Article

A New Bound in the Littlewood-Offord Problem

Friedrich Götze ${ }^{1}$ and Andrei Yu. Zaitsev ${ }^{2,3, *}$ (ㅁ)
1 Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany; goetze@math.uni-bielefeld.de
2 St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
3 Mathematics and Mechanics Faculty, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
* Correspondence: zaitsev@pdmi.ras.ru

Citation: Götze, F.; Zaitsev, A.Y. A New Bound in the Littlewood-Offord Problem. Mathematics 2022, 10, 1740.
https:/ /doi.org/10.3390/ math10101740

Academic Editor: Christophe Chesneau

Received: 11 April 2022
Accepted: 10 May 2022
Published: 19 May 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

The paper deals with studying a connection of the Littlewood-Offord problem with estimating the concentration functions of some symmetric infinitely divisible distributions. It is shown that the concentration function of a weighted sum of independent identically distributed random variables is estimated in terms of the concentration function of a symmetric infinitely divisible distribution whose spectral measure is concentrated on the set of plus-minus weights.

Keywords: concentration functions; inequalities; the Littlewood-Offord problem; sums of independent random variables

MSC: 60F05; 60E15; 60G50

The aim of the present work is to provide a supplement to the paper of Eliseeva and Zaitsev [1]. We studied a connection of the Littlewood-Offord problem with estimating the concentration functions of some symmetric infinitely divisible distributions. In the study, we repeat the arguments of [1], adding, at the last step, an application of Jensen's inequality.

Let X, X_{1}, \ldots, X_{n} be independent identically distributed (i.i.d.) random variables. The concentration function of a \mathbf{R}^{d}-dimensional random vector Y with distribution $F=\mathcal{L}(Y)$ is defined by the equality

$$
Q(F, \lambda)=\sup _{x \in \mathbf{R}^{d}} \mathbf{P}(Y \in x+\lambda B), \quad 0 \leq \lambda \leq \infty,
$$

where $B=\left\{x \in \mathbf{R}^{d}:\|x\| \leq 1 / 2\right\}$. Of course, $Q(F, \infty)=1$. Let $a=\left(a_{1}, \ldots, a_{n}\right)$, where $a_{k}=\left(a_{k 1}, \ldots, a_{k d}\right) \in \mathbf{R}^{d}, k=1, \ldots, n$. In this paper, we studied the behavior of the concentration functions of the weighted sums $S_{a}=\sum_{k=1}^{n} X_{k} a_{k}$ with respect to the properties of vectors a_{k}. Interest in this subject has increased considerably in connection with the study of eigenvalues of random matrices (see, for instance, Friedland and Sodin [2], Rudelson and Vershynin [3,4], Tao and Vu [5,6], Nguyen and Vu [7], Vershynin [8], Tikhomirov [9], Livshyts, Tikhomirov and Vershynin [10], Campos et al. [11]). For a detailed history of the problem, we refer to a review of Nguyen and Vu [12]. The authors of the above articles (see also Halász [13]) called this question the Littlewood-Offord problem, since, for the first time, this problem was considered in 1943 by Littlewood and Offord [14] in connection with the study of random polynomials. They considered a special case, where the coefficients $a_{k} \in \mathbf{R}$ are one-dimensional, and X takes values ± 1 with probabilities $1 / 2$.

The recent achivements in estimating the probabilities of singularity of random matrices [9-11] were based on the Rudelson and Vershynin [3,4,8] method of least common denominator. Note that the results of $[2,4,8]$ (concerning the Littlewood-Offord problem) were improved and refined in [15-17].

Now, we introduce some notation. In the sequel, let F_{a} denote the distribution of the sum S_{a}, let E_{y} be the probability measure concentrated at a point y, and let G be the distribution of the symmetrized random variable $\widetilde{X}=X_{1}-X_{2}$. For $\delta \geq 0$, we denote

$$
\begin{equation*}
p(\delta)=G\{\{z:|z|>\delta\}\} . \tag{1}
\end{equation*}
$$

The symbol c will be used for absolute positive constants which may be different, even in the same formulas.

