# A Review of the Fractal Market Hypothesis for Trading and Market Price Prediction

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. On the Study of Risk

#### 1.2. Basic Technical Issues in Financial Analysis

- The Price Filter Approach where the strategy is to buy or sell after some price increases or decreases by some pre-defined percentage.
- Moving Average Approach, where a buy or sell is generated after the price moves above or below a longer-term rolling average.
- Support and Resistance Approach, which is based upon the principle that most trends begin when a price of a commodity breaks out from a fixed price range. This type of strategy seeks to buy or sell when the price rises above or below a local maximum.
- Channel Breakout Approach, which is defined as a region within which a high price (taken over a number of periods) is within a pre-defined percentage of the corresponding low price (over the periods considered).

#### 1.3. Financial Time Series Analysis

#### 1.4. Structure of the Paper

## 2. The Random Walk Hypothesis

## 3. The Efficient Market Hypothesis

#### 3.1. The Modern Portfolio Theory

- financial returns do not follow Gaussian distributions;
- correlations between asset classes are not fixed, but instead, vary depending on external events, especially in times of crises.

#### 3.2. The Black–Scholes Model

#### 3.3. Value and Limitations of the Efficient Market Hypothesis

- (i)
- price increments exhibit statistical stationarity in which samples of data taken over equal time increments can be superimposed onto each other in a statistical sense;
- (ii)
- the scaling of prices can be suitably re-scaled such that they too, can be superimposed onto each other in a statistical sense;
- (iii)
- price changes are statistically time independent.

## 4. An Overview of Fractal Geometry

#### 4.1. Self-Similar Functions

#### 4.2. Self-Affine Structures

#### 4.3. The Mandelbrot Set

#### 4.4. Multi-Fractals

#### 4.5. Self-Affine Functions and Fractional Calculus

## 5. The Fractal Market Hypothesis

#### 5.1. Nonlinear Dynamics and Chaos Theory

#### 5.2. Fractals and Finance

#### 5.3. Black Swans

- (i)
- it is an outlier which lies outside the realm of regular expectations, where nothing in the past points to its possibility;
- (ii)
- it carries an extreme impact;
- (iii)
- in spite of its unlikelihood, human nature leads to the concoction of explanations after the fact, thereby attempting to make an event explainable and predictable [99].

#### 5.4. Non-Gaussian Distributional Analysis

- (i)
- peaked with long-tails—Leptokurtic;
- (ii)
- non-symmetric—skewed;
- (iii)
- statistically non-stationary in regard to both (i) and (ii).

## 6. Mathematical Models for Financial Hypotheses

#### 6.1. The Random Walk Hypothesis

#### 6.2. The Efficient Market Hypothesis

#### 6.3. The Fractal Market Hypothesis

#### 6.3.1. Memory Function for the FMH

#### 6.3.2. Asymptotic Rate Equation

## 7. Case Study: Trend Analysis and Price Forecasting of Cryptocurrencies

#### 7.1. Long-Term Prediction

#### 7.2. Short-Term Market Price Prediction

- the inclusion of a larger number of the functions available with the TuringBot, for example, including ‘Other functions, Logical functions and History functions’;
- the effect of varying the period (window size) used to compute the formulae, and the accuracy of future predictions for a varying number of future projections;
- the correlation between the predictive accuracy, and the memory function, based on an estimate of $\alpha $ for different sets of price data;
- the effect of smoothing the data (for a specific period) prior to formulae evolution on the predictive accuracy of the formulae.

