Molecular Mapping of Urinary Complement Peptides in Kidney Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proteomic Investigation, Data Retrieval and Diagnosis Assessment
2.2. Assessment of eGFR and Correction for Proteinuria
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latosinska, A.; Siwy, J.; Faguer, S.; Beige, J.; Mischak, H.; Schanstra, J.P. Value of Urine Peptides in Assessing Kidney and Cardiovascular Disease. PROTEOMICS–Clin. Appl. 2021, 15, e2000027. [Google Scholar] [CrossRef]
- Pontillo, C.; Jacobs, L.; Staessen, J.A.; Schanstra, J.P.; Rossing, P.; Heerspink, H.J.; Siwy, J.; Mullen, W.; Vlahou, A.; Mischak, H.; et al. A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol. Dial. Transplant. 2016, 32, 1510–1516. [Google Scholar] [CrossRef] [Green Version]
- Tofte, N.; Lindhardt, M.; Adamova, K.; Bakker, S.J.L.; Beige, J.; Beulens, J.W.J.; Birkenfeld, A.L.; Currie, G.; Delles, C.; Dimos, I.; et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): A prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 301–312. [Google Scholar] [CrossRef]
- He, T.; Mischak, M.; Clark, A.L.; Campbell, R.T.; Delles, C.; Díez, J.; Filippatos, G.; Mebazaa, A.; McMurray, J.J.; González, A.; et al. Urinary peptides in heart failure: A link to molecular pathophysiology. Eur. J. Hear. Fail. 2021. [Google Scholar] [CrossRef] [PubMed]
- Htun, N.M.; Magliano, D.; Zhang, Z.-Y.; Lyons, J.; Petit, T.; Nkuipou-Kenfack, E.; Ramirez-Torres, A.; Muhlen, C.V.Z.; Maahs, D.; Schanstra, J.P.; et al. Prediction of acute coronary syndromes by urinary proteome analysis. PLoS ONE 2017, 12, e0172036. [Google Scholar] [CrossRef] [Green Version]
- Frantzi, M.; Van Kessel, K.E.; Zwarthoff, E.C.; Marquez, M.; Rava, M.; Malats, N.; Merseburger, A.S.; Katafigiotis, I.; Stravodimos, K.; Mullen, W.; et al. Development and Validation of Urine-based Peptide Biomarker Panels for Detecting Bladder Cancer in a Multi-center Study. Clin. Cancer Res. 2016, 22, 4077–4086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frantzi, M.; Gómez, E.G.; Pedregosa, A.B.; Rosa, J.V.; Latosinska, A.; Culig, Z.; Merseburger, A.S.; Luque, R.M.; Tapia, M.J.R.; Mischak, H.; et al. CE–MS-based urinary biomarkers to distinguish non-significant from significant prostate cancer. Br. J. Cancer 2019, 120, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Voigtländer, T.; Metzger, J.; Husi, H.; Kirstein, M.M.; Pejchinovski, M.; Latosinska, A.; Frantzi, M.; Mullen, W.; Book, T.; Mischak, H.; et al. Bile and urine peptide marker profiles: Access keys to molecular pathways and biological processes in cholangiocarcinoma. J. Biomed. Sci. 2020, 27, 13. [Google Scholar] [CrossRef] [Green Version]
- Mischak, H.; Schanstra, J.P. CE-MS in biomarker discovery, validation, and clinical application. PROTEOMICS–Clin. Appl. 2010, 5, 9–23. [Google Scholar] [CrossRef]
- Rodríguez-Suárez, E.; Siwy, J.; Zürbig, P.; Mischak, H. Urine as a source for clinical proteome analysis: From discovery to clinical application. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2014, 1844, 884–898. [Google Scholar] [CrossRef]
