proof. 
Suppose  t = h t + g t ¯ G H ( m ) ( γ , δ , λ ; j )  for  t = 1 , 2 , , n  and  t = 1 n ϰ t = 1 ( 0 ϰ t 1 ) .  The convex combination of functions  t t = 1 , 2 , , n  may be written as
( z ) = t = 1 n ϰ t t ( z ) = h ( z ) + g ( z ) ¯ ,
where
h ( z ) = t = 1 n ϰ t h t ( z ) and g ( z ) = t = 1 n ϰ t g t ( z ) .
Then, both h and g are analytic in  E  with  h ( 0 ) = g ( 0 ) = h ( 0 ) = g ( 0 ) = = h ( m 1 ) ( 0 ) = g ( m 1 ) ( 0 ) = h ( m ) ( 0 ) m ! = g ( m ) ( 0 ) = 0  and
Re γ h ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) z m j 1 λ = Re t = 1 n ϰ t γ h ( j ) ( z ) z m j + δ h ( j + 1 ) ( z ) z m j 1 λ > t = 1 n ϰ t γ g ( j ) ( z ) z m j + δ g ( j + 1 ) ( z ) z m j 1 γ g ( j ) ( z ) z m j + δ g ( j + 1 ) ( z ) z m j 1
showing that  G H ( m ) ( γ , δ , λ ; j ) . □
A sequence  { ϑ ƙ } ƙ = 0  of non-negative real numbers is said to be a convex null sequence, if  ϑ ƙ 0  as  ƙ , and  ϑ 0 ϑ 1 ϑ 1 ϑ 2 ϑ 2 ϑ 3 ϑ ƙ 1 ϑ ƙ 0 .  We shall require the following Lemmas 3 and 4 to prove the results of the convolution.
Lemma 3 
([29]). If  { ϑ ƙ } ƙ = 0  be a convex null sequence, then function
Q ( z ) = ϑ 0 2 + ƙ = 1 ϑ ƙ z ƙ
is analytic and  R e Q ( z ) > 0  in  E .
Lemma 4 
([14]). Let the function ϕ be analytic in  E  with  ϕ ( 0 ) = 1  and  R e ϕ ( z ) > 1 / 2  in  E .  Then, for any analytic function, ψ in  E ,  the function  ϕ ψ  takes the values in the convex hull of the image of  E  under  ψ .
Lemma 5. 
Let  ψ A m ( γ , δ , λ ; j ) ,  then  R e ψ ( z ) z m > 1 2 .
Proof. 
Suppose that  ψ A m ( γ , δ , λ ; j )  will be given by  ψ ( z ) = z m + ƙ = m + 1 A ƙ z ƙ ,  then
Re β + ƙ = m + 1 ƙ ! [ γ + δ ( ƙ j ) ] ( ƙ j ) ! A ƙ z ƙ m > λ ( z E ) ,
which is equivalent to  Re ϕ ( z ) > 1 2  in  E ,  where
ϕ ( z ) = 1 + 1 2 β λ ƙ = m + 1 ƙ ! [ γ + δ ( ƙ j ) ] ( ƙ j ) ! A ƙ z ƙ m .
Now consider a sequence  { ϑ ƙ } ƙ = 0  defined by
ϑ 0 = 2 and ϑ ƙ 1 = 2 β λ ( ƙ + m j ) ! ( ƙ + m ) ! [ γ + δ ( ƙ + m j ) ] for ƙ 2 .
It is easy to see that the sequence  { ϑ ƙ } ƙ = 0  is a convex null sequence. Using Lemma 3, this explains the following function
Q ( z ) = 1 + 2 β λ ƙ = 1 ( ƙ + m j ) ! ( ƙ + m ) ! [ γ + δ ( ƙ + m j ) ] z ƙ
is analytic and  Re Q ( z ) > 0  in  E .  Writing
ψ ( z ) z m = ϕ ( z ) 1 + 2 β λ ƙ = 1 ( ƙ + m j ) ! ( ƙ + m ) ! [ γ + δ ( ƙ + m j ) ] z ƙ ,
and using Lemma 4 gives that  Re ψ ( z ) z m > 1 2  for  z E .   □
Lemma 6. 
Suppose  ψ t A m ( γ , δ , λ ; j )  for  t = 1 , 2 .  Then,  ψ 1 ψ 2 A m ( γ , δ , λ ; j ) .
Proof. 
Let  ψ 1 ( z ) = z m + ƙ = m + 1 A ƙ z ƙ  and  ψ 2 ( z ) = z m + ƙ = m + 1 B ƙ z ƙ .  Then, the convolution of  ψ 1 ( z )  and  ψ 2 ( z )  is defined by
ψ ( z ) = ( ψ 1 ψ 2 ) ( z ) = z m + ƙ = m + 1 A ƙ B ƙ z ƙ .