## 8. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Bachelier, L. Théorie de la spéculation. Ann. Sci. L’École Norm. Supérieure
**1900**, 3, 21–86. Available online: http://archive.numdam.org/article/ASENS_1900_3_17__21_0.pdf (accessed on 14 June 2020). [CrossRef] - Baresa, S.; Bogdan, S.; Ivanovic, Z. Strategy of Stock Valuation by Fundamental Analysis. UTMS J. Econ.
**2013**, 4, 45–51. [Google Scholar] - Bonini, S. Corporate Scandals, Capital Structure and Contagion Effect. 2009. Available online: http://www.finanzafirenze.org/IRMC/files/CorporateScandals.pdf (accessed on 13 August 2021).
- Plummer, T. The Psychology of Technical Analysis: Profiting from Crowd Behaviour and the Dynamics of Price; McGraw-Hill: London, UK, 1993; ISBN 1557385432. [Google Scholar]
- Technical Analysis. 2013. Available online: http://stockcharts.com/school/doku.php?id=chart_school:overview:technical_analysis (accessed on 13 August 2021).
- Fung, W.; Hsieh, D.A. The risk in hedge fund strategies: Theory and evidence from trend followers. Rev. Financ. Stud.
**2001**, 14, 313–341. [Google Scholar] [CrossRef] - Lui, Y.H.; Mole, D. The use of fundamental and technical analyses by foreign exchange dealers: Hong Kong evidence. J. Int. Money Financ.
**2001**, 17, 535–545. [Google Scholar] [CrossRef] - Oberlechner, T. Importance of technical and fundamental analysis in the European foreign exchange market. Int. J. Financ. Econ.
**2001**, 6, 81–93. [Google Scholar] [CrossRef] - Sullivan, R.; Timmermann, A.; White, H. Data-snooping, technical trading rule performance, and the bootstrap. J. Financ.
**1999**, 54, 1647–1691. [Google Scholar] [CrossRef] - Donchian, R.D. Commodities: High finance in Copper. Financ. Anal. J.
**1960**, 16, 133–142. [Google Scholar] [CrossRef] - Lukac, L.P.; Brorsen, B.W.; Irwin, S.H. A test of futures market disequilibrium using twelve different technical trading systems. Appl. Econ.
**1960**, 20, 623–639. [Google Scholar] [CrossRef] - Park, C.H.; Irwin, S.H. What do we know about the profitability of technical analysis? J. Econ. Surv.
**2007**, 21, 786–826. [Google Scholar] [CrossRef] - Marshall, B.; Cahan, R.; Cahan, J. Can commodity futures be profitably traded with quantitative market timing strategies? J. Bank. Financ.
**2008**, 32, 1810–1819. [Google Scholar] [CrossRef] - Blackledge, J.M.; Kearney, D.; Lamphiere, M.; Rani, R.; Walsh, P. Econophysics and Fractional Calculus: Einstein’s Evolution Equation, the Fractal Market Hypothesis, Trend Analysis and Future Price Prediction. MDPI Spec. Issue Math. Econ. Appl. Fract. Calc.
**2019**, 7, 1057. Available online: https://www.mdpi.com/journal/mathematics/special_issues/Mathematical_Economics (accessed on 12 July 2021). [CrossRef][Green Version] - Blackledge, J.M. Digital Signal Processing; Horwood Publishing: Cambridge, UK, 2006; Available online: https://arrow.tudublin.ie/engschelebk/4/ (accessed on 14 June 2020).
- Blackledge, J.M.; Govere, W.; Sibanda, D. Phase-Only Digital Encryption. IAENG Int. J. Appl. Math.
**1919**, 49, 212–228. [Google Scholar] - Pascal, P.; Fermat, P. Fermat and Pascal on Probability. 1954. Available online: http://www.socsci.uci.edu/~bskyrms/bio/readings/pascal_fermat.pdf (accessed on 13 October 2021).
- Pearson, K. The Problem of a Random Walk. 1905. Available online: http://www.e-m-h.org/Pear05.pdf (accessed on 14 November 2021).
- Working, H. A Random-Difference Series for Use in the Analysis of Time Series. J. Am. Stat. Assoc.
**1934**, 29, 11–24. Available online: https://www.jstor.org/stable/2278456 (accessed on 10 July 2020). [CrossRef] - Kendall, M.G.; Bradford, H.A. The Analysis of Economic Time-Series-Part I: Price. J. R. Stat. Soc. Ser. A
**1934**, 116, 11–34. Available online: https://www.jstor.org/stable/2980947 (accessed on 9 March 2018). [CrossRef] - Random walks with the Econometrics Toolbox. 2021. Available online: https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/22003/versions/4/previews/html/RandomWalks.html (accessed on 21 November 2021).
- Narasimhangi, T.N. Fourier’s Heat Conduction Equation: History, Influence, and Connections. 2008. Available online: http://www.h2ogeo.upc.es/Docencia/Mec/FourierHEatConductionEquation_Nari.pdf (accessed on 17 November 2021).
- Hanggi, P. Robert Brown and the Pollen Stuff. 2008. Available online: http://www.physik.uni-augsburg.de/theo1/hanggi/History/Robert_Brown_Vortrag.pdf (accessed on 17 November 2021).
