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Abstract: The paper deals with studying a connection of the Littlewood–Offord problem with
estimating the concentration functions of some symmetric infinitely divisible distributions. It is
shown that the concentration function of a weighted sum of independent identically distributed
random variables is estimated in terms of the concentration function of a symmetric infinitely divisible
distribution whose spectral measure is concentrated on the set of plus-minus weights.
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The aim of the present work is to provide a supplement to the paper of Eliseeva and
Zaitsev [1]. We studied a connection of the Littlewood–Offord problem with estimating
the concentration functions of some symmetric infinitely divisible distributions. In the
study, we repeat the arguments of [1], adding, at the last step, an application of Jensen’s
inequality.

Let X, X1, . . . , Xn be independent identically distributed (i.i.d.) random variables. The
concentration function of a Rd-dimensional random vector Y with distribution F = L(Y) is
defined by the equality

Q(F, λ) = sup
x∈Rd

P(Y ∈ x + λB), 0 ≤ λ ≤ ∞,

where B = {x ∈ Rd : ‖x‖ ≤ 1/2}. Of course, Q(F, ∞) = 1. Let a = (a1, . . . , an), where
ak = (ak1, . . . , akd) ∈ Rd, k = 1, . . . , n. In this paper, we studied the behavior of the

concentration functions of the weighted sums Sa =
n
∑

k=1
Xkak with respect to the properties

of vectors ak. Interest in this subject has increased considerably in connection with the study
of eigenvalues of random matrices (see, for instance, Friedland and Sodin [2], Rudelson
and Vershynin [3,4], Tao and Vu [5,6], Nguyen and Vu [7], Vershynin [8], Tikhomirov [9],
Livshyts, Tikhomirov and Vershynin [10], Campos et al. [11]). For a detailed history of the
problem, we refer to a review of Nguyen and Vu [12]. The authors of the above articles (see
also Halász [13]) called this question the Littlewood–Offord problem, since, for the first
time, this problem was considered in 1943 by Littlewood and Offord [14] in connection with
the study of random polynomials. They considered a special case, where the coefficients
ak ∈ R are one-dimensional, and X takes values ±1 with probabilities 1/2.

The recent achivements in estimating the probabilities of singularity of random ma-
trices [9–11] were based on the Rudelson and Vershynin [3,4,8] method of least common
denominator. Note that the results of [2,4,8] (concerning the Littlewood–Offord problem)
were improved and refined in [15–17].
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Now, we introduce some notation. In the sequel, let Fa denote the distribution of
the sum Sa, let Ey be the probability measure concentrated at a point y, and let G be the
distribution of the symmetrized random variable X̃ = X1 − X2. For δ ≥ 0, we denote

p(δ) = G
{
{z : |z| > δ}

}
. (1)

The symbol c will be used for absolute positive constants which may be different, even
in the same formulas.

Writing A� B means that |A| ≤ cB. Furthermore, we will write A � B, if A� B and
B� A. We will write A�d B, if |A| ≤ c(d)B, where c(d) > 0 depends on d only. Similarly,
A �d B, if A�d B and B�d A. The scalar product in Rd will be denoted 〈 · , · 〉. Later, bxc
is the largest integer k, such that k < x. For x = (x1, . . . , xn) ∈ Rn, we will use the norms
‖x‖2 = x2

1 + · · ·+ x2
n and |x| = maxj |xj|. We denote by F̂(t), t ∈ Rd, the characteristic

function of d-dimensional distributions F.
Products and powers of measures will be understood in the convolution sense. For

infinitely divisible distribution F and λ ≥ 0, we denote by Fλ the infinitely divisible
distribution with characteristic function F̂λ(t).

The elementary properties of concentration functions are well studied (see, for instance,
refs [18–20]). It is known that

Q(F, µ)�d (1 + bµ/λc)d Q(F, λ) (2)

for any µ, λ > 0. Hence,
Q(F, cλ) �d Q(F, λ). (3)

Let us formulate a generalization of the classical Esséen inequality [21] to the multi-
variate case ([22], see also [19]):

Lemma 1. Let τ > 0 and let F be a d-dimensional probability distribution. Then,

Q(F, τ)�d τd
∫
|t|≤1/τ

|F̂(t)| dt. (4)

In the general case, Q(F, τ) cannot be estimated from below by the right hand side of
inequality (4). However, if we assume additionally that the distribution F is symmetric and
its characteristic function is non-negative for all t ∈ R, then we have the lower bound:

Q(F, τ)�d τd
∫

|t|≤1/τ

F̂(t) dt, (5)

and, therefore,
Q(F, τ) �d τd

∫
|t|≤1/τ

F̂(t) dt, (6)

(see [23] or [18], Lemma 1.5 of Chapter II for d = 1). In the multivariate case, relations
(5) and (6) may be found in Zaitsev [24]. The use of relation (6) allows us to simplify the
arguments of Friedland and Sodin [2], Rudelson and Vershynin [4] and Vershynin [8] which
were applied to Littlewood–Offord problem (see [15–17]).