Writing $A \ll B$ means that $|A| \leq c B$. Furthermore, we will write $A \asymp B$, if $A \ll B$ and $B \ll A$. We will write $A<{ }_{d} B$, if $|A| \leq c(d) B$, where $c(d)>0$ depends on d only. Similarly, $A \asymp_{d} B$, if $A<_{d} B$ and $B<_{d} A$. The scalar product in \mathbf{R}^{d} will be denoted $\langle\cdot, \cdot\rangle$. Later, $\lfloor x\rfloor$ is the largest integer k, such that $k<x$. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$, we will use the norms $\|x\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$ and $|x|=\max _{j}\left|x_{j}\right|$. We denote by $\widehat{F}(t), t \in \mathbf{R}^{d}$, the characteristic function of d-dimensional distributions F.

Products and powers of measures will be understood in the convolution sense. For infinitely divisible distribution F and $\lambda \geq 0$, we denote by F^{λ} the infinitely divisible distribution with characteristic function $\widehat{F}^{\lambda}(t)$.

The elementary properties of concentration functions are well studied (see, for instance, refs [18-20]). It is known that

$$
\begin{equation*}
Q(F, \mu)<_{d}(1+\lfloor\mu / \lambda\rfloor)^{d} Q(F, \lambda) \tag{2}
\end{equation*}
$$

for any $\mu, \lambda>0$. Hence,

$$
\begin{equation*}
Q(F, c \lambda) \asymp_{d} Q(F, \lambda) . \tag{3}
\end{equation*}
$$

Let us formulate a generalization of the classical Esséen inequality [21] to the multivariate case ([22], see also [19]):

Lemma 1. Let $\tau>0$ and let F be a d-dimensional probability distribution. Then,

$$
\begin{equation*}
Q(F, \tau) \ll_{d} \tau^{d} \int_{|t| \leq 1 / \tau}|\widehat{F}(t)| d t \tag{4}
\end{equation*}
$$

In the general case, $Q(F, \tau)$ cannot be estimated from below by the right hand side of inequality (4). However, if we assume additionally that the distribution F is symmetric and its characteristic function is non-negative for all $t \in \mathbf{R}$, then we have the lower bound:

$$
\begin{equation*}
Q(F, \tau) \gg_{d} \tau^{d} \int_{|t| \leq 1 / \tau} \widehat{F}(t) d t \tag{5}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
Q(F, \tau) \asymp_{d} \tau^{d} \int_{|t| \leq 1 / \tau} \widehat{F}(t) d t \tag{6}
\end{equation*}
$$

(see [23] or [18], Lemma 1.5 of Chapter II for $d=1$). In the multivariate case, relations (5) and (6) may be found in Zaitsev [24]. The use of relation (6) allows us to simplify the arguments of Friedland and Sodin [2], Rudelson and Vershynin [4] and Vershynin [8] which were applied to Littlewood-Offord problem (see [15-17]).

The main result of this paper is a general inequality which reduces the estimation of concentration functions in the Littlewood-Offord problem to the estimation of concentration functions of some infinitely divisible distributions. This result is formulated in Theorem 1.

For $z \in \mathbf{R}$, introduce the distribution H_{z} with the characteristic function

$$
\begin{equation*}
\widehat{H}_{z}(t)=\exp \left(-\frac{1}{2} \sum_{k=1}^{n}\left(1-\cos \left(\left\langle t, a_{k}\right\rangle z\right)\right)\right) . \tag{7}
\end{equation*}
$$

It depends on the vector a. It is clear that H_{z} is a symmetric infinitely divisible distribution. Therefore, its characteristic function is positive for all $t \in \mathbf{R}^{d}$.

