A Review of the Key Technology in a Blockchain Building Decentralized Trust Platform
Abstract
:1. Introduction
1.1. Related Work
1.2. Goal and Contribution
- Through a comprehensive overview of decentralization technology and blockchain, we sort out the blockchain decentralization trust mechanisms by layer and analyze the problems and solutions faced by each layer.
- The current research status of the core technologies of blockchain, such as consensus mechanisms and smart contracts, is compared and analyzed. The advantages and disadvantages of current core technologies and future development directions are summarized.
- By investigating the current applications of blockchain, we reveal the technical and security problems of blockchain technology and provide guidelines for blockchain technology research.
1.3. Layout
2. Review
2.1. Decentralized Web
- Solid [19]: Solid is a decentralized data storage platform. In Solid, all users’ data is independent of the applications that create and consume that data. Developers can use the Solid protocol to read, write, and access control users’ pod content. The data on Solid belongs to the user, and the user can freely decide where the data are stored and who can access the data.
- Mastodon [20]: Mastodon is a decentralized online blogging system run by a decentralized federation of independently run open-source software servers. The primary goal of Mastodon is to give back control of content distribution channels to users and avoid inserting other irrelevant ads or posts in the information feed.
- PrPl [21]: PrPl is a decentralized online social network that can guarantee user data security. For the user, his data are safe; the ownership of the data will not be lost with the user’s social activities; and it supports fine-grained data sharing. For developers, PrPl provides a Datalog-based development language called SociaLite for data access control. Using SociaLite to write a small amount of code can realize the sharing of private social data among friends.
- PeerTube: PeerTube is a free and open source decentralized video sharing platform that uses peer-to-peer technology to reduce the load on a single server when watching videos.
- Diaspora [22]: Diaspora is a decentralized online social network. It is a network of independent Diaspora servers managed by individual users who allow Diaspora users’ profiles to be hosted on their servers. Therefore, the degree of decentralization is not high.
2.2. Blockchain
3. Blockchain Architecture
3.1. Data Layer
3.2. Network Layer
3.3. Consensus Layer
3.4. Contract Layer
3.5. Application Layer
4. Blockchain Basic Principle
4.1. Data Structure
4.1.1. Hash Function
4.1.2. Hash List
4.1.3. Timestamps
4.1.4. Merkle Tree
4.1.5. Digital Signature
4.2. Storage Structure
4.3. Ledger Pattern
4.3.1. Transaction-Based Ledger
4.3.2. Account-Based Ledger
5. Consensus Mechanisms
5.1. Pow
5.1.1. Overview
5.1.2. Advantages and Disadvantages
5.1.3. Improved Algorithms
5.2. Pos/Dpos
5.2.1. Overview
5.2.2. Advantages and Disadvantages
5.2.3. Improved Algorithms
5.3. Pbft
5.3.1. Overview
5.3.2. Advantages and Disadvantages
5.3.3. Improved Algorithms
5.4. Discussion
6. Smart Contracts
6.1. Development
6.2. Contract Languages
6.2.1. Solidity
6.2.2. Vyper
6.2.3. Daml
6.3. Platform Comparison
6.3.1. Bitcoin
6.3.2. Ethereum
6.3.3. Hyperledger Fabric
6.3.4. Eos
6.3.5. Avalanche
6.4. Example
6.5. Discussion
7. Applications
7.1. Cryptocurrency
7.2. Energy
7.3. Healthcare
7.4. Internet of Things
7.5. Security AI
7.6. Nft
7.7. Web 3.0
8. Blockchain Problems
8.1. Technology
8.1.1. Privacy
8.1.2. Scalability
8.1.3. Performance
8.1.4. Lightweight
8.2. Security
8.2.1. 51% Attack
8.2.2. Sybil Attack
8.2.3. Double Spending
8.2.4. Selfish Mining
8.2.5. Replay Attack
8.2.6. Contract Vulnerability
8.3. Energy Consumption
8.4. Regulation
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakamoto, S. Bitcoin: A Peer-To-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 21 December 2022).
