Fractional Dynamics with Depreciation and Obsolescence: Equations with Prabhakar Fractional Derivatives
Abstract
:1. Introduction and Background: Prabhakar Function in Operator Kernels
1.1. Prabhakar Function
1.2. Operator Kernels and Properties of the Prabhakar Function as a Kernel
1.3. Asymptotic Properties of Operator Kernels with Prabhakar Function
- () the parametercharacterizes the change in the warranted growth rate;
- () the parametercharacterizes the numerical multipliers only;
- () the parametercharacterizes the power-law change in the amplitude of exponential changes (for example, growth);
- () the parametercharacterizes the standard growth rate for exponential behavior of the operator kernel.
2. Fractional Integrals and Derivatives with the Prabhakar Function in Kernels
2.1. Prabhakar Fractional Integrals and Kilbas–Saigo–Saxena Fractional Derivatives
2.2. The D’Ovidio–Polito Operator and Its Modifications
- (a)
- the depreciation and distributed time delay;
- (b)
- the depreciation and fading memory;
- (c)
- the continuously distributed lag and fading memory;
- (d)
- the depreciation and scaling;
- (e)
- the fading memory and scaling.
2.3. Special Cases of the Prabhakar Integral and D’Ovidio–Polito Operator
3. Fractional Differential Equations with Prabhakar Derivatives
3.1. Fractional Differential Equations with the Kilbas–Saigo–Saxena Fractional Derivative
3.2. Fractional Differential Equation with the D’Ovidio–Polito Operator
4. Some Special Cases of the Equation and Its Solutions
- (A)
- Using the notations , , in Equation (118), we find
- (B)
- Changing the notations , , in Equation (120), we get
5. The Kummer Confluent Hypergeometric Function in the Kernel: Distributed Lag and Memory
6. Asymptotic Behavior of Depreciation and Obsolescence Processes
6.1. Special Function for Fractional Differential Equations of Depreciation
6.2. Some Properties of Asymptotic Behavior and Special Case
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives Theory and Applications; Gordon and Breach: New York, NY, USA, 1993; p. 1006. ISBN 9782881248641. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman: Harlow, UK; John Wiley & Sons, Inc.: New York, NY, USA, 1994; p. 360. ISBN 9780582219779. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998; p. 340. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; p. 540. ISBN 9780444518323. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010; p. 247. [Google Scholar] [CrossRef] [Green Version]
- Kochubei, A.N.; Luchko, Y. Handbook of Fractional Calculus with Applications. Volume 1: Basic Theory; Kochubei, A.N., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; ISBN 978-3-11-057081-6. [Google Scholar]
- Kochubei, A.N.; Luchko, Y. Handbook of Fractional Calculus with Applications. Volume 2: Fractional Differential Equations; Kochubei, A.N., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; ISBN 978-3-11-057082-3. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef] [Green Version]
- Luo, A.C.J.; Afraimovich, V. Long-Range Interaction, Stochasticity and Fractional Dynamics; Luo, A.C.J., Afraimovich, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics. Recent Advances; Klafter, J., Lim, S.C., Metzler, R., Eds.; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar]
- Tarasov, V.E. Handbook of Fractional Calculus with Applications: Application in Physics, Part A; Tarasov, V.E., Ed.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; Volume 4. [Google Scholar] [CrossRef]
- Tarasov, V.E. Handbook of Fractional Calculus with Applications: Application in Physics, Part B; Tarasov, V.E., Ed.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; Volume 5. [Google Scholar] [CrossRef] [Green Version]
- Ionescu, C.; Lopes, A.; Copot, D.; Tenreiro Machado, J.; Bates, J. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Tarasov, V.E. Mathematical Economics: Application of Fractional Calculus; MDPI: Basel, Switzerland; Beijing, China, 2020; p. 278. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Economic Dynamics with Memory: Fractional Calculus Approach; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021; p. 602. ISBN 978-3-11-062460-1. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, S.S. Fractional derivatives and integrals: What are they needed for? Mathematics 2020, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Moiseev, N.N. Simplest Mathematical Models of Economic Forecasting; Znanie: Moscow, Russia, 1975; p. 64. Available online: https://booksee.org/book/505314 (accessed on 22 February 2022).
- Ivanilov, Y.P.; Lotov, A.V. Mathematical Models in Economics; Nauka: Moscow, Russia, 1979; p. 304. Available online: http://www.library.fa.ru/files/Ivanilov.pdf (accessed on 22 February 2022).
- Lotov, A.V. Introduction to Economic and Mathematical Modeling; Nauka: Moscow, Russia, 1984; p. 392. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. Available online: https://ynu.repo.nii.ac.jp/?action=repository_action_common_download&item_id=6514&item_no=1&attribute_id=20&file_no=1 (accessed on 22 February 2022).