Recall that $G=\mathcal{L}\left(X_{1}-X_{2}\right)$ and $F_{a}=\mathcal{L}\left(S_{a}\right)$, where $S_{a}=\sum_{k=1}^{n} X_{k} a_{k}$.
Theorem 1. Let V be an arbitrary one-dimensional Borel measure, such that $\lambda=V\{\mathbf{R}\}>0$, and $V \leq G$, that is, $V\{B\} \leq G\{B\}$, for any Borel set B. Then, for any $\tau>0$, we have

$$
\begin{equation*}
Q\left(F_{a}, \tau\right) \ll_{d} \int_{z \in \mathbf{R}} Q\left(H_{1}^{\lambda}, \tau|z|^{-1}\right) W\{d z\} \tag{8}
\end{equation*}
$$

where $W=\lambda^{-1} V$.
Corollary 1. For any $\varepsilon, \tau>0$, we have

$$
\begin{equation*}
Q\left(F_{a}, \tau\right) \ll_{d} Q\left(H_{1}^{p(\tau / \varepsilon)}, \varepsilon\right) \tag{9}
\end{equation*}
$$

where $p(\cdot)$ is defined in (1).
In order to verify Corollary 1 , we note that the distribution $G=\mathcal{L}(\widetilde{X})$ may be represented as the mixture

$$
G=p_{0} G_{0}+p_{1} G_{1}, \quad \text { where } \quad p_{j}=\mathbf{P}\left\{\widetilde{X} \in A_{j}\right\}, \quad j=0,1,
$$

$A_{0}=\{x:|x| \leq \tau / \varepsilon\}, A_{1}=\{x:|x|>\tau / \varepsilon\}, G_{j}$ are probability measures defined for $p_{j}>0$ by the formula $G_{j}\{B\}=G\left\{B \cap A_{j}\right\} / p_{j}$, for any Borel set B. In fact, G_{j} is the conditional distribution of \widetilde{X}, given that $\widetilde{X} \in A_{j}$. If $p_{j}=0$, then we can take G_{j} as an arbitrary measure.

The conditions of Theorem 1 are satisfied for $V=p_{1} G_{1} \cdot \lambda=p_{1}=p(\tau / \varepsilon), W=G_{1}$.
Inequalities (2) and (6) imply that

$$
\begin{align*}
Q\left(F_{a}, \tau\right) & \ll d \int_{z \in A_{1}} Q\left(H_{1}^{\lambda}, \tau|z|^{-1}\right) W\{d z\} \\
& \leq \sup _{z \geq \tau / \varepsilon} Q\left(H_{1}^{p(\tau / \varepsilon)}, \tau / z\right)=Q\left(H_{1}^{p(\tau / \varepsilon)}, \varepsilon\right) \tag{10}
\end{align*}
$$

proving (9).
Applying Theorem 1 with V of the form

$$
\begin{equation*}
V\{d z\}=\left(1+\left\lfloor\tau(\varepsilon|z|)^{-1}\right\rfloor\right)^{-d} G\{d z\} \tag{11}
\end{equation*}
$$

and using inequality (2), we obtain.
Corollary 2. For any $\varepsilon, \tau>0$, we have

$$
\begin{equation*}
Q\left(F_{a}, \tau\right) \ll_{d} \lambda^{-1} Q\left(H_{1}^{\lambda}, \varepsilon\right), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\lambda(G, \tau / \varepsilon)=V\{\mathbf{R}\}=\int_{z \in \mathbf{R}}\left(1+\left\lfloor\tau(\varepsilon|z|)^{-1}\right\rfloor\right)^{-d} G\{d z\} . \tag{13}
\end{equation*}
$$

It is clear that $\left\lfloor\tau(\varepsilon|z|)^{-1}\right\rfloor=0$ if $|z|>\tau / \varepsilon$. Therefore, $\lambda=\lambda(G, \tau / \varepsilon) \geq p(\tau / \varepsilon)$, hence, $Q\left(H_{1}^{\lambda}, \varepsilon\right) \leq Q\left(H_{1}^{p(\tau / \varepsilon)}, \varepsilon\right)$. Thus, if $\lambda \gg_{d} 1$, then inequality (12) of Corollary 2 is stronger than inequality (9) of Corollary 1.

The proof of Theorem 1 is based on elementary properties of concentration functions. We repeat the arguments of [1], adding, at the last step, an application of Jensen's inequality. In [1], inequality (2) was used instead. The main result of [1] does not imply Corollary 2.

Note that H_{1}^{λ} is an infinitely divisible distribution with the Lévy spectral measure $M_{\lambda}=$ $\frac{\lambda}{4} M^{*}$, where $M^{*}=\sum_{k=1}^{n}\left(E_{a_{k}}+E_{-a_{k}}\right)$. It is clear that the assertions of Theorem 1 and Corollaries 1 and 2 may be treated as statements about the measure M^{*}.