- Bayer, D.; Haber, S.; Stornetta, W.S. Improving the efficiency and reliability of digital time-stamping. In Sequences Ii; Springer: Berlin, Germany, 1993; pp. 329–334. [Google Scholar]
- Monrat, A.A.; Schelen, O.; Andersson, K. A Survey of Blockchain From the Perspectives of Applications, Challenges, and Opportunities. IEEE Access 2019, 7, 117134–117151. [Google Scholar] [CrossRef]
- Sapra, R.; Dhaliwal, P. Blockchain: The new era of technology. In Proceedings of the 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), IEEE, Waknaghat, Solan, Himachal Pradesh, India, 20–22 December 2018; pp. 495–499. [Google Scholar]
- Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 1–2. [Google Scholar]
- Chen, Y.; Bellavitis, C. Blockchain disruption and decentralized finance: The rise of decentralized business models. J. Bus. Ventur. Insights 2020, 13, e00151. [Google Scholar] [CrossRef]
- Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich, Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15. [Google Scholar]
- Xu, B.; Luthra, D.; Cole, Z.; Blakely, N. EOS: An architectural, performance, and economic analysis. Retrieved June 2018, 11, 2019. [Google Scholar]
- Maesa, D.; Mori, P. Blockchain 3.0 applications survey. J. Parallel Distrib. Comput. 2020, 138, 99–114. [Google Scholar] [CrossRef]
- Alammary, A.; Alhazmi, S.; Almasri, M.; Gillani, S. Blockchain-based applications in education: A systematic review. Appl. Sci. 2019, 9, 2400. [Google Scholar] [CrossRef] [Green Version]
- Agbo, C.C.; Mahmoud, Q.H.; Eklund, J.M. Blockchain technology in healthcare: A systematic review. Healthcare 2019, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. Challenges and opportunities. Future Gener. Comput. Syst. 2018, 88, 173–190. [Google Scholar] [CrossRef]
- Alabdulwahhab, F.A. Web 3.0: The Decentralized Web Blockchain networks and Protocol Innovation. In Proceedings of the 2018 1st International Conference on Computer Applications & Information Security (ICCAIS), IEEE, Hangzhou, China, 24–27 October 2018; pp. 1–4. [Google Scholar]
- Xu, M.; Chen, X.; Kou, G. A systematic review of blockchain. Financ. Innov. 2019, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yli-Huumo, J.; Ko, D.; Choi, S.; Park, S.; Smolander, K. Where is current research on blockchain technology?—A systematic review. PLoS ONE 2016, 11, e0163477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulaviius, R.; Grigaitis, S.; Igumenov, A.; Filatovas, E. A Decade of Blockchain: Review of the Current Status, Challenges, and Future Directions. Informatica 2019, 30, 729–748. [Google Scholar] [CrossRef]
- Zheng, Z.; Xie, S. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018, 14, 352–375. [Google Scholar] [CrossRef]
- Sambra, A.V.; Mansour, E.; Hawke, S.; Zereba, M.; Greco, N.; Ghanem, A.; Zagidulin, D.; Aboulnaga, A.; Berners-Lee, T. Solid: A Platform for Decentralized Social Applications Based on Linked Data; Technical Report; MIT CSAIL & Qatar Computing Research Institute: Asheville, NC, USA, 2016. [Google Scholar]
- Raman, A.; Joglekar, S.; De Cristofaro, E.; Sastry, N.; Tyson, G. Challenges in the Decentralized Web: The Mastodon Case. In Proceedings of the 19th ACM Internet Measurement Conference (IMC 2019). ACM, Amsterdam, Netherlands, 21–31 October 2019; pp. 217–229. [Google Scholar]
- Seong, S.W.; Seo, J.; Nasielski, M.; Sengupta, D.; Hangal, S.; Teh, S.K.; Chu, R.; Dodson, B.; Lam, M.S. Prpl: A decentralized social networking infrastructure. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond, San Francisco, CA, USA, 15 June 2010; pp. 1–8. [Google Scholar]