- Einstein, A. The Motion of Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of Heat. Ann. Der. Phys.
**1905**, 17, 549–560. [Google Scholar] [CrossRef][Green Version] - Taqqu, M.S. Bachelier and His Times: A Conversation with Bernard Bru; Springer: London, UK, 2002; Available online: http://math.bu.edu/individual/murad/pub/bachelier-english43-fin-posted.pdf (accessed on 13 August 2020).
- Fama, E. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ.
**1970**, 25, 383–417. [Google Scholar] [CrossRef] - AngleFire. Modern Portfolio Theory. 2013. Available online: https://www.angelfire.com/ma3/gillsie/cfa3a/Modern%20Portfolio%20Theory.pdf (accessed on 17 November 2021).
- Morales, L.; Hanly, J. European power markets—A journey towards efficiency. Energy Policy
**2018**, 116, 78–85. [Google Scholar] [CrossRef] - Malkeil, B.G. The Efficient Market Hypothesis and its Critics. J. Econ. Perspect.
**2003**, 17, 59–82. [Google Scholar] [CrossRef][Green Version] - Fama, E. Fama on Finance. 2012. Available online: https://www.econtalk.org/fama-on-finance/ (accessed on 17 November 2021).
- Markowitz, H.M. Portfolio Selection: Efficient Diversification of Investments; Yale University Press: New Haven, CT, USA, 1959. [Google Scholar]
- Markowitz, H.M. The Early History of Portfolio Theory: 1600–1960. Financ. Anal. J.
**1999**, 54, 5–16. [Google Scholar] [CrossRef] - Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Co.: New York, NY, USA, 1982; ISBN 0-7167-1186-9. [Google Scholar]
- Morien, T. Modern Portfolio Criticism. 2013. Available online: http://www.travismorien.com/FAQ/portfolios/mptcriticism.htm (accessed on 13 August 2013).
- Black, F.; Scholes, M. The Pricing of Options and Corporate Liabilities. J. Political Econ.
**1973**, 81, 637–654. [Google Scholar] [CrossRef][Green Version] - Black, F. How We Came Up with the Option Formula. J. Portfolio Manag.
**1989**, 15, 4–8. [Google Scholar] [CrossRef][Green Version] - Blackledge, J.M. The Fractal Market Hypothesis: Applications to Financial Forecasting; Polish Academy of Sciences: Warsaw, Poland, 2010; ISBN 978-83-61993-01-8. [Google Scholar]
- Hakan, Y.O. Criticism of the Black-Scholes Model: But Why Is It Still Used? 2005. Available online: https://mpra.ub.uni-muenchen.de/63208/1/MPRA_paper_63208.pdf (accessed on 6 November 2019).
- Guardian, T. The Mathematical Equation that Caused the Banks to Crash. 2012. Available online: https://www.theguardian.com/science/2012/feb/12/black-scholes-equation-credit-crunch (accessed on 13 August 2013).
- Sewell, M. History of the Efficient Market Hypothesis. 2018. Available online: http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/images/Research_Student_Information/RN_11_04.pdf (accessed on 10 August 2019).
- Beechey, M.; Gruen, D.W.R.; Vickeryl, J. The Efficient Market Hypothesis: A Survey; Economic Research Department, Reserve Bank of Australia: Sydney, Australia, 2000. [Google Scholar]
- Osborne, M.F. Brownian motion in the stock market. Oper. Res.
**1959**, 7, 145–173. [Google Scholar] [CrossRef] - Muth, J.F. Rational expectations and the theory of price movements. Econom. J. Econom. Soc.
**1961**, 49, 315–335. [Google Scholar] [CrossRef] - Malkiel, B.G. A Random Walk Down Wall Street: Including a Life-Cycle Guide to Personal Investing; WW Norton and Company: New York, NY, USA, 1999. [Google Scholar]
- Ball, R. Anomalies in relationships between securities’ yields and yield-surrogates. J. Financ. Econ.
**1978**, 6, 103–126. [Google Scholar] [CrossRef] - Eun, C.; Shiml, S. International transmission of stock market movements. J. Financ. Quant. Anal.
**1989**, 24, 241–256. [Google Scholar] [CrossRef] - Jackson, M.O. Equilibrium, price formation, and the value of private information. Rev. Financ. Stud.
**1991**, 4, 1–16. [Google Scholar] [CrossRef] - Lo, A.W.; MacKinlayl, A.C. When are contrarian profits due to stock market overreaction? Rev. Financ. Stud.
**1990**, 3, 175–205. [Google Scholar] [CrossRef] - Lo, A.W. Market Efficiency: Stock Market Behaviour in Theory and Practice; Edward Elgar Publishing: Cheltenham, UK, 1990. [Google Scholar]
- Lo, A.W.; MacKinlay, A.C. A Non-Random Walk down Wall Street; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Metcalf, G.E.; Malkiel, B.G. The Wall Street Journal contests: The experts, the darts, and the efficient market hypothesis. Appl. Financ. Econ.