Corollary 1 was already proved earlier in [1,25], see also [26] for the case $\tau=0$. It was used essentially in $[25,27]$ to show that Arak's inequalities for concentration functions may be used for investigations of the Littlewood-Offord problem. Arak has shown that if the concentration function of infinitely divisible distribution is relatively large, then the spectral measure of this distribution is concentrated in a neighborhood of a set with simple arithmetical structure. Together with Corollary 1, this means that a large value of $Q\left(F_{a}, \tau\right)$ implies a simple arithmetical structure of the set $\left\{ \pm a_{k}\right\}_{k=1}^{n}$. This statement is similar to the so-called "inverse principle" in the Littlewood-Offord problem (see [5,7,12]).

Note that using the results of Arak $[23,28]$ (see also [18]) one could derive from Corollary 1 inequalities similar to boumds for concentration functions in the LittlewoodOfford problem, which were obtained in a paper of Nguyen and Vu [7] (see also [12]). A detailed discussion of this fact is presented in [25,27]. We noticed that Corollary 2 may be stronger than Corollary 1. Therefore, the results of [25,27] could be improved (in the sense of dependence of constants on the distribution of X_{1}) replacing an application of Corollary 1 by an application of Corollary 2. The authors are going to devote a separate publication to this topic.

Proof of Theorem 1. Let us show that, for arbitrary probability distribution, W and $\lambda, T>0$,

$$
\begin{align*}
& \log \int_{|t| \leq T} \exp \left(-\frac{1}{2} \sum_{k=1}^{n} \int_{z \in \mathbf{R}}\left(1-\cos \left(\left\langle t, a_{k}\right\rangle z\right)\right) \lambda W\{d z\}\right) d t \\
& \leq \int_{z \in \mathbf{R}}\left(\log \int_{|t| \leq T} \exp \left(-\frac{\lambda}{2} \sum_{k=1}^{n}\left(1-\cos \left(\left\langle t, a_{k}\right\rangle z\right)\right)\right) d t\right) W\{d z\} \\
&=\int_{z \in \mathbf{R}}\left(\log \int_{|t| \leq T} \widehat{H}_{z}^{\lambda}(t) d t\right) W\{d z\} . \tag{14}
\end{align*}
$$

It is suffice to prove (14) for discrete distributions $W=\sum_{j=1}^{\infty} p_{j} E_{z_{j}}$, where $0 \leq p_{j} \leq 1$, $z_{j} \in \mathbf{R}, \sum_{j=1}^{\infty} p_{j}=1$. Applying in this case the generalized Hölder inequality, we have

$$
\begin{align*}
\int_{|t| \leq T} \exp \left(-\frac{1}{2}\right. & \left.\sum_{k=1}^{n} \int_{z \in \mathbf{R}}\left(1-\cos \left(\left\langle t, a_{k}\right\rangle z\right)\right) \lambda W\{d z\}\right) d t \\
& =\int_{|t| \leq T} \exp \left(-\frac{\lambda}{2} \sum_{j=1}^{\infty} p_{j} \sum_{k=1}^{n}\left(1-\cos \left(\left\langle t, a_{k}\right\rangle z_{j}\right)\right)\right) d t \\
& \leq \prod_{j=1}^{\infty}\left(\int_{|t| \leq T} \exp \left(-\frac{\lambda}{2} \sum_{k=1}^{n}\left(1-\cos \left(\left\langle t, a_{k}\right\rangle z_{j}\right)\right)\right) d t\right)^{p_{j}} . \tag{15}
\end{align*}
$$

Taking logarithms of the left- and right-hand sides of (15), we get (14). In general cases, we can approximate W by discrete distributions in the sense of weak convergence and pass to the limit. Note also that the integrals $\int_{|t| \leq T} d t$ may be replaced in (14) by the integrals $\int \mu\{d t\}$ with an arbitrary Borel measure μ.