Since  ψ ( j ) ( z ) z m j = ψ 1 ( j ) ( z ) z m j ψ 2 ( z ) z m  and  ψ ( j + 1 ) ( z ) z m j 1 = ψ 1 ( j + 1 ) ( z ) z m j 1 ψ 2 ( z ) z m ,  then we have
1 β λ γ ψ ( j ) ( z ) z m j + δ ψ ( j + 1 ) ( z ) z m j 1 λ = 1 β λ γ ψ 1 ( j ) ( z ) z m j + δ ψ 1 ( j + 1 ) ( z ) z m j 1 λ ψ 2 ( z ) z m .
Since  ψ 1 A m ( γ , δ , λ ; j ) ,  
Re γ ψ 1 ( j ) ( z ) z m j + δ ψ 1 ( j + 1 ) ( z ) z m j 1 λ > 0 z E
and using Lemma 5,  Re ψ 2 ( z ) z m > 1 2  in  E .  Now applying Lemma 4 to (11) yields  Re γ ψ ( j ) ( z ) z m j + δ ψ ( j + 1 ) ( z ) z m j 1 λ > 0  in  E .  Thus,  ψ = ψ 1 ψ 2 A m ( γ , δ , λ ; j ) .   □
Now, using Lemma 6, we prove that the class  G H ( m ) ( γ , δ , λ ; j )  is closed under the convolutions of its members.
Theorem 9. 
Let  t G H ( m ) ( γ , δ , λ ; j )  for  t = 1 , 2 .  Then,  1 2 G H ( m ) ( γ , δ , λ ; j ) .
Proof. 
Suppose  t = h t + g t ¯ G H ( m ) ( γ , δ , λ ; j ) ( t = 1 , 2 ) . Then, the convolution of  1  and  2  is defined as  1   2 = h 1 h 2 + g 1 g 2 ¯ .  In order to show that  1 2 G H ( m ) ( γ , δ , λ ; j ) ,  we need to show that  F ϵ = h 1 h 2 + ϵ ( g 1 g 2 ) A m ( γ , δ , λ ; j )  for each  ϵ ( | ϵ | = 1 ) .  By Lemma 6, the class  A m ( γ , δ , λ ; j )  is closed under convolutions for each  ϵ ( | ϵ | = 1 ) ,   h t + ϵ g t A m ( γ , δ , λ ; j )  for  t = 1 , 2 .  Then, both  ψ 1  and  ψ 2  given by
ψ 1 = ( h 1 g 1 ) ( h 2 ϵ g 2 ) and ψ 2 = ( h 1 + g 1 ) ( h 2 + ϵ g 2 ) ,
are members of  A m ( γ , δ , λ ; j ) . Since  A m ( γ , δ , λ ; j )  is closed under convex combinations, then the function
F ϵ = 1 2 ( ψ 1 + ψ 2 ) = h 1 h 2 + ϵ ( g 1 g 2 )
is a member of  A m ( γ , δ , λ ; j ) . Thus,  G H ( m ) ( γ , δ , λ ; j )  is closed under convolution. □
In [30], Goodloe defined the Hadamard product of a harmonic function  = h + g ¯  with an analytic function  ϕ  in  E  as follows:
˜ ϕ = h ϕ + g ϕ ¯ .
Theorem 10. 
Suppose that  G H ( m ) ( γ , δ , λ ; j )  and  ϕ A ( m )  with  R e ϕ ( z ) z m > 1 2  for  z E ,  then  ˜ ϕ   G H ( m ) ( γ , δ , λ ; j ) .
Proof. 
Suppose that  = h + g ¯ G H ( m ) ( γ , δ , λ ; j ) ,  then  F ϵ = h + ϵ g A m ( γ , δ , λ ; j )  for each  ϵ ( | ϵ | = 1 ) .  By Theorem 1, in order to prove that  ˜ ϕ G H ( m ) ( γ , δ , λ ; j ) ,  we need to prove that  ψ = h ϕ + ϵ ( g ϕ ) A m ( γ , δ , λ ; j )  for each  ϵ ( | ϵ | = 1 ) .  Write  ψ  as  ψ = F ϵ ϕ ,  and
1 β λ γ ψ ( j ) ( z ) z m j + δ ψ ( j + 1 ) ( z ) z m j 1 = 1 β λ γ F ϵ ( j ) ( z ) z m j + δ F ϵ ( j + 1 ) ( z ) z m j 1 λ ϕ ( z ) z m .
Since  Re ϕ ( z ) z m > 1 2  and  Re γ F ϵ ( j ) ( z ) z m j + δ F ϵ ( j + 1 ) ( z ) z m j 1 λ > 0  in  E ,  Lemma 4 yields  ψ A m ( γ , δ , λ ; j ) . □