- Bielenberg, A.; Helm, L.; Gentilucci, A.; Stefanescu, D.; Zhang, H. The growth of diaspora-a decentralized online social network in the wild. In Proceedings of the 2012 IEEE INFOCOM workshops, IEEE, Orlando, FL, USA, 25–30 March 2012; pp. 13–18. [Google Scholar]
- Dang, H.; Dinh, T.T.A.; Loghin, D.; Chang, E.C.; Lin, Q.; Ooi, B.C. Towards scaling blockchain systems via sharding. In Proceedings of the 2019 International Conference on Management of Data, Amsterdam, The Netherlands, 30 June–5 July 2019; pp. 123–140. [Google Scholar]
- Graf, M.; Rausch, D.; Ronge, V.; Egger, C.; Küsters, R.; Schröder, D. A security framework for distributed ledgers. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, 15–19 November 2021; pp. 1043–1064. [Google Scholar]
- Xu, C.; Zhang, C.; Xu, J. vchain: Enabling verifiable boolean range queries over blockchain databases. In Proceedings of the 2019 International Conference on Management of Data, Amsterdam, The Netherlands, 12–19 July 2019; pp. 141–158. [Google Scholar]
- Yu, H.; Nikolić, I.; Hou, R.; Saxena, P. Ohie: Blockchain scaling made simple. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (SP), IEEE, Hyatt Regency, San Francisco, CA, USA, 17–21 May 2020; pp. 90–105. [Google Scholar]
- Ruan, P.; Kanza, Y.; Ooi, B.C.; Srivastava, D. LedgerView: Access-Control Views on Hyperledger Fabric. In Proceedings of the 2022 International Conference on Management of Data; Association for Computing Machinery, New York, NY, USA, 14–19 June 2022; pp. 2218–2231. [Google Scholar] [CrossRef]
- Han, Y.; Li, C.; Li, P.; Wu, M.; Zhou, D.; Long, F. Shrec: Bandwidth-Efficient Transaction Relay in High-Throughput Blockchain Systems. In Proceedings of the 11th ACM Symposium on Cloud Computing; Association for Computing Machinery, New York, NY, USA, 19–21 October 2020; pp. 238–252. [Google Scholar] [CrossRef]
- Sestrem Ochôa, I.; Augusto Silva, L.; De Mello, G.; Garcia, N.M.; de Paz Santana, J.F.; Quietinho Leithardt, V.R. A cost analysis of implementing a blockchain architecture in a smart grid scenario using sidechains. Sensors 2020, 20, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Mamun, A.; Yan, F.; Zhao, D. SciChain: Blockchain-enabled Lightweight and Efficient Data Provenance for Reproducible Scientific Computing. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Crete, Greece, 19–23 April 2021; pp. 1853–1858. [Google Scholar] [CrossRef]
- Kaur, M.; Gupta, S.; Kumar, D.; Verma, C.; Neagu, B.C.; Raboaca, M.S. Delegated Proof of Accessibility (DPoAC): A Novel Consensus Protocol for Blockchain Systems. Mathematics 2022, 10, 2336. [Google Scholar] [CrossRef]
- Lansky, J.; Rahmani, A.M.; Ali, S.; Bagheri, N.; Safkhani, M.; Hassan Ahmed, O.; Hosseinzadeh, M. BCmECC: A Lightweight Blockchain-Based Authentication and Key Agreement Protocol for Internet of Things. Mathematics 2021, 9, 3241. [Google Scholar] [CrossRef]
- AbuDaqa, A.A.; Mahmoud, A.; Abu-Amara, M.; Sheltami, T. Survey of network coding based P2P file sharing in large scale networks. Appl. Sci. 2020, 10, 2206. [Google Scholar] [CrossRef] [Green Version]
- Milojicic, D.S.; Kalogeraki, V.; Lukose, R.; Nagaraja, K.; Pruyne, J.; Richard, B.; Rollins, S.; Xu, Z. Peer-to-Peer Computing. 2002. Available online: https://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf (accessed on 18 November 2022).
