A Toulmin Model Analysis of Student Argumentation on Artificial Intelligence
Abstract
1. Introduction
2. Theoretical Framework
2.1. The Concept and Significance of Argumentation
2.2. Perceptions of Artificial Intelligence in Education
2.3. Theoretical Rationale for Examining Background Variables
2.4. Statement of Contribution
2.5. The Toulmin Model of Argumentation
3. Materials and Methods
3.1. Procedure and Ethical Considerations
3.2. Participants and Sampling
3.3. Measures
3.4. Data Analysis
4. Results
5. Discussion
5.1. Pedagogical Implications
5.2. Methodological Implications
6. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdi, A.-N. M., Omar, A. M., Ahmed, M. H., & Ahmed, A. A. (2025). The predictors of behavioral intention to use ChatGPT for academic purposes: Evidence from higher education in Somalia. Cogent Education, 12(1), 2460250. [Google Scholar] [CrossRef]
- Aguiar, C., Carpenter, D., Vandenberg, J., Goslen, A., Min, W., Cateté, V., & Mott, B. (2025). “Like a GPS”: Analyzing middle school student responses to an interactive pathfinding activity. In J. A. Stone, T. Yuen, L. Shoop, S. A. Rebelsky, & J. Prather (Eds.), SIGCSETS 2025: Proceedings of the 56th ACM technical symposium on computer science education V. 2 (pp. 1353–1354). ACM. [Google Scholar] [CrossRef]
- Alcock, L., & Attridge, N. (2025). Refutations and reasoning in undergraduate mathematics. International Journal of Research in Undergraduate Mathematics Education, 11(1), 25–54. [Google Scholar] [CrossRef]
- Al Fraidan, A. (2025). Ai and uncertain motivation: Hidden allies that impact EFL argumentative essays using the toulmin model. Acta Psychologica, 252, 104684. [Google Scholar] [CrossRef]
- Annamalai, N. (2025). Factors affecting English language high school teachers switching intention to ChatGPT: A Push-Pull-Mooring theory perspective. Interactive Learning Environments, 33(2), 1367–1384. [Google Scholar] [CrossRef]
- Ayalon, M., & Hershkowitz, R. (2018). Mathematics teachers’ attention to potential classroom situations of argumentation. The Journal of Mathematical Behavior, 49, 163–173. [Google Scholar] [CrossRef]
- Barzilai, S., & Weinstock, M. (2015). Measuring epistemic thinking within and across topics: A scenario-based approach. Contemporary Educational Psychology, 42, 141–158. [Google Scholar] [CrossRef]
- Belghith, Y., Mahdavi Goloujeh, A., Magerko, B., Long, D., Mcklin, T., & Roberts, J. (2024). Testing, socializing, exploring: Characterizing middle schoolers’ approaches to and conceptions of ChatGPT. In F. F. Mueller, P. Kyburz, J. R. Williamson, C. Sas, M. L. Wilson, P. T. Dugas, & I. Shklovski (Eds.), CHI’24: Proceedings of the CHI conference on human factors in computing systems (pp. 1–17). ACM. [Google Scholar] [CrossRef]
- Bhardwaj, A. (2025). The art of persuasion: Theorizing as argumentation. Strategic Organization. advance online publication. [Google Scholar] [CrossRef]
- Clos, J., & Chen, Y. Y. (2024). Investigating the impact of generative AI on students and educators: Evidence and insights from the literature. In TAS’24: Proceedings of the second international symposium on trustworthy autonomous systems (pp. 1–6). ACM. [Google Scholar] [CrossRef]
- Cserkó, J., Rajcsányi-Molnár, M., András, I., Benyák, A., Pongrácz, A., & Molnár, G. (2024, October 17–18). The transformation of digital culture and learning habits in higher education, digital methods and tools. 2024 IEEE 7th International Conference and Workshop Óbuda on Electrical and Power Engineering (CANDO-EPE) (pp. 109–114), Budapest, Hungary. [Google Scholar] [CrossRef]
