# A New Bound in the Littlewood–Offord Problem

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

**Lemma**

**1.**

**Theorem**

**1.**

**Corollary**

**1.**

**Corollary**

**2.**

**Proof of Theorem**

**1.**

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Eliseeva, Y.S.; Zaitsev, A.Y. On the Littlewood–Offord problem. J. Math. Sci.
**2016**, 214, 467–473. [Google Scholar] [CrossRef] [Green Version] - Friedland, O.; Sodin, S. Bounds on the concentration function in terms of Diophantine approximation. C. R. Math. Acad. Sci. Paris
**2007**, 345, 513–518. [Google Scholar] [CrossRef] [Green Version] - Rudelson, M.; Vershynin, R. The Littlewood–Offord problem and invertibility of random matrices. Adv. Math.
**2008**, 218, 600–633. [Google Scholar] [CrossRef] [Green Version] - Rudelson, M.; Vershynin, R. The smallest singular value of a random rectangular matrix. Comm. Pure Appl. Math.
**2009**, 62, 1707–1739. [Google Scholar] [CrossRef] [Green Version] - Tao, T.; Vu, V. Inverse Littlewood–Offord theorems and the condition number of random discrete matrices. Ann. Math.
**2009**, 169, 595–632. [Google Scholar] [CrossRef] [Green Version] - Tao, T.; Vu, V. From the Littlewood–Offord problem to the circular law: Universality of the spectral distribution of random matrices. Bull. Amer. Math. Soc.
**2009**, 46, 377–396. [Google Scholar] [CrossRef] [Green Version] - Nguyen, H.; Vu, V. Optimal inverse Littlewood–Offord theorems. Adv. Math.
**2011**, 226, 5298–5319. [Google Scholar] [CrossRef] [Green Version] - Vershynin, R. Invertibility of symmetric random matrices. Random Struct. Algorithms
**2014**, 44, 135–182. [Google Scholar] [CrossRef] [Green Version] - Tikhomirov, K. Singularity of random Bernoulli matrices. Ann. Math.
**2020**, 191, 593–634. [Google Scholar] [CrossRef] [Green Version] - Livshyts, G.V.; Tikhomirov, K.; Vershynin, R. The smallest singular value of inhomogeneous square random matrices. Ann. Probab.
**2021**, 49, 1286–1309. [Google Scholar] [CrossRef] - Campos, M.; Jenssen, M.; Michelen, M.; Sahasrabudhe, J. The singularity probability of a random symmetric matrix is exponentially small. arXiv
**2021**, arXiv:2105.11384. [Google Scholar] - Nguyen, H.; Vu, V. Small probabilities, inverse theorems and applications. arXiv
**2013**, arXiv:1301.0019. [Google Scholar] - Halász, G. Estimates for the concentration function of combinatorial number theory and probability. Period. Math. Hung.
**1977**, 8, 197–211. [Google Scholar] [CrossRef] - Littlewood, J.E.; Offord, A.C. On the number of real roots of a random algebraic equation. Rec. Math. [Mat. Sbornik] N.S.
**1943**, 12, 277–286. [Google Scholar] - Eliseeva, Y.S.; Zaitsev, A.Y. Estimates for the concentration functions of weighted sums of independent random variables. Theory Probab. Appl.
**2013**, 57, 670–678. [Google Scholar] [CrossRef] [Green Version] - Eliseeva, Y.S. Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables. Zap. Nauchn. Semin. POMI
**2013**, 412, 121–137. (In Russian) [Google Scholar] [CrossRef] [Green Version] - Eliseeva, Y.S.; Götze, F.; Zaitsev, A.Y. Estimates for the concentration functions in the Littlewood–Offord problem. Zap. Nauchn. Semin. POMI
**2013**, 420, 50–69. (In Russian) [Google Scholar] [CrossRef] [Green Version] - Arak, T.V.; Zaitsev, A.Y. Uniform limit theorems for sums of independent random variables. Proc. Steklov Inst. Math.
**1988**, 174, 222. [Google Scholar] - Hengartner, W.; Theodorescu, R. Concentration Functions; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Petrov, V.V. Sums of Independent Random Variables; De Gruyter: Moscow, Russia, 1972. [Google Scholar]
- Esséen, C.-G. On the Kolmogorov–Rogozin inequality for the concentration function. Z. Wahrscheinlichkeitstheorie Verw. Geb.
**1966**, 5, 210–216. [Google Scholar] [CrossRef] - Esséen, C.-G. On the concentration function of a sum of independent random variables. Z. Wahrscheinlichkeitstheorie Verw. Geb.
**1968**, 9, 290–308. [Google Scholar] [CrossRef] - Arak, T.V. On the approximation by the accompanying laws of n-fold convolutions of distributions with nonnegative characteristic functions. Theory Probab. Appl.
**1980**, 25, 221–243. [Google Scholar] [CrossRef] - Zaitsev, A.Y. Multidimensional generalized method of triangular functions. J. Soviet Math.
**1988**, 43, 2797–2810. [Google Scholar] [CrossRef] - Eliseeva, Y.S.; Götze, F.; Zaitsev, A.Y. Arak inequalities for concentration functions and the Littlewood–Offord problem. Theory Probab. Appl.
**2018**, 62, 196–215. [Google Scholar] - Zaitsev, A.Y. A bound for the maximal probability in the Littlewood–Offord problem. J. Math. Sci.
**2016**, 219, 743–746. [Google Scholar] [CrossRef] [Green Version] - Götze, F.; Zaitsev, A.Y. New applications of Arak’s inequalities to the Littlewood–Offord problem. Eur. J. Math.
**2018**, 4, 639–663. [Google Scholar] [CrossRef] [Green Version] - Arak, T.V. On the convergence rate in Kolmogorov’s uniform limit theorem. I. Theory Probab. Appl.
**1981**, 26, 219–239. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Götze, F.; Zaitsev, A.Y.
A New Bound in the Littlewood–Offord Problem. *Mathematics* **2022**, *10*, 1740.
https://doi.org/10.3390/math10101740

**AMA Style**

Götze F, Zaitsev AY.
A New Bound in the Littlewood–Offord Problem. *Mathematics*. 2022; 10(10):1740.
https://doi.org/10.3390/math10101740

**Chicago/Turabian Style**

Götze, Friedrich, and Andrei Yu. Zaitsev.
2022. "A New Bound in the Littlewood–Offord Problem" *Mathematics* 10, no. 10: 1740.
https://doi.org/10.3390/math10101740