- Aljaedi, A.R.A. Peer-to-Peer Network Security Issues and Analysis: Review. Int. J. Comput. Sci. Netw. Secur. 2020, 20, 74–88. [Google Scholar]
- Risson, J.; Moors, T. Survey of Research Towards Robust Peer-to-Peer Networks: Search methods. Comput. Netw. 2007, 50, 3485–3521. [Google Scholar] [CrossRef]
- Fischer, M.J.; Lynch, N.A.; Paterson, M.S. Impossibility of distributed consensus with one faulty process. J. ACM 1985, 32, 374–382. [Google Scholar] [CrossRef]
- Fox, A.; Brewer, E.A. Harvest, yield, and scalable tolerant systems. In Proceedings of the Seventh Workshop on Hot Topics in Operating Systems, Rio Rico, AZ, USA, 29–30 March 1999; pp. 174–178. [Google Scholar]
- Qi, Z.; Zhang, Y.; Wang, Y.; Wang, J.; Wu, Y. A cascade structure for blockchain. In Proceedings of the 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN), Shenzhen, China, 15 August 2018; pp. 252–253. [Google Scholar]
- Ribero, Y.; Raissar, D. DagCoin Whitepaper. 2018. Available online: https://prismic-io.s3.amazonaws.com/dagcoin/f4e531e1-a5db-43b6-930c-14bf705e65ee_Dagcoin_White_Paper.pdf (accessed on 27 October 2022).
- Zhang, Y.; Xu, C.; Li, H.; Yang, H.; Shen, X. Chronos: Secure and accurate time-stamping scheme for digital files via blockchain. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Ma, G.; Ge, C.; Zhou, L. Achieving reliable timestamp in the bitcoin platform. Peer Peer Netw. Appl. 2020, 13, 2251–2259. [Google Scholar] [CrossRef]
- Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Mingxiao, D.; Xiaofeng, M.; Zhe, Z.; Xiangwei, W.; Qijun, C. A review on consensus algorithm of blockchain. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff Center, Banff, AB, Canada, 5–8 October 2017; pp. 2567–2572. [Google Scholar] [CrossRef]
- Castro, M.; Liskov, B. Practical Byzantine Fault Tolerance and Proactive Recovery. ACM Trans. Comput. Syst. 2002, 20, 398–461. [Google Scholar] [CrossRef]
- Wu, Y.; Song, P.; Wang, F. Hybrid consensus algorithm optimization: A mathematical method based on POS and PBFT and its application in blockchain. Math. Probl. Eng. 2020, 2020, 13. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Sharif, K.; Li, F.; Maharjan, S.; Mohanty, S.P.; Wang, Y. PoBT: A lightweight consensus algorithm for scalable IoT business blockchain. IEEE Internet Things J. 2019, 7, 2343–2355. [Google Scholar] [CrossRef]
- Fu, X.; Wang, H.; Shi, P. A survey of Blockchain consensus algorithms: Mechanism, design and applications. Sci. China Inf. Sci. 2021, 64, 1–15. [Google Scholar] [CrossRef]
- Dwork, C.; Naor, M. Pricing via Processing or Combatting Junk Mail. In Proceedings of the International Cryptology Conference on Advances in Cryptology, Heidelberg, Berlin, 22–26 August 1993. [Google Scholar]
- Raghav; Andola, N.; Venkatesan, S.; Verma, S. PoEWAL: A lightweight consensus mechanism for blockchain in IoT. Pervasive Mob. Comput. 2020, 69, 101291. [Google Scholar] [CrossRef]
- Huang, J.; Kong, L.; Chen, G.; Wu, M.Y.; Liu, X.; Zeng, P. Towards Secure Industrial IoT: Blockchain System with Credit-Based Consensus Mechanism. IEEE Trans. Ind. Inform. 2019, 15, 3680–3689. [Google Scholar] [CrossRef]
- Ethereum. 2022. Available online: https://ethereum.org/zh/upgrades/beacon-chain/ (accessed on 4 October 2022).
- Snider, M.; Samani, K.; Jain, T. Delegated Proof of Stake: Features & Tradeoffs. 2018. Available online: https://holbrook.no/share/papers/DPoS_-Features-and-Tradeoffs.pdf (accessed on 10 October 2022).