- Zipfel, P.F.; Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 2009, 9, 729–740. [Google Scholar] [CrossRef]
- Noris, M.; Remuzzi, G. Overview of Complement Activation and Regulation. Semin. Nephrol. 2013, 33, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Thurman, J.M. Complement in kidney disease: Core curriculum 2015. Am. J. Kidney Dis. 2015, 65, 156–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zipfel, P.F.; Wiech, T.; Stea, E.D.; Skerka, C. CFHR Gene Variations Provide Insights in the Pathogenesis of the Kidney Diseases Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. J. Am. Soc. Nephrol. 2020, 31, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug Discov. 2019, 18, 707–729. [Google Scholar] [CrossRef]
- Zipfel, P.F.; Wiech, T.; Rudnick, R.; Afonso, S.; Person, F.; Skerka, C. Complement Inhibitors in Clinical Trials for Glomerular Diseases. Front. Immunol. 2019, 10, 2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latosinska, A.; Siwy, J.; Mischak, H.; Frantzi, M. Peptidomics and proteomics based on CE-MS as a robust tool in clinical application: The past, the present, and the future. Electrophoresis 2019, 40, 2294–2308. [Google Scholar] [CrossRef]
- Wendt, R.; He, T.; Latosinska, A.; Siwy, J.; Mischak, H.; Beige, J. Proteomic characterization of obesity-related nephropathy. Clin. Kidney J. 2020, in press. [Google Scholar] [CrossRef]
- He, T.; Siwy, J.; Metzger, J.; Mullen, W.; Mischak, H.; Schanstra, J.P.; Zürbig, P.; Jankowski, V. Associations of urinary polymeric immunoglobulin receptor peptides in the context of cardio-renal syndrome. Sci. Rep. 2020, 10, 8291. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Pejchinovski, M.; Mullen, W.; Beige, J.; Mischak, H.; Jankowski, V. Peptides in Plasma, Urine, and Dialysate: Toward Unravelling Renal Peptide Handling. PROTEOMICS–Clin. Appl. 2021, 15, e2000029. [Google Scholar] [CrossRef]
- Mischak, H.; Vlahou, A.; Ioannidis, J.P. Technical aspects and inter-laboratory variability in native peptide profiling: The CE–MS experience. Clin. Biochem. 2013, 46, 432–443. [Google Scholar] [CrossRef]
- Siwy, J.; Schiffer, E.; Brand, K.; Schumann, G.; Rossing, K.; Delles, C.; Mischak, H.; Metzger, J. Quantitative Urinary Proteome Analysis for Biomarker Evaluation in Chronic Kidney Disease. J. Proteome Res. 2009, 8, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Papadopoulos, T.; Mischak, H.; Mullen, W. Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 2014, 35, 1060–1064. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Rudnicki, M.; Siwy, J.; Wendt, R.; Lipphardt, M.; Koziolek, M.J.; Maixnerova, D.; Peters, B.; Kerschbaum, J.; Leierer, J.; Neprasova, M.; et al. Urine proteomics for prediction of disease progression in patients with IgA nephropathy. Nephrol. Dial. Transplant 2020, 35, gfaa307. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Altenburg, M.K.; Sanford, R.; Willett, J.; Bleasdale, B.; Ballou, B.; Wilder, J.; Li, F.; Miner, J.H.; Berg, U.B.; et al. Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proc. Natl. Acad. Sci. USA 2017, 114, 2958–2963. [Google Scholar] [CrossRef] [Green Version]
- Kerr, M.A. The human complement system: Assembly of the classical pathway C3 convertase. Biochem. J. 1980, 189, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, K.; Urano, T.; Takada, Y.; Takada, A. Significance of urinary complement components in various glomerular diseases. Thromb. Res. 1990, 57, 625–637. [Google Scholar] [CrossRef]
- Morita, Y.; Ikeguchi, H.; Nakamura, J.; Hotta, N.; Yuzawa, Y.; Matsuo, S. Complement Activation Products in the Urine from Proteinuric Patients. J. Am. Soc. Nephrol. 2000, 11, 700–707. [Google Scholar] [CrossRef]
- Brglez, V.; Boyer-Suavet, S.; Seitz-Polski, B. Complement Pathways in Membranous Nephropathy: Complex and Multifactorial. Kidney Int. Rep. 2020, 5, 572–574. [Google Scholar] [CrossRef]
- Ravindran, A.; Madden, B.; Charlesworth, M.C.; Sharma, R.; Sethi, A.; Debiec, H.; Cattran, D.; Fervenza, F.C.; Smith, R.J.; Ronco, P.; et al. Proteomic Analysis of Complement Proteins in Membranous Nephropathy. Kidney Int. Rep. 2020, 5, 618–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotnik, V.; Premzl, A.; Skoberne, M.; Malovrh, T.; Kveder, R.; Kaplan-Pavlovcic, S.; Kotnik, A.; Stiblar-Martincic, D. Demonstration of apoptosis-associated cleavage products of DNA, complement activation products SC5b-9 and C3d/dg, and immune complexes CIC-C3d, CIC-IgA, and CIC-IgG in the urine of patients with membranous glomerulonephritis. Croat. Med. J. 2003, 44, 707–711. [Google Scholar] [PubMed]
- Brenchley, P.; Coupes, B.; Short, C.D.; O’Donoghue, D.J.; Ballardie, F.W.; Mallick, N.P. Urinary C3dg and C5b-9 indicate active immune disease in human membranous nephropathy. Kidney Int. 1992, 41, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Coupes, B.M.; Kon, S.P.; Brenchley, P.; Short, C.D.; Mallick, N.P. The temporal relationship between urinary C5b-9 and C3dg and clinical parameters in human membranous nephropathy. Nephrol. Dial. Transplant. 1993, 8, 397–401. [Google Scholar] [CrossRef]
- Manzi, S.; Rairie, J.E.; Carpenter, A.B.; Kelly, R.H.; Jagarlapudi, S.P.; Sereika, S.M.; Medsger, T.A.; Ramsey-Goldman, R. Sensitivity and specificity of plasma and urine complement split products as indicators of lupus disease activity. Arthritis Rheum. 1996, 39, 1178–1188. [Google Scholar] [CrossRef]
- Tortajada, A.; Gutierrez, E.; Pickering, M.C.; Terente, M.P.; Medjeral-Thomas, N. The role of complement in IgA nephropathy. Mol. Immunol. 2019, 114, 123–132. [Google Scholar] [CrossRef]
- Maillard, N.; Wyatt, R.J.; Julian, B.A.; Kiryluk, K.; Gharavi, A.; Fremeaux-Bacchi, V.; Novak, J. Current Understanding of the Role of Complement in IgA Nephropathy. J. Am. Soc. Nephrol. 2015, 26, 1503–1512. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Jayne, D.R.W.; Zhao, M.C.M.-H. Complement in ANCA-associated vasculitis: Mechanisms and implications for management. Nat. Rev. Nephrol. 2017, 13, 359–367. [Google Scholar] [CrossRef]
- Bus, P.; Chua, J.S.; Klessens, C.Q.; Zandbergen, M.; Wolterbeek, R.; van Kooten, C.; Trouw, L.; Bruijn, J.A.; Baelde, H.J. Complement Activation in Patients with Diabetic Nephropathy. Kidney Int. Rep. 2018, 3, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-Q.; Chang, D.-Y.; Chen, M.; Zhao, M.-H. Complement activation in patients with diabetic nephropathy. Diabetes Metab. 2019, 45, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Ju, W.; Greene, C.; Eichinger, F.; Nair, V.; Hodgin, J.B.; Bitzer, M.; Lee, Y.-S.; Zhu, Q.; Kehata, M.; Li, M.; et al. Defining cell-type specificity at the transcriptional level in human disease. Genome Res. 2013, 23, 1862–1873. [Google Scholar] [CrossRef] [Green Version]
- Ju, W.; Nair, V.; Smith, S.; Zhu, L.; Shedden, K.; Song, P.X.K.; Mariani, L.H.; Eichinger, F.H.; Berthier, C.C.; Randolph, A.; et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci. Transl. Med. 2015, 7, 316ra193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, S.; Nishihara, K.; Miyata, H.; Shinke, H.; Tomita, E.; Kajiwara, M.; Matsubara, T.; Iehara, N.; Igarashi, Y.; Yamada, H.; et al. Molecular Markers of Tubulointerstitial Fibrosis and Tubular Cell Damage in Patients with Chronic Kidney Disease. PLoS ONE 2015, 10, e0136994. [Google Scholar] [CrossRef] [Green Version]
- Woroniecka, K.I.; Park, A.S.D.; Mohtat, D.; Thomas, D.B.; Pullman, J.M.; Susztak, K. Transcriptome Analysis of Human Diabetic Kidney Disease. Diabetes 2011, 60, 2354–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Ma, B.; Dong, B.; Zhao, P.; Tai, N.; Chen, L.; Wong, F.S.; Wen, L. Cellular and humoral immune responses in the early stages of diabetic nephropathy in NOD mice. J. Autoimmun. 2009, 32, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Brozovic, S.; Xu, J.; Long, Y.; Kralik, P.M.; Waigel, S.; Zacharias, W.; Zheng, S.; Epstein, P.N. Inflammatory Gene Expression in OVE26 Diabetic Kidney during the Development of Nephropathy. Nephron 2011, 119, e8–e20. [Google Scholar] [CrossRef] [PubMed]
- Strassheim, D.; Renner, B.; Panzer, S.; Fuquay, R.; Kulik, L.; Ljubanović, D.; Holers, V.M.; Thurman, J.M. IgM Contributes to Glomerular Injury in FSGS. J. Am. Soc. Nephrol. 2013, 24, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, L.; Cunningham, P.N.; Quigg, R.J. Complement in Lupus Nephritis: New Perspectives. Kidney Dis. 2015, 1, 91–99. [Google Scholar] [CrossRef] [PubMed]
Peptide ID | Sequence | Complement | Start AA | Stop AA | Avg. rel. abund. | rho eGFR | p-Value eGFR | rho PU | p-Value PU |
---|---|---|---|---|---|---|---|---|---|
e13403 | FLSSLTETIEGVDAEDGHGPGEQQ | CFB | 234 | 257 | 51.86 | −0.053 | 0.5059 | 0.174 | 0.0482 |
e11594 | LSSLTETIEGVDAEDGHGPGEQ | CFB | 235 | 256 | 186.82 | 0.19 | <0.0001 | −0.06 | 0.0276 |
e11703 | SSLTETIEGVDAEDGHGPGEQQ | CFB | 236 | 257 | 79.35 | 0.236 | <0.0001 | −0.133 | 0.0565 |
e12606 | LSSLTETIEGVDAEDGHGPGEQQ | CFB | 236 | 257 | 876.10 | −0.044 | 0.0069 | 0.074 | 0.0004 |
e10517 | LTETIEGVDAEDGHGPGEQQ | CFB | 238 | 257 | 59.02 | 0.298 | <0.0001 | −0.178 | <0.0001 |
e08566 | TETIEGVDAEDGHGPGEQ | CFB | 239 | 256 | 434.59 | 0.269 | <0.0001 | −0.203 | <0.0001 |
e09682 | TETIEGVDAEDGHGPGEQQ | CFB | 239 | 257 | 109.77 | 0.377 | <0.0001 | −0.063 | 0.1778 |
e08161 | TLTKAPADLRGVAHNNL | C4B | 1201 | 1217 | 51.00 | 0.056 | 0.2757 | −0.012 | 0.8334 |
e06142 | TKAPADLRGVAHNNL | C4B | 1203 | 1217 | 98.92 | −0.175 | <0.0001 | 0.224 | <0.0001 |
e09265 | DELPAKDDPDAPLQPVTP | C4B | 1423 | 1440 | 134.67 | 0.299 | <0.0001 | −0.261 | <0.0001 |
e08035 | TLTKAPVDLLGVAHNNL | C4A | 1201 | 1217 | 74.57 | 0.123 | 0.0422 | −0.08 | 0.2586 |
e03984 | APVDLLGVAHNNL | C4A | 1205 | 1217 | 22.80 | 0.063 | 0.5361 | 0.051 | 0.6521 |
e00117 | LGVAHNNL | C4A | 1210 | 1217 | 116.12 | −0.041 | 0.1899 | 0.326 | <0.0001 |
e09429 | EGVQKEDIPPADLSDQVP | C3 | 955 | 972 | 882.83 | −0.156 | 0.0001 | 0.254 | <0.0001 |
e16041 | EGVQKEDIPPADLSDQVPDTESETRIL | C3 | 955 | 981 | 169.49 | 0.059 | 0.0028 | 0.038 | 0.1365 |
e17084 | EGVQKEDIPPADLSDQVPDTESETRILLQ | C3 | 955 | 983 | 56.92 | 0.356 | <0.0001 | −0.176 | <0.0001 |
e18666 | EGVQKEDIPPADLSDQVPDTESETRILLQGTPVA | C3 | 955 | 988 | 4.08 | 0.126 | 0.1361 | −0.17 | 0.1261 |
e12939 | LQGTPVAQMTEDAVDAERLKHL | C3 | 982 | 1003 | 3066.93 | −0.213 | <0.0001 | 0.445 | <0.0001 |
e06787 | IGGLRNNNEKDMALT | C3 | 1130 | 1144 | 154.90 | −0.005 | 0.8695 | 0.103 | 0.0147 |
e14381 | LTTAKDKNRWEDPGKQLYNVEAT | C3 | 1211 | 1233 | 79.81 | −0.28 | <0.0001 | 0.278 | <0.0001 |
e16109 | LTTAKDKNRWEDPGKQLYNVEATSYA | C3 | 1211 | 1236 | 74.69 | −0.148 | 0.0264 | 0.148 | 0.0524 |
e09686 | QALAQYQKDAPDHQELN | C3 | 1277 | 1293 | 152.22 | −0.23 | <0.0001 | 0.359 | <0.0001 |
e08849 | YQKDAPDHQELNLDVS | C3 | 1282 | 1297 | 80.10 | −0.021 | 0.7393 | 0.082 | 0.2554 |
Disease/Condition | N |
---|---|
Acute kidney injury | 422 |
ADPKD | 273 |
Amyloidosis | 8 |
Atypical hemolytic uremic syndrome | 8 |
C3 glomerulopathy | 24 |
CAKUT | 567 |
Diabetes Mellitus | 4428 |
Diabetic kidney disease | 1401 |
Fanconi syndrom | 12 |
FSGS | 126 |
IgAN | 811 |
MCD | 50 |
MGN | 113 |
Morbus Fabry | 66 |
MPGN | 50 |
Hypertensive nephrosclerosis | 104 |
Nephrotic syndrom | 127 |
Kidney transplantation | 2300 |
SLE | 20 |
LN | 94 |
Vasculitis | 159 |
Healthy control | 4864 |
Total | 16,027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendt, R.; Siwy, J.; He, T.; Latosinska, A.; Wiech, T.; Zipfel, P.F.; Tserga, A.; Vlahou, A.; Rupprecht, H.; Catanese, L.; et al. Molecular Mapping of Urinary Complement Peptides in Kidney Diseases. Proteomes 2021, 9, 49. https://doi.org/10.3390/proteomes9040049
Wendt R, Siwy J, He T, Latosinska A, Wiech T, Zipfel PF, Tserga A, Vlahou A, Rupprecht H, Catanese L, et al. Molecular Mapping of Urinary Complement Peptides in Kidney Diseases. Proteomes. 2021; 9(4):49. https://doi.org/10.3390/proteomes9040049
Chicago/Turabian StyleWendt, Ralph, Justyna Siwy, Tianlin He, Agnieszka Latosinska, Thorsten Wiech, Peter F. Zipfel, Aggeliki Tserga, Antonia Vlahou, Harald Rupprecht, Lorenzo Catanese, and et al. 2021. "Molecular Mapping of Urinary Complement Peptides in Kidney Diseases" Proteomes 9, no. 4: 49. https://doi.org/10.3390/proteomes9040049
APA StyleWendt, R., Siwy, J., He, T., Latosinska, A., Wiech, T., Zipfel, P. F., Tserga, A., Vlahou, A., Rupprecht, H., Catanese, L., Mischak, H., & Beige, J. (2021). Molecular Mapping of Urinary Complement Peptides in Kidney Diseases. Proteomes, 9(4), 49. https://doi.org/10.3390/proteomes9040049