- Dai, C.-P., Ke, F., Zhang, N., Barrett, A., West, L., Bhowmik, S., Southerland, S. A., & Yuan, X. (2024). Designing conversational agents to support student teacher learning in virtual reality simulation: A case study. In F. F. Mueller, P. Kyburz, J. R. Williamson, & C. Sas (Eds.), CHI EA’24: Extended abstracts of the CHI conference on human factors in computing systems (pp. 1–8). ACM. [Google Scholar] [CrossRef]
- Darmawansah, D., Rachman, D., Febiyani, F., & Hwang, G.-J. (2025). ChatGPT-supported collaborative argumentation: Integrating collaboration script and argument mapping to enhance EFL students’ argumentation skills. Education and Information Technologies, 30(3), 3803–3827. [Google Scholar] [CrossRef]
- Del A. Mundo, M., Delos Reyes, E. F., Gervacio, E. M., Manalo, R. B., Jervy A. Book, R., Chavez, J. V., Espartero, M. M., & Sayadi, D. S. (2024). Discourse analysis on experience-based position of science, mathematics, and Tech-Voc educators on generative AI and academic integrity. Environment and Social Psychology, 9(8). [Google Scholar] [CrossRef]
- de Waard, E. F., Prins, G. T., & van Joolingen, W. R. (2020). Pre-university students’ perceptions about the life cycle of bioplastics and fossil-based plastics. Chemistry Education Research and Practice, 21(3), 908–921. [Google Scholar] [CrossRef]
- Duran, V. (2024). Analyzing teacher candidates’ arguments on AI integration in education via different chatbots. Digital Education Review, 45, 68–83. [Google Scholar] [CrossRef]
- el Majidi, A., de Graaff, R., & Janssen, D. (2023). Debate pedagogy as a conducive environment for L2 argumentative essay writing. Language Teaching Research. advance online publication. [Google Scholar] [CrossRef]
- el Majidi, A., Janssen, D., & de Graaff, R. (2021). The effects of in-class debates on argumentation skills in second language education. System, 101, 102576. [Google Scholar] [CrossRef]
- García-Carmona, A. (2025). Scientific thinking and critical thinking in science education. Science & Education, 34(1), 227–245. [Google Scholar] [CrossRef]
- Gómez-Blancarte, A. L., & Tobías-Lara, M. G. (2023). The integration of undergraduate students’ informal and formal inferential reasoning. Educational Studies in Mathematics, 113(2), 251–269. [Google Scholar] [CrossRef]
- Guo, K., Zhong, Y., Li, D., & Chu, S. K. W. (2023). Effects of chatbot-assisted in-class debates on students’ argumentation skills and task motivation. Computers & Education, 203, 104862. [Google Scholar] [CrossRef]
- Haudek, K. C., & Zhai, X. (2024). Examining the effect of assessment construct characteristics on machine learning scoring of scientific argumentation. International Journal of Artificial Intelligence in Education, 34(4), 1482–1509. [Google Scholar] [CrossRef]
- Härmä, K., Kärkkäinen, S., & Jeronen, E. (2021). The dramatic arc in the development of argumentation skills of upper secondary school students in geography education. Education Sciences, 11(11), 734. [Google Scholar] [CrossRef]
- Hirvela, A. (2017). Argumentation & second language writing: Are we missing the boat? Journal of Second Language Writing, 36, 69–74. [Google Scholar] [CrossRef]
- Ho, H.-Y., Chang, T.-L., Lee, T.-N., Chou, C.-C., Hsiao, S.-H., Chen, Y.-H., & Lu, Y.-L. (2019). Above- and below-average students think differently: Their scientific argumentation patterns. Thinking Skills and Creativity, 34, 100607. [Google Scholar] [CrossRef]
- Hussain, F., & Anwar, M. A. (2025). Towards informed policy decisions: Assessing student perceptions and intentions to use ChatGPT for academic performance in higher education. Journal of Asian Public Policy, 18(2), 377–404. [Google Scholar] [CrossRef]
- Jackson, D. O. (2024). The longitudinal development of argumentative writing in an English for academic purposes course in Japan. System, 126, 103482. [Google Scholar] [CrossRef]