- Luo, Y.; Chen, Y.; Chen, Q.; Liang, Q. A new election algorithm for DPos consensus mechanism in blockchain. In Proceedings of the 2018 7th International Conference on Digital Home (ICDH), Sfax, Tunisia, 15–16 October 2018; pp. 116–120. [Google Scholar]
- Saad, M.; Qin, Z.; Ren, K.; Nyang, D.; Mohaisen, D. e-pos: Making proof-of-stake decentralized and fair. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1961–1973. [Google Scholar] [CrossRef]
- Kiayias, A.; Russell, A.; David, B.; Oliynykov, R. Ouroboros: A provably secure proof-of-stake blockchain protocol. In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 20–24 August 2017; pp. 357–388. [Google Scholar]
- Abraham, I.; Gueta, G.; Malkhi, D. Hot-Stuff the Linear, Optimal-Resilience, One-Message BFT Devil. CoRR, 2018; abs/1803.05069. [Google Scholar]
- Teng, L. Improvement and Application of Practical Byzantine Fault Tolerance Consensus Algorithm. Ph.D. Thesis, Hebei University of Engineering, Handan, China, 2021. [Google Scholar]
- YUAN Yong, W.F.Y. Blockchain: The State of the Art and Future Trends. Acta Autom. Sin. 2016, 42, 481–494. [Google Scholar]
- Montes, J.M.; Ramirez, C.E.; Gutierrez, M.C.; Larios, V.M. Smart Contracts for supply chain applicable to Smart Cities daily operations. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Virtual, 16–18 November 2019. [Google Scholar]
- Vujičić, D.; Jagodić, D.; Ranđić, S. Blockchain technology, bitcoin, and Ethereum: A brief overview. In Proceedings of the 2018 17th International Symposium Infoteh-Jahorina (Infoteh), Jahorina, Bosnia and Herzegovina, 21–23 March 2018; pp. 1–6. [Google Scholar]
- Kosba, A.; Miller, A.; Shi, E.; Wen, Z.; Papamanthou, C. Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 839–858. [Google Scholar]
- Kalra, S.; Goel, S.; Dhawan, M.; Sharma, S. Zeus: Analyzing safety of smart contracts. In Proceedings of the 25th Annual Network and Distributed System Security Symposium, San Diego, CA, USA, 18–21 February 2018; pp. 1–12. [Google Scholar]
- Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and platforms. Future Gener. Comput. Syst. 2020, 105, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Wohrer, M.; Zdun, U. Smart contracts: Security patterns in the ethereum ecosystem and solidity. In Proceedings of the 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE), Campobasso, Italy, 20 March 2018; pp. 2–8. [Google Scholar]
- Kaleem, M.; Mavridou, A.; Laszka, A. Vyper: A security comparison with solidity based on common vulnerabilities. In Proceedings of the 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), Virtual, 28–30 September 2020; pp. 107–111. [Google Scholar]
- Buterin, V. Vyper Documentation. Retrieved Oct. 2018, 30, 2018. [Google Scholar]
- Kfir, S.; Fournier, C. DAML: The contract language of distributed ledgers. Commun. ACM 2019, 62, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Back, A. Hashcash-A Denial of Service Counter-Measure. 2002. Available online: https://www.researchgate.net/publication/2482110_Hashcash_-_A_Denial_of_Service_Counter-Measure (accessed on 1 April 2022).
- Kang, J.; Yu, R.; Huang, X.; Maharjan, S.; Zhang, Y.; Hossain, E. Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains. IEEE Trans. Ind. Inform. 2017, 13, 3154–3164. [Google Scholar] [CrossRef]
- Su, Z.; Wang, Y.; Xu, Q.; Fei, M.; Tian, Y.C.; Zhang, N. A secure charging scheme for electric vehicles with smart communities in energy blockchain. IEEE Internet Things J. 2018, 6, 4601–4613. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.T.; Kim, H.E.; Ohno–Machado, L. Blockchain distributed ledger technologies for biomedical and health care applications. J. Am. Med. Inform. Assoc. 2017, 24, 1211–1220. [Google Scholar] [CrossRef] [Green Version]
- Azaria, A.; Ekblaw, A.; Vieira, T.; Lippman, A. Medrec: Using blockchain for medical data access and permission management. In Proceedings of the 2016 2nd International Conference on Open and Big Data (OBD), Vienna, Austria, 22–24 August 2016; pp. 25–30. [Google Scholar]
- Mettler, M. Blockchain technology in healthcare: The revolution starts here. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–17 September 2016; pp. 1–3. [Google Scholar]
- Hirtan, L.; Krawiec, P.; Dobre, C.; Batalla, J.M. Blockchain-based approach for e-health data access management with privacy protection. In Proceedings of the 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus, 11–13 September; pp. 1–7.