The main result of this paper is a general inequality which reduces the estimation
of concentration functions in the Littlewood–Offord problem to the estimation of concen-
tration functions of some infinitely divisible distributions. This result is formulated in
Theorem 1.

For z ∈ R, introduce the distribution Hz with the characteristic function

Ĥz(t) = exp
(
− 1

2

n

∑
k=1

(
1− cos(〈 t, ak〉z)

))
. (7)
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It depends on the vector a. It is clear that Hz is a symmetric infinitely divisible
distribution. Therefore, its characteristic function is positive for all t ∈ Rd.

Recall that G = L(X1 − X2) and Fa = L(Sa), where Sa =
n
∑

k=1
Xkak.

Theorem 1. Let V be an arbitrary one-dimensional Borel measure, such that λ = V{R} > 0, and
V ≤ G, that is, V{B} ≤ G{B}, for any Borel set B. Then, for any τ > 0, we have

Q(Fa, τ)�d

∫
z∈R

Q(Hλ
1 , τ|z|−1)W{dz}, (8)

where W = λ−1V.

Corollary 1. For any ε, τ > 0, we have

Q(Fa, τ)�d Q(Hp(τ/ε)
1 , ε), (9)

where p( · ) is defined in (1).

In order to verify Corollary 1, we note that the distribution G = L(X̃) may be repre-
sented as the mixture

G = p0G0 + p1G1, where pj = P
{

X̃ ∈ Aj
}

, j = 0, 1,

A0 = {x : |x| ≤ τ/ε}, A1 = {x : |x| > τ/ε}, Gj are probability measures defined for pj > 0
by the formula Gj{B} = G{B ∩ Aj}/pj , for any Borel set B. In fact, Gj is the conditional
distribution of X̃, given that X̃ ∈ Aj. If pj = 0, then we can take Gj as an arbitrary measure.

The conditions of Theorem 1 are satisfied for V = p1G1. λ = p1 = p(τ/ε), W = G1.
Inequalities (2) and (6) imply that

Q(Fa, τ) �d

∫
z∈A1

Q(Hλ
1 , τ|z|−1)W{dz}

≤ sup
z≥τ/ε

Q
(

Hp(τ/ε)
1 , τ/z

)
= Q

(
Hp(τ/ε)

1 , ε
)
, (10)

proving (9).
Applying Theorem 1 with V of the form

V{dz} =
(
1 + bτ(ε|z|)−1c

)−d G{dz}, (11)

and using inequality (2), we obtain.

Corollary 2. For any ε, τ > 0, we have

Q(Fa, τ)�d λ−1 Q(Hλ
1 , ε), (12)

where
λ = λ(G, τ/ε) = V{R} =

∫
z∈R

(
1 + bτ(ε|z|)−1c

)−d G{dz}. (13)

It is clear that bτ(ε|z|)−1c = 0 if |z| > τ/ε. Therefore, λ = λ(G, τ/ε) ≥ p(τ/ε), hence,
Q(Hλ

1 , ε) ≤ Q(Hp(τ/ε)
1 , ε). Thus, if λ �d 1, then inequality (12) of Corollary 2 is stronger

than inequality (9) of Corollary 1.
The proof of Theorem 1 is based on elementary properties of concentration functions.

We repeat the arguments of [1], adding, at the last step, an application of Jensen’s inequality.
In [1], inequality (2) was used instead. The main result of [1] does not imply Corollary 2.
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Note that Hλ
1 is an infinitely divisible distribution with the Lévy spectral measure Mλ =

λ
4 M∗, where M∗ =

n
∑

k=1

(
Eak + E−ak

)
. It is clear that the assertions of Theorem 1 and

Corollaries 1 and 2 may be treated as statements about the measure M∗.
Corollary 1 was already proved earlier in [1,25], see also [26] for the case τ = 0. It

was used essentially in [25,27] to show that Arak’s inequalities for concentration functions
may be used for investigations of the Littlewood–Offord problem. Arak has shown that if
the concentration function of infinitely divisible distribution is relatively large, then the
spectral measure of this distribution is concentrated in a neighborhood of a set with simple
arithmetical structure. Together with Corollary 1, this means that a large value of Q(Fa, τ)
implies a simple arithmetical structure of the set {±ak}n

k=1. This statement is similar to the
so-called “inverse principle” in the Littlewood–Offord problem (see [5,7,12]).