5. Discussion and Conclusions

As stated in the information provided in the introduction, multivalent harmonic functions are becoming more and more significant. A new class of these functions is defined in this paper and is denoted by  G H ( m ) ( γ , δ , λ ; j )  in Definition 1. By assigning various values to the variables in the class defined in this study, it is established that numerous subclasses that have already been investigated by many different researchers can be obtained. The coefficient relations, growth theorems, and geometric features of the recently introduced class  G H ( m ) ( γ , δ , λ ; j )  are examined in the four sections of this research paper.
We believe that, as this article thoroughly covers the topic of multivalent harmonic functions from the past to the present, it will be relevant to numerous future studies. We suggest future studies regarding the theories of differential subordination and superordination involving functions from the class  G H ( m ) , δ , λ ; j )  as seen for harmonic complex-valued functions in recent papers such as [31,32]. Quantum calculus aspects can be introduced in this study, as presented in recent investigations [33,34,35].

Author Contributions

Conceptualization, G.I.O., S.Y. and H.B.; methodology, G.I.O., S.Y. and H.B.; software, G.I.O., S.Y. and H.B.; validation, G.I.O., S.Y. and H.B.; formal analysis, G.I.O., S.Y. and H.B.; investigation, G.I.O., S.Y. and H.B.; resources, G.I.O., S.Y. and H.B.; data curation, G.I.O., S.Y. and H.B.; writing—original draft preparation, S.Y. and H.B.; writing—review and editing, G.I.O., S.Y. and H.B.; visualization, G.I.O., S.Y. and H.B.; supervision, S.Y.; project administration, G.I.O.; funding acquisition, G.I.O. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. AI 1984, 9, 3–25. [Google Scholar] [CrossRef]
  2. Owa, S.; Hayami, T.; Kuroki, K. Some properties of certain analytic functions. Int. J. Math. Math. Sci. 2007, 2007, 091592. [Google Scholar] [CrossRef]
  3. Çakmak, S.; Yasar, E.; Yalcin, S. Some basic geometric properties of a subclass of harmonic mappings. Bol. Soc. Mat. Mex. 2022, 28, 54. [Google Scholar] [CrossRef]
  4. Ponnusamy, S.; Yamamoto, H.; Yanagihara, H. Variability regions for certain families of harmonic univalent mappings. Complex Var. Elliptic Equ. 2013, 58, 23–34. [Google Scholar] [CrossRef]
  5. Li, L.; Ponnusamy, S. Disk of convexity of sections of univalent harmonic functions. J. Math. Anal. Appl. 2013, 408, 589–596. [Google Scholar] [CrossRef]
  6. Li, L.; Ponnusamy, S. Injectivity of sections of univalent harmonic mappings. Nonlinear Anal. 2013, 89, 276–283. [Google Scholar] [CrossRef]
  7. Li, L.; Ponnusamy, S. Injectivity of sections of convex harmonic mappings and convolution theorems. Czech. Math. J. 2016, 66, 331–350. [Google Scholar] [CrossRef]
  8. Liu, M.S.; Yang, L.M. Geometric properties and sections for certain subclasses of harmonic mappings. Monatsh. Math. 2019, 190, 353–387. [Google Scholar] [CrossRef]
  9. Nagpal, S.; Ravichandran, V. Construction of subclasses of univalent harmonic mappings. J. Korean Math. Soc. 2014, 53, 567–592. [Google Scholar] [CrossRef]
  10. Ghosh, N.; Vasudevarao, A. On a subclass of harmonic close-to-convex mappings. Monatsh. Math. 2019, 188, 247–267. [Google Scholar] [CrossRef]
  11. Rajbala; Prajapat, J.K. On a subclass of close-to-convex harmonic mappings. Asian-Eur. J. Math. 2021, 14, 2150102. [Google Scholar] [CrossRef]
  12. Chichra, P.N. New subclass of the class of close-to-convex function. Proc. Am. Math. Soc. 1977, 62, 37–43. [Google Scholar] [CrossRef]
  13. Goodman, A.W. Univalent Functions. Vol. 1 and 2; Mariner Publishing Co., Inc.: Tampa, FL, USA, 1983. [Google Scholar]
  14. Singh, R.; Singh, S. Convolution properties of a class of starlike functions. Proc. Am. Math. Soc. 1989, 106, 145–152. [Google Scholar] [CrossRef]
