Thermal-Optical Mechanical Waves of the Excited Microelongated Semiconductor Layer in a Rotational Field
Abstract
:1. Introduction
2. The Main Equations and Mathematical Model
- (i)
- The electric neutrality of the semiconductor is satisfied.
- (ii)
- The magnetic field effect is ignored.
- (iii)
- The mass of charge carrier fields is negligible.
- (iv)
- The electron field within the boundary layer is very weak and can be neglected.
- (v)
- The recombination function of electrons is reduced on the basis of the fact that it takes care of defects and hence, the concentration values of the charge carrier field [25].
- (I)
- Centripetal acceleration, due to time-varying motion only;
- (II)
- Corioli’s acceleration , where is the dynamic displacement vector.
3. Harmonic Wave Analysis
4. Boundary Conditions
5. Validation
5.1. The Rotational Microelongation Thermoelasticity Theory
5.2. The Generalized Rotational Photo-Thermoelasticity Theory
5.3. Rotational Photo-Thermoelasticity Models
5.4. The Microelongation Photo-Thermoelasticity Theory
6. Discussion and Numerical Outcomes
6.1. Impact of Thermal Memories
6.2. Impact of Rotation Parameter
6.3. Impact of Microelongation Parameters
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Lame’s parameters | |
Two scalar functions | |
Deformation potential difference | |
Coefficient of ED | |
Reference temperature in its natural state | |
Volume thermal expansion | |
Microelongational elastic stress | |
The density of the microelongated sample | |
Linear thermal expansion | |
Equilibrium carrier concentration | |
Specific heat at constant strain | |
Thermal conductivity | |
Carrier diffusion coefficient | |
The lifetime of photogenerated carriers | |
Energy gap | |
Components of the strain tensor | |
Microinertia of microelement | |
Microelongational material parameters | |
Thermal relaxation times | |
Scalar microelongational function | |
Components of the microstretch vector | |
Stress tensor component | |
Kronecker delta | |
Recombination velocities | |
Angular velocity |
References
- Eringen, A.C. Microcontinuum Field Theories, Vol. 1, Foundations and Solids; Springer: New York, NY, USA, 1999. [Google Scholar]
- Eringen, A.C. Linear theory of micropolar elasticity. J. Math. Mech. 1966, 15, 909–923. [Google Scholar]
- Eringen, A.C. Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 1990, 28, 1291–1301. [Google Scholar] [CrossRef]
- Singh, B. Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int. J. Eng. Sci. 2001, 39, 583–598. [Google Scholar] [CrossRef]
- Othman, M.; Lotfy, K. The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J. Comput. Theor. Nanosci. 2015, 12, 2587–2600. [Google Scholar] [CrossRef]
- Cicco, D.; Nappa, L. On the theory of thermomicrostretch elastic solids. J. Therm. Stress. 1999, 22, 565–580. [Google Scholar]
- Othman, M.; Lotfy, K. On the plane waves of generalized thermo-microstretch elastic half-space under three theories. Int. Commun. Heat Mass Transf. 2010, 37, 192–200. [Google Scholar] [CrossRef]
- Abouelregal, A.; Marin, M. The Size-Dependent Thermoelastic Vibrations of Nanobeams Subjected to Harmonic Excitation and Rectified Sine Wave Heating. Mathematics 2020, 8, 1128. [Google Scholar] [CrossRef]
- Othman, M.; Lotfy, K. Effect of rotating on plane waves in generalized thermo-microstretch elastic solid with one relaxation time. Multidiscip. Model. Mater. Struct. 2011, 7, 43–62. [Google Scholar] [CrossRef]
- Ramesh, G.; Prasannakumara, B.; Gireesha, B.; Rashidi, M. Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J. Appl. Fluid Mech. 2016, 9, 1115–1122. [Google Scholar] [CrossRef]
- Ezzat, M.; Abd-Elaal, M. Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J. Frankl. Inst. 1997, 334, 685–706. [Google Scholar] [CrossRef]
- Shaw, S.; Mukhopadhyay, B. Periodically varying heat source response in a functionally graded microelongated medium. Appl. Math. Comput. 2012, 218, 6304–6313. [Google Scholar] [CrossRef]
- Shaw, S.; Mukhopadhyay, B. Moving heat source response in a thermoelastic micro-elongated Solid. J. Eng. Phys. Thermophys. 2013, 86, 716–722. [Google Scholar] [CrossRef]
- Ailawalia, P.; Sachdeva, S.; Pathania, D. Plane strain deformation in a thermo-elastic microelongated solid with internal heat source. Int. J. Appl. Mech. Eng. 2015, 20, 717–731. [Google Scholar] [CrossRef] [Green Version]
- Sachdeva, S.; Ailawalia, P. Plane strain deformation in thermoelastic micro-elongated solid. Civ. Environ. Res. 2015, 7, 92–98. [Google Scholar]
- Ailawalia, P.; Kumar, S.; Pathania, D. Internal heat source in thermoelastic micro-elongated solid under Green Lindsay theory. J. Theor. Appl. Mech. 2016, 46, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Marin, M.; Lupu, M. On harmonic vibrations in thermoelasticity of micropolar bodies. J. Vibrat. Control 1998, 4, 507–518. [Google Scholar] [CrossRef]
- Gordon, J.P.; Leite, R.C.C.; Moore, R.S.; Porto, S.P.S.; Whinnery, J.R. Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 1964, 119, 501–510. [Google Scholar] [CrossRef]
- Kreuzer, L.B. Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 1971, 42, 2934. [Google Scholar] [CrossRef]
- Tam, A.C. Ultrasensitive Laser Spectroscopy; Academic Press: New York, NY, USA, 1983; pp. 1–108. [Google Scholar]
- Tam, A.C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 1986, 58, 381. [Google Scholar] [CrossRef]
- Tam, A.C. Photothermal Investigations in Solids and Fluids; Academic Press: Boston, MA, USA, 1989; pp. 1–33. [Google Scholar]
- Hobinya, A.; Abbas, I. A GN model on photothermal interactions in a two-dimensions semiconductor half space. Results Phys. 2019, 15, 102588. [Google Scholar] [CrossRef]
- Todorovic, D.M.; Nikolic, P.M.; Bojicic, A.I. Photoacoustic frequency transmission technique: Electronic deformation mechanism in semiconductors. J. Appl. Phys. 1999, 85, 7716–7726. [Google Scholar] [CrossRef]
- Song, Y.Q.; Todorovic, D.M.; Cretin, B.; Vairac, P. Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 2010, 47, 1871. [Google Scholar] [CrossRef] [Green Version]
- Lotfy, K. A novel model for Photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field. Sci. Rep. 2019, 9, 3319. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, K. Effect of Variable Thermal Conductivity during the Photothermal Diffusion Process of Semiconductor Medium. Silicon 2019, 11, 1863–1873. [Google Scholar] [CrossRef]
- Abbas, I.; Alzahrani, F.; Elaiw, A. A DPL model of photothermal interaction in a semiconductor material. Waves Random Complex Media 2019, 29, 328–343. [Google Scholar] [CrossRef]
- Khamis, A.; El-Bary, A.; Lotfy, K.; Bakali, A. Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium. Alex. Eng. J. 2020, 59, 1–9. [Google Scholar] [CrossRef]
- Mahdy, A.; Lotfy, K.; El-Bary, A.; Alshehri, H.; Alshehri, A.M. Thermal-microstretch elastic semiconductor medium with rotation field during photothermal transport processes. Mech. Based Des. Struct. Mach. 2021. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Lu, X.; Chen, J.; Long, Y.; Li, W.; Chen, H.; Chen, X.; Bai, P.; Li, Y.; et al. 13.4 fs, 0.1 Hz OPCPA Front End for the 100 PW-Class Laser Facility. Ultrafast Sci. 2022, 2022, 9894358. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, Y.; Liao, Y.; Jiang, W.; Li, M.; Lu, P. Direct Visualization of Deforming Atomic Wavefunction in Ultraintense High-Frequency Laser Pulses. Ultrafast Sci. 2022, 2022, 9842716. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Li, X. The splitting mechanism of the second-order rogue wave—Interaction between two component first-order Akhmediev breathers. Chaos Solitons Fractals 2022, 161, 112334. [Google Scholar] [CrossRef]
- Han, Y.; Li, X.; Chen, E.; An, M.; Song, Z.; Huang, X.; Liu, X.; Wang, Y.; Zhao, W. Sea-Urchin-MnO2 for Broadband Optical Modulator. Adv. Opt. Mater. 2022, 10, 2201034. [Google Scholar] [CrossRef]
- Ismail, G.; Lotfy, K.; El-Bary, A.A. Response of thermo-mechanical waves of an excited microelongated semiconductor layer according to photothermal transport processes. Eur. J. Mech./A Solids 2022, 96, 104714. [Google Scholar] [CrossRef]
- Saeed, A.M.; Lotfy, K.; El-Bary, A.A. Effect of Variable Thermal Conductivity and Magnetic Field for the Generated Photo-Thermal Waves on Microelongated Semiconductor. Mathematics 2022, 10, 4270. [Google Scholar] [CrossRef]
- Lord, H.; Shulman, Y. A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 1967, 15, 299–309. [Google Scholar] [CrossRef]
- Green, A.; Lindsay, K. Thermoelasticity. J. Elast. 1972, 2, 1–7. [Google Scholar] [CrossRef]
- Biot, M. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 1956, 27, 240–253. [Google Scholar] [CrossRef]
- Deresiewicz, H. Plane waves in a thermoelastic solid. J. Acoust. Soc. Am. 1957, 29, 204–209. [Google Scholar] [CrossRef]
- Chadwick, P.; Sneddon, I. Plane waves in an elastic solid conducting heat. J. Mech. Phys. Solids 1958, 6, 223–230. [Google Scholar] [CrossRef]
- Chadwick, P. Thermoelasticity: The dynamic theory. In Progress in Solid Mechanics; Sneddon, I.N., Hill, R., Eds.; North-Holland: Amsterdam, The Netherlands, 1960; Volume I, pp. 263–328. [Google Scholar]
- Todorovicć, D. Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 2003, 74, 582–585. [Google Scholar] [CrossRef]
- Mandelis, A.; Nestoros, M.; Christofides, C. Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt. Eng. 1997, 36, 459–468. [Google Scholar] [CrossRef]
- Lotfy, K.; Hassan, W.; El-Bary, A.; Kadry, M. Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation. Results Phys. 2020, 16, 102877. [Google Scholar] [CrossRef]
- Liu, J.; Han, M.; Wang, R.; Xu, S.; Wang, X. Photothermal phenomenon: Extended ideas for thermophysical properties characterization. J. Appl. Phys. 2022, 131, 065107. [Google Scholar] [CrossRef]
Unit | Symbol | Value | Unit | Symbol | Value |
---|---|---|---|---|---|
, | , | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, A.M.; Lotfy, K.; Ahmed, M.H. Thermal-Optical Mechanical Waves of the Excited Microelongated Semiconductor Layer in a Rotational Field. Mathematics 2022, 10, 4660. https://doi.org/10.3390/math10244660
Saeed AM, Lotfy K, Ahmed MH. Thermal-Optical Mechanical Waves of the Excited Microelongated Semiconductor Layer in a Rotational Field. Mathematics. 2022; 10(24):4660. https://doi.org/10.3390/math10244660
Chicago/Turabian StyleSaeed, Abdulkafi M., Khaled Lotfy, and Marwa H. Ahmed. 2022. "Thermal-Optical Mechanical Waves of the Excited Microelongated Semiconductor Layer in a Rotational Field" Mathematics 10, no. 24: 4660. https://doi.org/10.3390/math10244660
APA StyleSaeed, A. M., Lotfy, K., & Ahmed, M. H. (2022). Thermal-Optical Mechanical Waves of the Excited Microelongated Semiconductor Layer in a Rotational Field. Mathematics, 10(24), 4660. https://doi.org/10.3390/math10244660