**1994**, 4, 371–374. [Google Scholar] [CrossRef] - Rubinstein, M. Rational markets: Yes or no? The affirmative case. Financ. Anal. J.
**2001**, 57, 15–29. [Google Scholar] [CrossRef][Green Version] - Timmermann, A.; Granger, C.W.J. Efficient market hypothesis and forecasting. Int. J. Forecast.
**2004**, 20, 15–27. [Google Scholar] [CrossRef] - Malkiel, B.G. Reflections on the efficient market hypothesis: 30 years later. Financ. Rev.
**2005**, 40, 1–9. [Google Scholar] [CrossRef][Green Version] - Toth, B.; Kertesz, J. Increasing market efficiency: Evolution of crosscorrelations of stock returns. Phys. A Stat. Mech. Its Appl.
**2006**, 360, 505–515. [Google Scholar] [CrossRef][Green Version] - Yen, G.; Lee, C.F. Efficient market hypothesis: Past, present and future. Rev. Pac. Basin Financ. Mark. Policies
**2008**, 11, 305–329. [Google Scholar] [CrossRef] - Ball, R. The global financial crisis and the efficient market hypothesis: What have we learned? J. Appl. Corp. Financ.
**2009**, 21, 8–16. [Google Scholar] [CrossRef] - Kahneman, D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011; ISBN 978-0374275631. [Google Scholar]
- Turner, M.; Blackledge, J.M.; Andrews, P. Fractal Geometry in Digital Imaging; Academic Press: Cambridge, MA, USA, 1998; ISBN 978-0127039701. [Google Scholar]
- Rani, M.; Haq, R.U.; Sulaiman, N. Koch Curves: Rewriting System, Geometry and Application. J. Comput. Sci.
**2011**, 7, 1330–1334. [Google Scholar] [CrossRef][Green Version] - Lévy, P. Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole; Addison-Wesley Publishing: Boston, MA, USA, 1938; ISBN 0-201-58701-7. [Google Scholar]
- Mandelbort, B.B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science
**1967**, 156, 636–638. [Google Scholar] [CrossRef][Green Version] - Glendinning, P. Stability, Instability and Chaos; Cambridge University Press: Cambridge, UK, 1994; ISBN 0-521-41553-5. [Google Scholar]
- Feigenbaum, M.J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys.
**1978**, 19, 25–52. Available online: https://link.springer.com/article/10.1007/BF01020332 (accessed on 16 August 2021). [CrossRef] - Milnorg, J.W. Dynamics in One Complex Variable; Princeton University Press: Princeton, NJ, USA, 2006; Available online: https://arxiv.org/abs/math/9201272 (accessed on 8 October 2020).
- Blackledge, J.M. On the Mandelbrot Set for i = ±1 and Imaginary Higgs Fields. J. Adv. Appl. Math.
**2021**, 6, 27–54. Available online: http://www.isaacpub.org/images/PaperPDF/JAAM_100171_2021022100381547642.pdf (accessed on 10 December 2021). - Gil-Lafuente, A.M. Fuzzy Logic in Financial Analysis; Springer Publishing: New York, NY, USA, 2005; ISBN 978-3-540-32368-6. [Google Scholar]
- Blackledge, J.M.; Mosola, N. A Statistically Significant Test to Evaluate the Order or Disorder for a Binary String of a Finite Length. ISSC2020, IEEE UK and Ireland Signal Processing Chapter and IEEE Computational Intelligence Society 2020, Letterkenny Institute of Technology, 11–12 June 2020. Available online: https://arrow.tudublin.ie/engscheleart/311/ (accessed on 24 November 2020).
- Podlubny, I.; Magin, R.L.; Trymorush, I. Niels Henrik Abel and the Birth of Fractional Calculus. Fract. Calc. Appl. Anal.
**2017**, 20, 1068–1075. Available online: https://www.degruyter.com/document/doi/10.1515/fca-2017-0057/html (accessed on 14 June 2020). [CrossRef][Green Version] - Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2011; ISBN 109814340243. [Google Scholar]
- West, B.J. Fractional Calculus View of Complexity; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780367737795. [Google Scholar]
- Blackledge, J.M. A New Definition, a Generalisation and an Approximation for a Fractional Derivative with Applications to Stochastic Time Series Modelling. IAENG Eng. Lett.
**2021**, 29, 138–150. Available online: https://arrow.tudublin.ie/engscheleart2/245/ (accessed on 5 November 2021). - Peters, E.E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics; Wiley: Hoboken, NJ, USA, 1994; ISBN 100471585246. [Google Scholar]
- Elliot, R.N. The Wave Principle; Amazon: Seattle, WA, USA, 2012; Available online: https://www.amazon.co.uk/Wave-Principle-Ralph-Nelson-Elliott/dp/1607964961 (accessed on 5 December 2021).