- Gorenflo, R.; Kilbas, A.A.; Rogosin, S.V. On the generalized Mittag-Leffler type functions. Integral Transform. Spec. Funct. 1998, 7, 215–224. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014; p. 443. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels. J. Integral Equ. Appl. 2002, 14(4), 377–396. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Z. Hilfer–Prabhakar derivatives and some applications. Appl. Math. Comput. 2014, 242, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Polito, F.; Tomovski, Z. Some properties of Prabhakar-type fractional calculus operators. Fract. Differ. Calc. 2016, 6, 73–94. [Google Scholar] [CrossRef]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A practical guide to Prabhakar fractional calculus. Fract. Calc. Appl. Anal. 2020, 23, 9–54. [Google Scholar] [CrossRef] [Green Version]
- Giusti, A. General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105114. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Garrappa, R. On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 2015, 293, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Garrappa, R.; Maione, G. Fractional Prabhakar Derivative and Applications in Anomalous Dielectrics: A Numerical Approach. In Theory and Applications of Non-Integer Order Systems; Lecture Notes in Electrical Engineering; Babiarz, A., Czornik, A., Klamka, J., Niezabitowski, M., Eds.; Springer: Cham, Switzerland, 2017; Volume 407, pp. 429–439. [Google Scholar] [CrossRef]
- Giusti, A.; Colombaro, I. Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 138–143. [Google Scholar] [CrossRef] [Green Version]
- D’Ovidio, M.; Polito, F. Fractional diffusion-telegraph equations and their associated stochastic solutions. arXiv 2013, arXiv:1307.1696. Available online: https://arxiv.org/abs/1307.1696 (accessed on 22 February 2022).
- D’Ovidio, M.; Polito, F. Fractional diffusion–telegraph equations and their associated stochastic solutions. Theory Probab. Appl. 2017, 62, 692–718. [Google Scholar] [CrossRef] [Green Version]
- D’Ovidio, M.; Polito, F. Fractional diffusion–telegraph equations and their associated stochastic solutions. Theory Probab. Appl. 2018, 62, 552–574. [Google Scholar] [CrossRef]
- Garrappa, R.; Kaslik, E. Stability of fractional-order systems with Prabhakar derivatives. Nonlinear Dyn 2020, 102, 567–578. [Google Scholar] [CrossRef]
- Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M. Why fractional derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal. 2020, 23, 610–634. [Google Scholar] [CrossRef]
- Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 2020, 23, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Cardoso, R.P. Sonine integral equations of the first kind in Lp(0; b). Fract. Calc. Appl. Anal. 2003, 6, 235–258. [Google Scholar]
- Luchko, Y. General fractional integrals and derivatives with the Sonine kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, S.S. Fractional and integer derivatives with continuously distributed lag. Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 125–169. [Google Scholar] [CrossRef]
- Paris, R.B. Asymptotics of the Special Functions of Fractional Calculus. In Handbook of Fractional Calculus with Applications: Volume 1. Basic Theory; Kochubei, A.N., Luchko, Y., Eds.; De Gruyter: Berlin, Germany, 2019; Chapter 12; pp. 297–325. ISBN 978-3-11-057162-2. [Google Scholar] [CrossRef]
- Allen, R.G.D. Mathematical Economics, 2nd ed.; Macmillan: London, UK, 1959; p. 812. [Google Scholar] [CrossRef]
- Bateman, H. Tables of Integral Transforms; McGraw-Hill: New York, NY, USA, 1954; Volumes I, p. 391. ISBN 07-019549-8. [Google Scholar]
- WolframAlpha. Available online: https://www.wolframalpha.com/input/?i=inverse+Laplace+transform+s%5Ea%2F%28s%2Bb%29%5Ec (accessed on 22 February 2022).
- Prabhakar, T.R. Two singular integral equations involving confluent hypergeometric functions. Math. Proc. Camb. Philos. Soc. 1969, 66, 71–89. [Google Scholar] [CrossRef]
- Prabhakar, T.R.; Kashyap, N.K. A new class of hypergeometric integral equations. Indian J. Pure Appl. Math. 1980, 11, 92–94. Available online: https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a20_92.pdf (accessed on 22 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, V.E. Fractional Dynamics with Depreciation and Obsolescence: Equations with Prabhakar Fractional Derivatives. Mathematics 2022, 10, 1540. https://doi.org/10.3390/math10091540
Tarasov VE. Fractional Dynamics with Depreciation and Obsolescence: Equations with Prabhakar Fractional Derivatives. Mathematics. 2022; 10(9):1540. https://doi.org/10.3390/math10091540
Chicago/Turabian StyleTarasov, Vasily E. 2022. "Fractional Dynamics with Depreciation and Obsolescence: Equations with Prabhakar Fractional Derivatives" Mathematics 10, no. 9: 1540. https://doi.org/10.3390/math10091540
APA StyleTarasov, V. E. (2022). Fractional Dynamics with Depreciation and Obsolescence: Equations with Prabhakar Fractional Derivatives. Mathematics, 10(9), 1540. https://doi.org/10.3390/math10091540