- Kerman, N. T., Noroozi, O., Banihashem, S. K., Karami, M., & Biemans, H. J. (2024). Online peer feedback patterns of success and failure in argumentative essay writing. Interactive Learning Environments, 32(2), 614–626. [Google Scholar] [CrossRef]
- Kim, J. (2024). Leading teachers’ perspective on teacher-AI collaboration in education. Education and Information Technologies, 29(7), 8693–8724. [Google Scholar] [CrossRef]
- Kim, M. K., Kim, N. J., & Heidari, A. (2022). Learner experience in artificial intelligence-scaffolded argumentation. Assessment & Evaluation in Higher Education, 47(8), 1301–1316. [Google Scholar] [CrossRef]
- Kővári, A., András, I., & Rajcsányi-Molnár, M. (2024). The role of AI in ecohumanistic education. Journal of Ecohumanism, 3(3), 1361–1370. [Google Scholar] [CrossRef]
- Krašna, M., & Gartner, S. (2024, May 20–24). The effects of AI services to the educational processes—Survey analysis. 2024 47th MIPRO ICT and Electronics Convention (MIPRO) (pp. 496–501), Opatija, Croatia. [Google Scholar] [CrossRef]
- Kuhn, D., Cheney, R., & Weinstock, M. (2000). The development of epistemological understanding. Cognitive Development, 15(3), 309–328. [Google Scholar] [CrossRef]
- Latifi, S., Noroozi, O., & Talaee, E. (2023). Worked example or scripting? Fostering students’ online argumentative peer feedback, essay writing and learning. Interactive Learning Environments, 31(2), 655–669. [Google Scholar] [CrossRef]
- Lin, Y.-R., & Hung, C.-Y. (2025). The synergistic effects in an AI-supported online scientific argumentation learning environment. Computers & Education, 229, 105251. [Google Scholar] [CrossRef]
- Lindbäck, Y., Schröder, K., Engström, T., Valeskog, K., & Sonesson, S. (2025). Generative artificial intelligence in physiotherapy education: Great potential amidst challenges—A qualitative interview study. BMC Medical Education, 25(1), 603. [Google Scholar] [CrossRef]
- Liu, D., & Xiong, M. (2024). Keeping balance between loyalty and modification: A toulminian model as analytical framework. Humanities and Social Sciences Communications, 11(1), 639. [Google Scholar] [CrossRef]
- Loyens, S. M. M., van Meerten, J. E., Schaap, L., & Wijnia, L. (2023). Situating higher-order, critical, and critical-analytic thinking in problem- and project-based learning environments: A systematic review. Educational Psychology Review, 35(2), 39. [Google Scholar] [CrossRef]
- Maqbool, T., Ishaq, H., Shakeel, S., Zaib Un Nisa, A., Rehman, H., Kashif, S., Sadia, H., Naveed, S., Mumtaz, N., Siddiqui, S., & Jamshed, S. (2025). Future pharmacy practitioners’ insights towards integration of artificial intelligence in healthcare education: Preliminary findings from Karachi, Pakistan. PLoS ONE, 20(2), e0314045. [Google Scholar] [CrossRef]
- Martin, P. P., Kranz, D., Wulff, P., & Graulich, N. (2024). Exploring new depths: Applying machine learning for the analysis of student argumentation in chemistry. Journal of Research in Science Teaching, 61(8), 1757–1792. [Google Scholar] [CrossRef]
- Montenegro, S., Loor, J., Posligua, K., Mendoza, K., Chancay, C., & Suastegui, S. (2024). The impact of artificial intelligence on the educational process of university students. In N. Callaos, N. Callaos, J. Horne, B. Sánchez, & M. Savoie (Eds.), Proceedings of the international multi-conference on society, cybernetics and informatics, proceedings of the 18th international multi-conference on society, cybernetics and informatics: IMSCI 2024 (pp. 86–90). International Institute of Informatics and Cybernetics. [Google Scholar] [CrossRef]