- Frost, A.J.; Prechter, R.R. Elliott Wave Principle Market Behavior. 2017. Available online: https://www.amazon.co.uk/Elliott-Wave-Principle-Market-Behavior/dp/1616040815 (accessed on 5 December 2021).
- Anderson, N.; Noss, J. The Fractal Market Hypothesis and its implications for the stability of financial markets. Financ. Stabil.
**2013**, 3, 3–22. Available online: https://www.bankofengland.co.uk/-/media/boe/files/financial-stability-paper/2013/thefractal-market-hypothesis-and-its-implications-for-the-stability-of-financial-markets.pdf (accessed on 4 July 2021). - Baker, G.L.; Gollub, J.B. Chaotic Dynamics: An Introduction; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Kellert, S.H. In the Wake of Chaos: Unpredictable Order in Dynamical Systems; University of Chicago Press: Chicago, IL, USA, 1993; ISBN 0-226-42976-8. [Google Scholar]
- Collatz Conjecture. 2021. Available online: https://en.wikipedia.org/wiki/Collatz_conjecture (accessed on 5 December 2021).
- The Simplest Math Problem No One Can Solve—Collatz Conjectur. 2021. Available online: https://www.youtube.com/watch?v=094y1Z2wpJg (accessed on 5 December 2021).
- Kolmogorov, A.N. Local Structure of Turbulence in an Incompressible Fluid for Very Large Reynolds Numbers. Proc. R. Soc. Ser. A Math. Phys. Sci.
**1941**, 434, 9–13. [Google Scholar] - Kolmogorov, A.N. Preservation of Conditionally Periodic Movements with Small Change in the Hamiltonian Function. Lect. Notes Phys. Stoch. Behav. Class. Quantum Hamiltonian Syst.
**1954**, 98, 51–56. Available online: https://link.springer.com/chapter/10.1007/BFb0021737 (accessed on 2 July 2021). - Birhoff, G.D. Dynamical Systems. Am. Math. Soc. Colloq. Publ.
**1927**, 9. [Google Scholar] [CrossRef] - Cartwright, M.; Littlewood, J. On Non-Linear Differential Equations of the Second Order. J. Lond. Math. Soc.
**1945**, 20, 180–189. [Google Scholar] [CrossRef] - Cartwright, M.; Littlewood, J. The Legacy of Andrei Nilolaevich Kolmogorov. Available online: http://www.kolmogorov.com/ (accessed on 10 October 2020).
- Kolmogorov, A.N. On Analytic Methods in Probability Theory. In Selected Works of A. N. Kolmogorov—Mathematics and Its Applications; Soviet Series; Springer: Dordrecht, The Netherlands, 1992; Volume 26, pp. 62–108. [Google Scholar]
- Kimura, M. Some Problems of Stochastic Processes in Genetics. Ann. Math. Stat.
**1957**, 28, 882–901. [Google Scholar] [CrossRef] - Edward Lorenz and the Butterfly Effect. Available online: http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Butterfly_effect.html (accessed on 17 July 2021).
- Bryant, P.; Brown, R.; Abarbanel, H. Lyapunov Exponents From Observed Time Series. Phys. Rev. Lett.
**1990**, 65, 1523. [Google Scholar] [CrossRef] [PubMed] - Brown, R.; Bryant, P.; Abarbanel, H. Computing the Lyapunov Spectrum of a Dynamical System From an Observed Time Series. Phys. Rev. A
**1991**, 43, 2787. [Google Scholar] [CrossRef] - Abarbanel, H.; Brown, R.; Kennel, M.B. Local Lyapunov Exponents Computed from Observed Data. J. Nonlinear Sci.
**1992**, 2, 343–365. [Google Scholar] [CrossRef] - Chaos—Classical and Quantum. Available online: http://www.streamsound.dk/book1/chaos/Chaos/assets/common/downloads/publication.pdf (accessed on 1 September 2021).
- Mandelbort, B.B. Forecasts of future prices, unbiased markets, and martingale models. J. Bus.
**1966**, 39, 242–255. [Google Scholar] [CrossRef] - Mandelbrot, B.B. Gaussian, Self-Affinity and Fractals; Springer Publishing: New York, NY, USA, 2002; ISBN 978-0-387-98993-8. [Google Scholar]
- Fisher, A.; Calvet, L. Multi-Fractals of Deutschmark / US Dollar Exchange Rates; Department of Mathematics, Yale University and IMB T. J. Watson Research Centre: Yorktown Heights, NY, USA, 1997. [Google Scholar]
- Czarnecki, L.; Grech, D. Multi-fractal Dynamics of Stock Markets; University of Wroclaw: Wroclaw, Poland, 2009. [Google Scholar]
- Taleb, N.N. The Black Swan; Random House Publishing: New York, NY, USA, 2007; ISBN 978-1-4000-6351-5. [Google Scholar]
- What are Black Swan Events? Available online: http://blackswanevents.org/?page_id=26 (accessed on 4 November 2019).
- Black Swan Logic: Thinking Outside the Norm. Available online: http://www.cleanlanguage.co.uk/articles/articles/218/1/Black-Swan-Logic/Page1.html (accessed on 9 September 2021).