Note that using the results of Arak [23,28] (see also [18]) one could derive from
Corollary 1 inequalities similar to boumds for concentration functions in the Littlewood–
Offord problem, which were obtained in a paper of Nguyen and Vu [7] (see also [12]). A
detailed discussion of this fact is presented in [25,27]. We noticed that Corollary 2 may
be stronger than Corollary 1. Therefore, the results of [25,27] could be improved (in the
sense of dependence of constants on the distribution of X1) replacing an application of
Corollary 1 by an application of Corollary 2. The authors are going to devote a separate
publication to this topic.

Proof of Theorem 1. Let us show that, for arbitrary probability distribution, W and λ, T > 0,

log
∫
|t|≤T

exp
(
− 1

2

n

∑
k=1

∫
z∈R

(
1− cos(〈 t, ak〉z)

)
λ W{dz}

)
dt

≤
∫

z∈R

(
log

∫
|t|≤T

exp
(
− λ

2

n

∑
k=1

(
1− cos(〈 t, ak〉z)

))
dt
)

W{dz}

=
∫

z∈R

(
log

∫
|t|≤T

Ĥλ
z (t) dt

)
W{dz}. (14)

It is suffice to prove (14) for discrete distributions W = ∑∞
j=1 pjEzj , where 0 ≤ pj ≤ 1,

zj ∈ R, ∑∞
j=1 pj = 1. Applying in this case the generalized Hölder inequality, we have

∫
|t|≤T

exp
(
− 1

2

n

∑
k=1

∫
z∈R

(
1− cos(〈 t, ak〉z)

)
λ W{dz}

)
dt

=
∫
|t|≤T

exp
(
− λ

2

∞

∑
j=1

pj

n

∑
k=1

(
1− cos(〈 t, ak〉zj)

))
dt

≤
∞

∏
j=1

( ∫
|t|≤T

exp
(
− λ

2

n

∑
k=1

(
1− cos(〈 t, ak〉zj)

))
dt
)pj

. (15)

Taking logarithms of the left- and right-hand sides of (15), we get (14). In general cases,
we can approximate W by discrete distributions in the sense of weak convergence and pass
to the limit. Note also that the integrals

∫
|t|≤T dt may be replaced in (14) by the integrals∫

µ{dt} with an arbitrary Borel measure µ.
Since for characteristic function Û(t) of a random vector Y, we have

|Û(t)|2 = E exp(i〈 t, Ỹ〉) = E cos(〈 t, Ỹ〉),

where Ỹ is the corresponding symmetrized random vector, then

|Û(t)| ≤ exp
(
−

1
2
(
1− |Û(t)|2

))
= exp

(
−

1
2

E
(
1− cos(〈 t, Ỹ〉)

))
. (16)
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According to Theorem 1 and relations V = λ W ≤ G, (14) and (16), applying Jensen’s
inequality of the form exp(E f (ξ)) ≤ E exp( f (ξ)) for any measurable function f and any
random varialble ξ, we have

Q(Fa, τ) �d τd
∫

τ|t|≤1
|F̂a(t)| dt

�d τd
∫

τ|t|≤1
exp

(
− 1

2

n

∑
k=1

E
(
1− cos(〈 t, ak〉X̃)

))
dt

= τd
∫

τ|t|≤1
exp

(
− 1

2

n

∑
k=1

∫
z∈R

(
1− cos(〈 t, ak〉z)

)
G{dz}

)
dt

≤ τd
∫

τ|t|≤1
exp

(
− 1

2

n

∑
k=1

∫
z∈R

(
1− cos(〈 t, ak〉z)

)
λ W{dz}

)
dt

≤ exp
( ∫

z∈R
log
(

τd
∫

τ|t|≤1
Ĥλ

z (t) dt
)

W{dz}
)

≤
∫

z∈R

(
τd
∫

τ|t|≤1
Ĥλ

z (t) dt
)

W{dz}. (17)

Using (6), we have

τd
∫

τ|t|≤1
Ĥλ

z (t) dt �d Q(Hλ
z , τ) = Q

(
Hλ

1 , τ|z|−1). (18)

Substituting this formula into (17), we obtain (8). In (18), we have used that Hλ
z =

L(zη), where η is a random vector with L(η) = Hλ
1 .
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