- Fernández-Caramés, T.M.; Fraga-Lamas, P. A Review on the Use of Blockchain for the Internet of Things. IEEE Access 2018, 6, 32979–33001. [Google Scholar] [CrossRef]
- Alphand, O.; Amoretti, M.; Claeys, T.; Dall’Asta, S.; Duda, A.; Ferrari, G.; Rousseau, F.; Tourancheau, B.; Veltri, L.; Zanichelli, F. IoTChain: A blockchain security architecture for the Internet of Things. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 16–18 April 2018; pp. 1–6. [Google Scholar]
- Li, C.; Zhang, L.J. A blockchain based new secure multi-layer network model for internet of things. In Proceedings of the 2017 IEEE International Congress on Internet of Things (ICIOT), Honolulu, HI, USA, 25–30 June 2017; pp. 33–41. [Google Scholar]
- Pinno, O.J.A.; Gregio, A.R.A.; De Bona, L.C. Controlchain: Blockchain as a central enabler for access control authorizations in the iot. In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Yeom, S.; Giacomelli, I.; Fredrikson, M.; Jha, S. Privacy risk in machine learning: Analyzing the connection to overfitting. In Proceedings of the 2018 IEEE 31st Computer Security Foundations Symposium (CSF), Oxford, UK, 9–12 July 2018; pp. 268–282. [Google Scholar]
- Zyskind, G.; Nathan, O.; Pentland, A. Decentralizing privacy: Using blockchain to protect personal data. In Proceedings of the 2015 IEEE Security and Privacy Workshops, Fairmont, San Jose, CA, USA, 18–20 May 2015; pp. 180–184. [Google Scholar]
- Chen, X.; Ji, J.; Luo, C.; Liao, W.; Li, P. When machine learning meets blockchain: A decentralized, privacy-preserving and secure design. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 1178–1187. [Google Scholar]
- Qi, Y.; Hossain, M.S.; Nie, J.; Li, X. Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Gener. Comput. Syst. 2021, 117, 328–337. [Google Scholar] [CrossRef]
- Fairfield, J.A. Tokenized: The law of non-fungible tokens and unique digital property. Ind. LJ 2022, 97, 1261. [Google Scholar]
- Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-Fungible Token (NFT): Overview, Evaluation, Opportunities and Challenges. arXiv 2021, arXiv:2105.07447. [Google Scholar] [CrossRef]
- Bambacht, J.; Pouwelse, J. Web3: A Decentralized Societal Infrastructure for Identity, Trust, Money, and Data. arXiv 2022, arXiv:2203.00398. [Google Scholar]
- Momtaz, P.P. Some very simple economics of web3 and the metaverse. FinTech 2022, 1, 225–234. [Google Scholar] [CrossRef]
- Ahn, G.J.; Shehab, M.; Squicciarini, A. Security and privacy in social networks. IEEE Internet Comput. 2011, 15, 10–12. [Google Scholar] [CrossRef]
- Meiklejohn, S.; Pomarole, M.; Jordan, G.; Levchenko, K.; McCoy, D.; Voelker, G.M.; Savage, S. A fistful of bitcoins: Characterizing payments among men with no names. In Proceedings of the 2013 Conference on Internet Measurement Conference, Barcelona, Spain, 23–25 October 2013; pp. 127–140. [Google Scholar]
- Al-Haija, Q.A.; Alsulami, A.A. High Performance Classification Model to Identify Ransomware Payments for Heterogeneous Bitcoin Networks. Electronics 2021, 10, 2113. [Google Scholar] [CrossRef]
- Javaid, H.; Yang, J.; Santoso, N.; Upadhyay, M.; Mohan, S.; Hu, C.; Brebner, G. Blockchain machine: A network-attached hardware accelerator for hyperledger fabric. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), Bologna, Italy, 10–13 July 2022; pp. 258–268. [Google Scholar]
- Poon, J.; Dryja, T. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. 2016. Available online: https://coinrivet.com/research/papers/the-bitcoin-lightning-network-scalable-off-chain-instant-payments/ (accessed on 6 October 2022).