- Taleb, N.N. Statistical Consequences of Fat Tails; STEM Academic Press: Cambridge, MA, USA, 2020; ISBN 978-1-5445-0805-4. Available online: https://codowd.com/bigdata/misc/Taleb_Statistical_Consequences_of_Fat_Tails.pdf (accessed on 9 September 2021).
- Cootner, P.H. Stock Prices: Random vs. Systematic Changes; EBSCO Publishing: Ipswich, MA, USA, 1962; Available online: http://www.e-m-h.org/Coot62.pdf (accessed on 9 September 2021).
- Alexander, S.S. Price movements in speculative markets: Trends or random walks. Ind. Manag. Rev.
**1964**, 5, 25–46. [Google Scholar] - Alexander, S.S. The random walk hypothesis and the recent behaviour of equity prices in Britain. Economica
**1971**, 38, 28–51. [Google Scholar] - Beja, A. The Limits of Price Information in Market Processes; University of California at Berkeley: Berkeley, CA, USA, 1977. [Google Scholar]
- Grossman, S.J.; Stiglitz, J.E. On the impossibility of informationally efficient markets. Ind. Manag. Rev.
**1980**, 7, 393–408. [Google Scholar] - Mitchell, W.C. The Making and Using of Index Numbers; A M Kelley: New York, NY, USA, 1965. [Google Scholar]
- Olivier, M. Les Nombres Indices de la Variation des Prix; University of Paris: Paris, France, 1926. [Google Scholar]
- Mills, F.C. The Behaviour of Prices; National Bureau of Economic Research: Cambridge, MA, USA, 1927. [Google Scholar]
- Ullah, M.I. Measure of Kurtosis. Available online: http://itfeature.com/statistics/measure-of-kurtosis (accessed on 9 September 2013).
- Dean, S.; Illowsky, B. Descriptive Statistics: Skewness and the Mean, Median, and Mode. Available online: https://cnx.org/contents/Descriptive-Statistics-Skewness/ (accessed on 9 September 2013).
- Roll, R. Orange juice and weather. Am. Econ. Rev.
**1984**, 74, 861–880. [Google Scholar] - Bondt, W.F.M.; Thaler, R. Does the stock market overreact? J. Financ.
**1985**, 40, 793–805. [Google Scholar] [CrossRef] - Engle, R.F. Auto-Regressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica
**1982**, 50, 107. [Google Scholar] [CrossRef] - Black, F. Noise. J. Financ.
**1986**, 41, 529–543. [Google Scholar] [CrossRef] - French, K.R.; Roll, R. Stock return variances: The arrival of information and the reaction of traders. J. Financ. Econ.
**1986**, 17, 5–26. [Google Scholar] [CrossRef] - Cutler, D.M.; Poterba, J.M.; Summers, L.H. What Moves Stock Prices? J. Portf. Manag.
**1989**, 15, 4–12. [Google Scholar] [CrossRef] - Fama, E.F.; French, K.R. Permanent and temporary components of stock prices. J. Political Econ.
**1988**, 96, 246–273. [Google Scholar] [CrossRef] - Poterba, J.M.; Summers, L.H. Mean reversion in stock prices: Evidence and implications. J. Financ. Econ.
**1988**, 22, 27–59. [Google Scholar] [CrossRef] - Shiller, R.J. Market Volatility; MIT Press: Cambridge, MA, USA, 1992; ISBN 9780262192903. [Google Scholar]
- Lehmann, B. Fads, martingales, and market efficiency. Q. J. Econ.
**1990**, 105, 1–28. [Google Scholar] [CrossRef] - Jegadeesh, N. Evidence of predictable behaviour of security returns. J. Financ.
**1990**, 45, 881–898. [Google Scholar] [CrossRef] - Chopra, N.; Lakonishok, J.; Ritter, J.R. Measuring abnormal performance: Do stocks overreact? J. Financ. Econ.
**1990**, 31, 235–268. [Google Scholar] [CrossRef] - Bekaert, G.; Hodrick, R.J. Characterising predictable components in excess returns on equity and foreign exchange markets. J. Financ.
**1992**, 47, 467–509. [Google Scholar] [CrossRef] - Jegadeesh, N.; Titman, S. Returns to buying winners and selling losers: Implications for stock market efficiency. J. Financ.
**1993**, 48, 65–91. [Google Scholar] [CrossRef] - Huang, R.D.; Stoll, H.R. Market microstructure and stock return predictions. Rev. Financ. Stud.
**1994**, 7, 179–213. [Google Scholar] [CrossRef] - Haugen, R.A. The New Finance; Prentice-Hall International: Hoboken, NJ, USA, 1995. [Google Scholar]
- Campbell, J.Y. The Econometrics of Financial Markets; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Mifre, J.; Rallis, G. Momentum strategies in commodity futures markets. J. Bank. Financ.
**2007**, 31, 1863–1886. [Google Scholar] [CrossRef] - Shen, Q.; Szakmary, A.C.; Sharma, S.C. An examination of momentum strategies in commodity futures markets. J. Futur. Mark. Futur. Options Other Deriv. Prod.
**2007**, 27, 227–256. [Google Scholar] [CrossRef] - Szakmary, A.C.; Shen, Q.; Sharma, S.C. Trend-following trading strategies in commodity futures: A re-examination. J. Bank. Financ.
**2010**, 34, 409–426. [Google Scholar] [CrossRef] - Shleifer, A. Inefficient Markets: An Introduction to Behavioural Finance; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Uddin, M.; Taufiq, M. Approximation of time fractional Black-Scholes equation via radial kernels and transformations. Fract. Differ. Calc.
**2019**, 9, 75–90. Available online: http://files.ele-math.com/articles/fdc-09-06.pdf (accessed on 19 December 2021). [CrossRef][Green Version] - Lee, C.C.; Lee, J.D. Stock prices and the efficient market hypothesis: Evidence from a panel stationary test with structural breaks. Jpn. World Econ.
**2010**, 22, 49–58. [Google Scholar] [CrossRef] - Eastman, A.M.; Lucey, B.M. Skewness and asymmetry in futures returns and volumes. Appl. Financ. Econ.
**2008**, 18, 777–800. [Google Scholar] [CrossRef] - Hanly, J. Managing Energy Price Risk using Futures Contracts: A Comparative Analysis. Energy J.
**2008**, 38, 777–800. [Google Scholar] [CrossRef] - Aloui, C. Value-at-risk analysis for energy commodities: Long-range dependencies and fat-tails in return innovations. J. Energy Mark.
**2008**, 1, 31–63. [Google Scholar] [CrossRef] - Aloui, C.; Mabrouk, S. Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed Garch models. Energy Policy
**2010**, 38, 2326–2339. [Google Scholar] [CrossRef] - Zhang, J.; Wu, X.; Yan, R.; Chung, Z. The Liquidity Spillover Effects Between the Stock Index Futures and Spot Under the Fractal Market Hypothesis. Res. Sq.
**2021**. Preprint. Available online: https://assets.researchsquare.com/files/rs-933613/v1covered.pdf?c=1638462633 (accessed on 19 December 2021). - Papoulis, A. Probability, Random Variables and Stochastic Processes; McGraw-Hill: New York, NY, USA, 1991; ISBN 0-07-048477-5. [Google Scholar]
- Evans, G.; Blackledge, J.M.; Yardley, P. Analytic Solutions to Partial Differential Equations; Springer: New York, NY, USA, 1999; ISBN 2540761241. [Google Scholar]
- Blackledge, J.M.; Rani, T.R. Stochastic Modelling for Levy Distributed Systems. Int. J. Pure Appl. Math.
**2017**, 7, 193–210. Available online: https://arrow.tudublin.ie/engscheleart2/124/ (accessed on 5 December 2020). - Osterrieder, J. The Statistics of Bitcoin and Cryptocurrencies. Adv. Econ. Bus. Manag. Res.
**2007**, 26, 285–289. Available online: https://core.ac.uk/download/pdf/189169266.pdf (accessed on 8 October 2021). - Lamphiere, M.; Blackledge, J.M.; Kerney, D. Carbon Futures Trading and Short-Term Price Prediction: An Analysis Using the Fractal Market Hypothesis and Evolutionary Computing. Mathematics
**2021**, 9, 1005. [Google Scholar] [CrossRef] - Brown, J. FOREX TRADING: The Basics Explained in Simple Terms; JAGfx Pty Ltd.: Queensland, Australia, 2015; ISBN 978-1535198561. [Google Scholar]
- Cryptocurrency Market Size, Hardware and Software IT Services. 2021. Available online: https://www.fortunebusinessinsights.com/industry-reports/cryptocurrency-market-100149 (accessed on 5 December 2021).
- Edwardsi, J. Bitcoins Price History. 2021. Available online: https://www.investopedia.com/articles/forex/121815/bitcoins-price-history.asp (accessed on 5 December 2021).
- Paper, D. Central Bank Digital Currency Opportunities, Challenges and Design. 2020. Available online: https://www.bankofengland.co.uk/-/media/boe/files/paper/2020/central-bank-digital-currency-opportunities-challenges-and-design.pdf (accessed on 5 December 2021).
- MarketWatch—Bitcoin USD. Available online: https://www.marketwatch.com/investing/cryptocurrency/btcusd/download-data (accessed on 18 December 2021).
- Eureqa Data Modelling Engine. Available online: https://en.wikipedia.org/wiki/Eureqa. (accessed on 27 February 2020).
- Nutonian.com. Available online: https://www.datarobot.com/nutonian/?redirect_source=nutonian.com (accessed on 27 February 2020).
- Software, T.S.R. Find Formulas that Predict your Variables. Available online: https://turingbotsoftware.com/ (accessed on 19 November 2021).
- Bates, D.S. The Crash of ’87: Was It Expected? The Evidence from Options Markets. J. Financ.
**1991**, 46, 1006–1044. [Google Scholar] [CrossRef] - Denier, J. Millennium Prize: The Navier-Stokes Existence and Uniqueness Problem. 2011. Available online: https://theconversation.com/millennium-prize-the-navier-stokes-existence-and-uniqueness-problem-4244 (accessed on 7 December 2021).

**Figure 1.**Example of a three-dimensional random walk simulated using the Matlab Econometrics Toolbox [21].

**Figure 2.**The Cantor Set for six iterations giving ‘fractal dust’ with a fractal dimension of $0.6309$.

**Figure 3.**The standard Mandelbrot set (left) for ${i}^{2}=-1$ and the nonstandard set (right) for ${i}^{2}=+1$. Both sets are computed for $x\in [-2,1]$ (horizontal axis) and $iy\in [-1.5i,1.5i]$ (vertical axis) for a ${10}^{3}\times {10}^{3}$ grid and 100 iterations [66].

**Figure 5.**Simulation of a financial time series ${u}_{n}$ based on the Random Walk Hypothesis (below) using Equation (12) for $N=10,000$ and a stationary zero-mean Gaussian-distributed stochastic field ${r}_{n}$ (above) for the price differences (where only the first 3000 samples are displayed).

**Figure 6.**Left: Comparison of a Lévy distribution (red) for $\gamma <2$ when $p\left(x\right)\sim 1/\mid x{\mid}^{1+\gamma}$ with a standard Gaussian distribution (blue) when $\gamma =2$. Right: Comparison of a Gaussian distribution with the distribution for price changes of a Cryptocurrency (Bitcoin–USD exchange rates). The Figure on the right hand side illustrates the incompatibility of the distribution for price changes (grey bars and blue line) with a normal distribution (red line) and its similarity with a Lévy distribution which is peaked at the centre and has significant bars in the tail [142].

**Figure 7.**Comparisons of a financial signal simulation based on the RWH when $\gamma =1$ (above), the FMH when $\gamma =1.5$ (centre) and the EMH when $\gamma =2$ (lower plot).

**Figure 8.**Trend analysis of daily opening BTS–USD from 17-12-2020 to 30-11-2021 after normalisation. The BVR (

**left**) and the LVR (

**right**) are computed using the function Backtester(40,35,350) given in [14]. In both cases, the normalised BTS–USD data are plotted after application of a moving average filter (red lines). The green lines shows the post-filtered BVR and the LVR signals. The zero-crossing positions (blue lines) indicate the points in time where a change in the trend of the filtered signals takes place.

**Figure 9.**The normalised 5-day rolling average of the opening BTS–USD prices from 17-12-2020 to 30-11-2021 (red line), the corresponding Volatility of the signal (green line), and the Lévy index (blue line) computed using a moving window with a period of 5.

**Figure 10.**Example of daily price predictions (over ten days) for the opening values of the daily BTS–USD using the TuringBot to evolve formulas that sequentially predict a future price, one-day at a time, using the previous 40-day prices. The actual price data are given by the blue line and the sequential single day predictions are given by the red line for BTC–USD exchange price values from 21 November 2021 to 30 November 2021.

**Figure 11.**Example screenshot of the TuringBot Symbolic Regression Software Graphical User Interface [151] showing the evolution of formulas to simulate the 40-day BTS–USD price values.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Blackledge, J.; Lamphiere, M. A Review of the Fractal Market Hypothesis for Trading and Market Price Prediction. *Mathematics* **2022**, *10*, 117.
https://doi.org/10.3390/math10010117

**AMA Style**

Blackledge J, Lamphiere M. A Review of the Fractal Market Hypothesis for Trading and Market Price Prediction. *Mathematics*. 2022; 10(1):117.
https://doi.org/10.3390/math10010117

**Chicago/Turabian Style**

Blackledge, Jonathan, and Marc Lamphiere. 2022. "A Review of the Fractal Market Hypothesis for Trading and Market Price Prediction" *Mathematics* 10, no. 1: 117.
https://doi.org/10.3390/math10010117