  15. Gao, C.-Y.; Zhou, S.-Q. Certain subclass of starlike functions. Appl. Math. Comput. 2007, 187, 176–182. [Google Scholar] [CrossRef]
  16. Wang, Z.G.; Gao, C.Y.; Yuan, S.M. On the univalency of certain analytic functions. J. Inequal. Pure Appl. Math. 2006, 7, 4. [Google Scholar]
  17. Ahlfors, L.V. Lectures on Quasiconformal Mappings; Van Nostrand: New York, NY, USA, 1966. [Google Scholar]
  18. Lehto, O.; Virtanen, K.I. Quasiconformal Mappings in the Plane; Die Grund-Lehren der Mathematischen Wissenschaften 126; Springer: Berlin/Heidelberg, Germany, 1973. [Google Scholar]
  19. Diamond, F.; Shurman, J. A First Course in Modular Forms; Springer: New York, NY, USA, 2005. [Google Scholar]
  20. Zagier, D. Elliptic Modular Forms and Their Applications. In The 1-2-3 of Modular Forms; Springer: Berlin, Germany, 2008. [Google Scholar]
  21. Eells, J.; Lemaire, L. Selected Topics in Harmonic Maps. CBMS Reg. Conf. Ser. Math. 1983, 50. [Google Scholar] [CrossRef]
  22. Berndt, R.; Evans, R.; Williams, K. Gauss and Jacobi Sums; Wiley: New York, NY, USA, 1998. [Google Scholar]
  23. Terras, A. Harmonic Analysis on Symmetric Spaces-Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane; Springer: New York, NY, USA, 2013. [Google Scholar]
  24. Dubrovin, B.; Fomenko, A.; Novikov, S. Modern Geometry—Methods and Applications: Part III: Introduction to Homology Theory; Springer: New York, NY, USA, 1984. [Google Scholar]
  25. Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis; Cambridge University Press: Cambridge, UK, 1927. [Google Scholar]
  26. Caratheodory, C. Uber den Variabilitatsbereich der Koeffzienten von Potenzreihen, die gegebene werte nicht annehmen. Math. Ann. 1907, 64, 95–115. [Google Scholar] [CrossRef]
  27. Ahuja, O.P.; Jahangiri, J.M. Multivalent harmonic starlike functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 2001, 55, 1–13. [Google Scholar]
  28. Ahuja, O.P.; Jahangiri, J.M. Multivalent harmonic convex functions. Math. Sci. Res. J. 2007, 11, 537–543. [Google Scholar]
  29. Fejér, L. Über die Positivität von Summen, die nach trigonometrischen oder Legendreschen Funktionen fortschreiten. Acta Litt. Ac Sei. Szeged 1925, 2, 75–86. [Google Scholar]
  30. Goodloe, M. Hadamard products of convex harmonic mappings. Complex Var. Theory Appl. 2002, 47, 81–92. [Google Scholar] [CrossRef]
  31. Oros, G.I.; Oros, G. Differential superordination for harmonic complex-valued functions. Stud. Univ. Babes-Bolyai Math. 2019, 64, 487–496. [Google Scholar] [CrossRef]
  32. Oros, G.I. Best Subordinant for Differential Superordinations of Harmonic Complex-Valued Functions. Mathematics 2020, 8, 2041. [Google Scholar] [CrossRef]
  33. Hadi, S.H.; Darus, M.; Alb Lupaş, A. A Class of Janowski-Type (p,q)-Convex Harmonic Functions Involving a Generalized q-Mittag–Leffler Function. Axioms 2023, 12, 190. [Google Scholar] [CrossRef]
  34. Ahuja, O.P.; Cetinkaya, A.; Mert, O. Sălăgean-type harmonic multivalent functions defined by q-difference operator. Stud. Univ. Babes-Bolyai Math. 2022, 67, 489–499. [Google Scholar] [CrossRef]
  35. Shah, S.A.; Cotîrlă, L.-I.; Cătaş, A.; Dubău, C.; Cheregi, G. A Study of Spiral-Like Harmonic Functions Associated with Quantum Calculus. J. Funct. Spaces 2022, 2022, 5495011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Oros, G.I.; Yalçın, S.; Bayram, H. Some Properties of Certain Multivalent Harmonic Functions. Mathematics 2023, 11, 2416. https://doi.org/10.3390/math11112416

AMA Style

Oros GI, Yalçın S, Bayram H. Some Properties of Certain Multivalent Harmonic Functions. Mathematics. 2023; 11(11):2416. https://doi.org/10.3390/math11112416

Chicago/Turabian Style

Oros, Georgia Irina, Sibel Yalçın, and Hasan Bayram. 2023. "Some Properties of Certain Multivalent Harmonic Functions" Mathematics 11, no. 11: 2416. https://doi.org/10.3390/math11112416

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop