On New Fractional Version of Generalized Hermite-Hadamard Inequalities
Abstract
:1. Introduction
2. New Version of Hermite–Hadamard Inequality
3. Midpoint Type Inequalities
4. Trapezoid Type Inequalities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tariq, M.; Ahmad, H.; Sahoo, S.K.; Aljoufi, L.S.; Awan, S.K. A novel comprehensive analysis of the refinements of Hermite-Hadamard type integral inequalities involving special functions. J. Math. Comput. Sci. 2022, 26, 330–348. [Google Scholar] [CrossRef]
- Raees, M.; Anwar, M.; Farid, G. Error bounds associated with different versions of Hadamard inequalities of mid-point type. J. Math. Comput. Sci. 2021, 23, 213–229. [Google Scholar] [CrossRef]
- Hyder, A.; Barakat, M.A.; Fathallah, A.; Cesarano, C. Further Integral Inequalities through Some Generalized Fractional Integral Operators. Fractal Fract. 2021, 5, 282. [Google Scholar] [CrossRef]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Dragomir, S.S. Some Hermite–Hadamard type integral inequalities for convex functions defined on convex bodies in Rn. J. Appl. Anal. 2020, 26, 67–77. [Google Scholar] [CrossRef]
- Özcan, S.; İşcan, İ. Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequalities Appl. 2019, 2019, 201. [Google Scholar] [CrossRef]
- Set, E.; Butt, S.I.; Akdemir, A.O.; Karaoğlan, A.; Abdeljawad, T. New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators. Chaos Solitons Fractals 2021, 143, 110554. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Baleanu, D.; Kashuri, A.; Hamasalh, F.; Agarwal, P. New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions. J. Inequalities Appl. 2020, 2020, 263. [Google Scholar] [CrossRef]
- Rashid, S.; İşcan, İ.; Baleanu, D.; Chu, Y.-M. Generation of new fractional in equalities via npolynomials s-type convexity with applications. Adv. Differ. Equ. 2020, 2020, 264. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Iqbal, M.; Iqbal, B.; Nazeer, K. Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals. Bull. Korean Math. Soc. 2015, 52, 707–716. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function. J. Nonlinear Sci. Appl. 2016, 9, 1252–1260. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; Word Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Redding, CA, USA, 2006. [Google Scholar]
- Hattaf, K.; Mohsen, A.A.; Al–Husseiny, H.F. Gronwall inequality and existence of solutions for differential equations with generalized Hattaf fractional derivative. J. Math. Comput. Sci. 2022, 27, 18–27. [Google Scholar] [CrossRef]
- El–hady, E.; Öğrekçi, S. On Hyers–Ulam–Rassias stability of fractional differential equations with Caputo derivative. J. Math. Comput. Sci. 2021, 22, 325–332. [Google Scholar] [CrossRef]
- Hyder, A.; Budak, H.; Almoneef, A.A. Further midpoint inequalities via generalized fractional operators in Riemann–Liouville sense. Fractal Fract. 2022, 6, 496. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivative with non–local and non–singular kernel. Therm. Sci. 2016, 20, 757–763. [Google Scholar] [CrossRef]
- Hyder, A.; Barakat, M.A.; Fathallah, A. Enlarged integral inequalities through recent fractional generalized operators. J. Inequalities Appl. 2022, 2022, 95. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [Google Scholar] [CrossRef]
- Hyder, A.; Barakat, M.A. Novel improved fractional operators and their scientific applications. Adv. Differ. Equ. 2021, 2021, 389. [Google Scholar] [CrossRef]
- Sezer, S. The Hermite-Hadamard inequality for s-Convex functions in the third sense. AIMS Math. 2021, 6, 7719–7732. [Google Scholar] [CrossRef]
- Bakula, M.K.; Pečarić, J. Note on some Hadamard–type inequalities. J. Inequalities Pure Appl. Math. 2004, 5, 74. [Google Scholar]
- de la Cal, J.; Cárcamo, J.; Escauriaza, L. A general multidimensional Hermite–Hadamard type inequality. J. Math. Anal. Appl. 2009, 356, 659–663. [Google Scholar] [CrossRef]
- Erden, S.; Budak, H.; Zeki Sarikaya, M.; Iftikhar, S.; Kumam, P. Fractional Ostrowski type inequalities for bounded functions. J. Inequalities Appl. 2020, 2020, 123. [Google Scholar] [CrossRef]
- Ödemir, M.E.; Avci, M.; Set, E. On some inequalities of Hermite–Hadamard-type via m-convexity. Appl. Math. Lett. 2010, 23, 1065–1070. [Google Scholar] [CrossRef]
- Ödemir, M.E.; Avci, M.; Kavurmaci, H. Hermite–Hadamard-type inequalities via (α,m)-convexity. Comput. Math. Appl. 2011, 61, 2614–2620. [Google Scholar] [CrossRef]
- Saglam, A.; Sarikaya, M.Z.; Yildirim, H. Some new inequalities of Hermite-Hadamard’s type. Kyungpook Math. J. 2010, 50, 399–410. [Google Scholar] [CrossRef]
- Akkurt, A.; Sarıkaya, M.Z.; Budak, H.; Yıldırım, H. On the Hadamard’s type inequalities for co–ordinated convex functions via fractional integrals. J. King Saud-Univ. -Sci. 2017, 29, 380–387. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Alqudah, M.A.; Jarad, F. New discrete inequalities of Hermite–Hadamard type for convex functions. Adv. Differ. Equ. 2021, 2021, 122. [Google Scholar] [CrossRef]
- Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 247. [Google Scholar] [CrossRef]
- Cvetkovski, Z. Hölder’s Inequality, Minkowski’s Inequality and Their Variants. In Inequalities: Theorems, Techniques and Selected Problems; Cvetkovski, Z., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 95–105. [Google Scholar]
- Kadakal, H. On refinements of some integral inequalities using improved power–mean integral inequalities. Numer. Methods Partial. Differ. Equ. 2020, 36, 1555–1565. [Google Scholar] [CrossRef]
- Budak, H.; Ertuğral, F.; Sarikaya, M.Z. New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals. Ann. Univ. -Craiova-Math. Comput. Sci. Ser. 2020, 47, 369–386. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyder, A.-A.; Almoneef, A.A.; Budak, H.; Barakat, M.A. On New Fractional Version of Generalized Hermite-Hadamard Inequalities. Mathematics 2022, 10, 3337. https://doi.org/10.3390/math10183337
Hyder A-A, Almoneef AA, Budak H, Barakat MA. On New Fractional Version of Generalized Hermite-Hadamard Inequalities. Mathematics. 2022; 10(18):3337. https://doi.org/10.3390/math10183337
Chicago/Turabian StyleHyder, Abd-Allah, Areej A. Almoneef, Hüseyin Budak, and Mohamed A. Barakat. 2022. "On New Fractional Version of Generalized Hermite-Hadamard Inequalities" Mathematics 10, no. 18: 3337. https://doi.org/10.3390/math10183337
APA StyleHyder, A.-A., Almoneef, A. A., Budak, H., & Barakat, M. A. (2022). On New Fractional Version of Generalized Hermite-Hadamard Inequalities. Mathematics, 10(18), 3337. https://doi.org/10.3390/math10183337