Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts
Abstract
1. Introduction
2. Preliminaries Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodman, A.W. On the Schwarz Christoffel transformation and p-valent functions. Trans. Am. Math. Soc. 1950, 68, 204–223. [Google Scholar] [CrossRef]
- Al-Janaby, H.F.; Ghanim, F. A subclass of Noor-type harmonic p-valent functions based on hypergeometric functions. Kragujev. J. Math. 2021, 45, 499–519. [Google Scholar] [CrossRef]
- Aouf, M.K. On coefficient bounds of a certain class of p-valent λ-spiral functions of order α. Int. J. Math. Math. Sci. 1987, 10, 259–266. [Google Scholar] [CrossRef]
- Aouf, M.K. On a class of p-valent starlike functions of order α. Int. J. Math. Math. Sci. 1987, 10, 733–744. [Google Scholar] [CrossRef]
- Aouf, M.K.; Lashin, A.Y.; Bulboacă, T. Starlikeness and convexity of the product of certain multivalent functions with higher-order derivatives. Math. Slovaca 2021, 71, 331–340. [Google Scholar] [CrossRef]
- Breaz, D.; Karthikeyan, K.R.; Senguttuvan, V. Multivalent Prestarlike Functions with Respect to Symmetric Points. Symmetry 2022, 14, 20. [Google Scholar] [CrossRef]
- Noor, K.I.; Khan, N. Some convolution properties of a subclass of p-valent functions. Maejo Int. J. Sci. Technol. 2015, 9, 181–192. [Google Scholar]
- Nunokawa, M.; Owa, S.; Sekine, T.; Yamakawa, R.; Saitoh, H.; Nishiwaki, J. On certain multivalent functions. Int. J. Math. Math. Sci. 2007, 2007, 72393. [Google Scholar] [CrossRef][Green Version]
- Oros, G.I.; Oros, G.; Owa, S. Applications of Certain p-Valently Analytic Functions. Mathematics 2022, 10, 910. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Lashin, A.Y. Subordination properties of certain classes of multivalently analytic functions. Math. Comput. Model. 2010, 52, 596–602. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Frasin, B.A.; Liu, J.-L. Certain sufficient conditions for starlikeness and convexity of meromorphically multivalent functions. Acta Math. Scientia 2013, 33, 1300–1304. [Google Scholar] [CrossRef]
- Yousef, A.T.; Salleh, Z.; Al-Hawary, T. On a class of p-valent functions involving generalized differential operator. Afrika Matematika 2021, 32, 275–287. [Google Scholar] [CrossRef]
- Chichra, P.N. New subclasses of the class of close-to-convex functions. Proc. Am. Math. Soc. 1977, 62, 37–43. [Google Scholar] [CrossRef]
- Ali, R.M.; Thomas, D.K. On the starlikeness of the Bernardi integral operator. Proc. Japan Acad. Set. A 1991, 67, 319–321. [Google Scholar] [CrossRef]
- Singh, R.; Singh, V. Convolution properties of a class of starlike functions. Proc. Am. Math. Soc. 1989, 106, 145–152. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S. Starlikeness and convexity of certain integral. Ann. Univ. Mariae Curie Sklodowska Sect. A 1981, 35, 45–47. [Google Scholar]
- Kim, Y.-C.; Srivastava, H.M. Some applications of a differential subordination. Int. J. Math. Math. Sci. 1999, 22, 649–654. [Google Scholar] [CrossRef]
- Ali, R.M.; Lee, S.-K.; Subramanian, K.G.; Swaminathan, A. A third-order differential equation and starlikeness of a Double integral operator. Abst. Appl. Anal. 2011, 2011, 901235. [Google Scholar] [CrossRef]
- Szasz, R. The sharp version of a criterion for starlikeness related to the operator of Alexander. Ann. Pol. Math. 2008, 94, 1–14. [Google Scholar] [CrossRef][Green Version]
- Yang, D.-G.; Liu, J.-L. On a class of analytic functions with missing coefficients. Appl. Math. Comput. 2010, 215, 3473–3481. [Google Scholar] [CrossRef]
- Reddy, G.L.; Padmanabhan, K.S. On analytic functions with reference to the Bernardi integral operator. Bull. Aust. Math. Soc. 1982, 25, 387–396. [Google Scholar] [CrossRef][Green Version]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 135 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Jack, I.S. Functions starlike and convex of order α. J. Lond. Math. Soc. 1971, 3, 469–474. [Google Scholar] [CrossRef]
- Nunokawa, M.; Thomas, D.K. On the Bernardi integral operator. In Current Topics in Analytic Function Theory; Srivastava, H.M., Owa, S., Eds.; World Scientific Publishing: River Edge, NJ, USA; Singapore; London, UK; Hong Kong, China, 1992; pp. 212–219. [Google Scholar]
- Lashin, A.Y. Some convolution properties of analytic functions. Appl. Math. Lett. 2005, 18, 135–138. [Google Scholar] [CrossRef][Green Version]
- Sokol, J. Starlikeness of Hadamard product of certain analytic functions. Appl. Math. Comput. 2007, 190, 1157–1160. [Google Scholar]
- Ponnusamy, S.; Singh, V. Convolution Properties of Some Classes of Analytic Functions. J. Math. Sci. 1998, 89, 1008–1020. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics No. 255; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Owa, S.; Nunokawa, M. Applications of a subordination theorem. J. Math. Anal. Appl. 1994, 188, 219–226. [Google Scholar] [CrossRef][Green Version]
- Stankiewicz, J.; Stankiewicz, Z. Some applications of the Hadamard convolution in the theory of functions. Ann. Univ. Mariae Curie Sklodowska Sect. A 1986, 40, 251–265. [Google Scholar]
- Vatsa, B.S. Introduction to Real Analysis; Satish Kumar Jain: Darya Ganj, New Delhi, India, 2002. [Google Scholar]
- Aouf, M.K.; Ling, Y. Some convolution properties of a certain class of p-valent analytic functions. Appl. Math. Lett. 2009, 22, 361–364. [Google Scholar] [CrossRef]
- Hallenbeck, D.J.; Ruscheweyh, S. Subordination by convex functions. Proc. Am. Math. Soc. 1975, 52, 191–195. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Salagean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef]
- Zhongzhu, Z.; Owa, S. Convolution properties of a class of bounded analytic functions. Bull. Aust. Math. Soc. 1992, 45, 9–23. [Google Scholar] [CrossRef][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lashin, A.M.Y.; Aouf, M.K. Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts. Mathematics 2022, 10, 1506. https://doi.org/10.3390/math10091506
Lashin AMY, Aouf MK. Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts. Mathematics. 2022; 10(9):1506. https://doi.org/10.3390/math10091506
Chicago/Turabian StyleLashin, Abdel Moneim Y., and Mohamed K. Aouf. 2022. "Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts" Mathematics 10, no. 9: 1506. https://doi.org/10.3390/math10091506
APA StyleLashin, A. M. Y., & Aouf, M. K. (2022). Hadamard Product of Certain Multivalent Analytic Functions with Positive Real Parts. Mathematics, 10(9), 1506. https://doi.org/10.3390/math10091506