Since for characteristic function $\widehat{U}(t)$ of a random vector Y, we have

$$
|\widehat{U}(t)|^{2}=\mathbf{E} \exp (i\langle t, \widetilde{Y}\rangle)=\mathbf{E} \cos (\langle t, \widetilde{Y}\rangle)
$$

where \widetilde{Y} is the corresponding symmetrized random vector, then

$$
\begin{equation*}
|\widehat{U}(t)| \leq \exp \left(-\frac{1}{2}\left(1-|\widehat{U}(t)|^{2}\right)\right)=\exp \left(-\frac{1}{2} \mathbf{E}(1-\cos (\langle t, \widetilde{Y}\rangle))\right) . \tag{16}
\end{equation*}
$$

According to Theorem 1 and relations $V=\lambda W \leq G$, (14) and (16), applying Jensen's inequality of the form $\exp (\mathbf{E} f(\xi)) \leq \mathbf{E} \exp (f(\xi))$ for any measurable function f and any random varialble ξ, we have

$$
\begin{align*}
Q\left(F_{a}, \tau\right) & \lll \tau^{d} \int_{\tau|t| \leq 1}\left|\widehat{F}_{a}(t)\right| d t \\
& \lll d \tau^{d} \int_{\tau|t| \leq 1} \exp \left(-\frac{1}{2} \sum_{k=1}^{n} \mathbf{E}\left(1-\cos \left(\left\langle t, a_{k}\right\rangle \widetilde{X}\right)\right)\right) d t \\
& =\tau^{d} \int_{\tau|t| \leq 1} \exp \left(-\frac{1}{2} \sum_{k=1}^{n} \int_{z \in \mathbf{R}}\left(1-\cos \left(\left\langle t, a_{k}\right\rangle z\right)\right) G\{d z\}\right) d t \\
& \leq \tau^{d} \int_{\tau|t| \leq 1} \exp \left(-\frac{1}{2} \sum_{k=1}^{n} \int_{z \in \mathbf{R}}\left(1-\cos \left(\left\langle t, a_{k}\right\rangle z\right)\right) \lambda W\{d z\}\right) d t \\
& \leq \exp \left(\int_{z \in \mathbf{R}} \log \left(\tau^{d} \int_{\tau|t| \leq 1} \widehat{H}_{z}^{\lambda}(t) d t\right) W\{d z\}\right) \\
& \leq \int_{z \in \mathbf{R}}\left(\tau^{d} \int_{\tau|t| \leq 1} \widehat{H}_{z}^{\lambda}(t) d t\right) W\{d z\} . \tag{17}
\end{align*}
$$

Using (6), we have

$$
\begin{equation*}
\tau^{d} \int_{\tau|t| \leq 1} \widehat{H}_{z}^{\lambda}(t) d t \quad \asymp_{d} \quad Q\left(H_{z}^{\lambda}, \tau\right)=Q\left(H_{1}^{\lambda}, \tau|z|^{-1}\right) \tag{18}
\end{equation*}
$$

Substituting this formula into (17), we obtain (8). In (18), we have used that $H_{z}^{\lambda}=$ $\mathcal{L}(z \eta)$, where η is a random vector with $\mathcal{L}(\eta)=H_{1}^{\lambda}$.