- Back, A.; Corallo, M.; Dashjr, L.; Friedenbach, M.; Maxwell, G.; Miller, A.; Poelstra, A.; Timón, J.; Wuille, P. Enabling Blockchain Innovations with Pegged Sidechains. 2014, Volume 72, pp. 201–224. Available online: http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains (accessed on 6 October 2022).
- Yang, H.; Zhong, Y.; Yang, B.; Yang, Y.; Xu, Z.; Wang, L.; Zhang, Y. An Overview of Sybil Attack Detection Mechanisms in VFC. In Proceedings of the 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Baltimore, America, 27–30 June 2022; pp. 117–122. [Google Scholar] [CrossRef]
- Eyal, I.; Sirer, E.G. Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 2018, 61, 95–102. [Google Scholar] [CrossRef]
- Zhang, R.; Xue, R.; Liu, L. Security and Privacy on Blockchain. ACM Comput. Surv. 2019, 52, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Bcsec. 2022. Available online: https://hacked.slowmist.io/ (accessed on 10 October 2022).
- Atzei, N.; Bartoletti, M.; Cimoli, T. A Survey of Attacks on Ethereum Smart Contracts. Cryptology ePrint Archive, Paper 2016/1007. 2016. Available online: https://eprint.iacr.org/2016/1007 (accessed on 14 October 2022).
- Chen, H.; Pendleton, M.; Njilla, L.; Xu, S. A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses. ACM Comput. Surv. 2020, 53, 1–43. [Google Scholar] [CrossRef]
- Digiconomist. 2022. Available online: https://digiconomist.net/ (accessed on 14 October 2022).
Platform | Appearance | Area | Technology |
---|---|---|---|
Solid | 2016 | Social Network | Linked Data |
Mastodon | 2016 | Blog System | ActivityPub |
PrPl | 2010 | Social Networks | Datalog |
PeerTube | 2018 | Video Sharing | P2P |
Diaspora | 2012 | Social Networking | Rails |
Author | Year | Category | Outcome |
---|---|---|---|
Dang et al. | 2019 | performance improvements | increased throughput |
Graf et al. | 2021 | Security Analysis | First security analysis of non-blockchain ledger |
Al-Mamun et al. | 2021 | Practical Applications | Applying Blockchain to High Performance Computing |
Sestrem et al. | 2020 | Practical Applications | Applying Blockchain to Smart Grid |
Kaur et al. | 2022 | Performance Improvements&Applications | Applicable to Resource-Constrained Scenarios |
Lansky et al. | 2021 | Performance Improvement&Applications | Resistance to Temporary Information Attacks |
Xu et al. | 2019 | Performance Improvements | Data Verifiable Queries |
Yu et al. | 2020 | performance improvements | increased throughput |
Ruan et al. | 2022 | performance improvements | access control implemented |
Han et al. | 2020 | performance improvements | increased throughput |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, W.; Huang, T.; Wang, H. A Review of the Key Technology in a Blockchain Building Decentralized Trust Platform. Mathematics 2023, 11, 101. https://doi.org/10.3390/math11010101
Deng W, Huang T, Wang H. A Review of the Key Technology in a Blockchain Building Decentralized Trust Platform. Mathematics. 2023; 11(1):101. https://doi.org/10.3390/math11010101
Chicago/Turabian StyleDeng, Weichu, Teng Huang, and Haiyang Wang. 2023. "A Review of the Key Technology in a Blockchain Building Decentralized Trust Platform" Mathematics 11, no. 1: 101. https://doi.org/10.3390/math11010101