Author Contributions: Investigation, F.G.; Writing-original draft, A.Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: The authors were supported by SFB 1283/2 2021-317210226 and by the RFBR-DFG grant 20-51-12004. The second author was supported by grant RFBR 19-01-00356.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: We are grateful to the anonymous for valuable remarks.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eliseeva, Y.S.; Zaitsev, A.Y. On the Littlewood-Offord problem. J. Math. Sci. 2016, 214, 467-473. [CrossRef]
2. Friedland, O.; Sodin, S. Bounds on the concentration function in terms of Diophantine approximation. C. R. Math. Acad. Sci. Paris 2007, 345, 513-518. [CrossRef]
3. Rudelson, M.; Vershynin, R. The Littlewood-Offord problem and invertibility of random matrices. Adv. Math. 2008, 218, 600-633. [CrossRef]
4. Rudelson, M.; Vershynin, R. The smallest singular value of a random rectangular matrix. Comm. Pure Appl. Math. 2009, 62, 1707-1739. [CrossRef]
5. Tao, T.; Vu, V. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices. Ann. Math. 2009, 169, 595-632. [CrossRef]
6. Tao, T.; Vu, V. From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Amer. Math. Soc. 2009, 46, 377-396. [CrossRef]
7. Nguyen, H.; Vu, V. Optimal inverse Littlewood-Offord theorems. Adv. Math. 2011, 226, 5298-5319. [CrossRef]
8. Vershynin, R. Invertibility of symmetric random matrices. Random Struct. Algorithms 2014, 44, 135-182. [CrossRef]
9. Tikhomirov, K. Singularity of random Bernoulli matrices. Ann. Math. 2020, 191, 593-634. [CrossRef]
10. Livshyts, G.V.; Tikhomirov, K.; Vershynin, R. The smallest singular value of inhomogeneous square random matrices. Ann. Probab. 2021, 49, 1286-1309. [CrossRef]
11. Campos, M.; Jenssen, M.; Michelen, M.; Sahasrabudhe, J. The singularity probability of a random symmetric matrix is exponentially small. arXiv 2021, arXiv:2105.11384.
12. Nguyen, H.; Vu, V. Small probabilities, inverse theorems and applications. arXiv 2013, arXiv:1301.0019.
13. Halász, G. Estimates for the concentration function of combinatorial number theory and probability. Period. Math. Hung. 1977, 8, 197-211. [CrossRef]
14. Littlewood, J.E.; Offord, A.C. On the number of real roots of a random algebraic equation. Rec. Math. [Mat. Sbornik] N.S. 1943, 12, 277-286.
15. Eliseeva, Y.S.; Zaitsev, A.Y. Estimates for the concentration functions of weighted sums of independent random variables. Theory Probab. Appl. 2013, 57, 670-678. [CrossRef]
16. Eliseeva, Y.S. Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables. Zap. Nauchn. Semin. POMI 2013, 412, 121-137. (In Russian) [CrossRef]
17. Eliseeva, Y.S.; Götze, F.; Zaitsev, A.Y. Estimates for the concentration functions in the Littlewood-Offord problem. Zap. Nauchn. Semin. POMI 2013, 420, 50-69. (In Russian) [CrossRef]
18. Arak, T.V.; Zaitsev, A.Y. Uniform limit theorems for sums of independent random variables. Proc. Steklov Inst. Math. 1988, 174, 222.
19. Hengartner, W.; Theodorescu, R. Concentration Functions; Academic Press: New York, NY, USA, 1973.
20. Petrov, V.V. Sums of Independent Random Variables; De Gruyter: Moscow, Russia, 1972.
21. Esséen, C.-G. On the Kolmogorov-Rogozin inequality for the concentration function. Z. Wahrscheinlichkeitstheorie Verw. Geb. 1966, 5, 210-216. [CrossRef]
22. Esséen, C.-G. On the concentration function of a sum of independent random variables. Z. Wahrscheinlichkeitstheorie Verw. Geb. 1968, 9, 290-308. [CrossRef]
23. Arak, T.V. On the approximation by the accompanying laws of n-fold convolutions of distributions with nonnegative characteristic functions. Theory Probab. Appl. 1980, 25, 221-243. [CrossRef]
24. Zaitsev, A.Y. Multidimensional generalized method of triangular functions. J. Soviet Math. 1988, 43, 2797-2810. [CrossRef]
25. Eliseeva, Y.S.; Götze, F.; Zaitsev, A.Y. Arak inequalities for concentration functions and the Littlewood-Offord problem. Theory Probab. Appl. 2018, 62, 196-215.
26. Zaitsev, A.Y. A bound for the maximal probability in the Littlewood-Offord problem. J. Math. Sci. 2016, 219, 743-746. [CrossRef]
27. Götze, F.; Zaitsev, A.Y. New applications of Arak's inequalities to the Littlewood-Offord problem. Eur. J. Math. 2018, 4, 639-663. [CrossRef]
28. Arak, T.V. On the convergence rate in Kolmogorov's uniform limit theorem. I. Theory Probab. Appl. 1981, 26, 219-239. [CrossRef]