- Munir, J., Faiza, M., Jamal, B., Daud, S., & Iqbal, K. (2023). Spring 2023. Journal of Social Sciences Review, 3(2), 695–705. [Google Scholar] [CrossRef]
- Nera, K., Frenay, M., & Paquot, M. (2024). Improving argumentation quality on MOOC discussion forums: Does learning to identify components of arguments help? Research and Practice in Technology Enhanced Learning, 20, 17. [Google Scholar] [CrossRef]
- Noroozi, O., Banihashem, S. K., Biemans, H. J. A., Smits, M., Vervoort, M. T. W., & Verbaan, C.-L. (2023a). Design, implementation, and evaluation of an online supported peer feedback module to enhance students’ argumentative essay quality. Education and Information Technologies, 28, 12757–12784. [Google Scholar] [CrossRef]
- Noroozi, O., Banihashem, S. K., Taghizadeh Kerman, N., Parvaneh Akhteh Khaneh, M., Babaee, M., Ashrafi, H., & Biemans, H. J. (2023b). Gender differences in students’ argumentative essay writing, peer review performance and uptake in online learning environments. Interactive Learning Environments, 31(10), 6302–6316. [Google Scholar] [CrossRef]
- Nusivera, E., Hikmat, A., & Ghani, A. R. A. (2025). Integration of Chat-GPT usage in language learning model to improve argumentation skills, complex comprehension skills, and critical thinking skills. International Journal of Learning, Teaching and Educational Research, 24(2), 375–390. [Google Scholar] [CrossRef]
- Oliveira, L., Tavares, C., Strzelecki, A., & Silva, M. (2025). Prompting minds: Evaluating how students perceive generative AI’s critical thinking dispositions. Electronic Journal of E-Learning, 23(2), 1–18. [Google Scholar] [CrossRef]
- Qin, W., Wang, W., Yang, Y., & Gui, T. (2025). Machine-assisted writing evaluation: Exploring pre-trained language models in analyzing argumentative moves. Computer Assisted Language Learning. [Google Scholar] [CrossRef]
- Rajcsányi-Molnár, M., Balázs, L., & András, I. (2024a). Online leadership training in higher education environment. Acta Polytechnica Hungarica, 21(3), 39–52. [Google Scholar] [CrossRef]
- Rajcsányi-Molnár, M., Balázs, L., András, I., & Czifra, S. (2024b, October 17–18). AVATAR—A digital tool for reducing dropout rates at a higher education institution. 2024 IEEE 7th International Conference and Workshop Óbuda on Electrical and Power Engineering (CANDO-EPE) (pp. 185–190), Budapest, Hungary. [Google Scholar] [CrossRef]
- Rajcsányi-Molnár, M., Balázs, L., András, I., & Czifra, S. (2024c, April 4–6). Competition as an effective motivational tool in online education. 2024 IEEE 11th International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC) (pp. 83–88), Hanoi, Vietnam. [Google Scholar] [CrossRef]
- Rapanta, C., Macagno, F., & Jenset, G. (2025). A close look at children’s and adolescents’ arguments: Combining a developmental, educational, and philosophical perspective. European Journal of Psychology of Education, 40(1), 3. [Google Scholar] [CrossRef]
- Rong, J., Terzidis, K., & Ding, J. (2024). Kids AI design thinking education for creativity development. Archives of Design Research, 37(3), 119–133. [Google Scholar] [CrossRef]
- Santoso, A. M., Primandiri, P. R., Susantini, E., Zubaidah, S., & Amin, M. (2022). Revealing the effect of ASICC learning model on scientific argumentation skills of low academic students. In AIP conference proceedings, proceeding of international conference on frontiers of science and technology 2021 (p. 30010). AIP Publishing. [Google Scholar] [CrossRef]
- Valeri, F., Nilsson, P., & Cederqvist, A.-M. (2025). Exploring students’ experience of ChatGPT in STEM education. Computers and Education: Artificial Intelligence, 8, 100360. [Google Scholar] [CrossRef]
- Valero Haro, A., Noroozi, O., Biemans, H., & Mulder, M. (2019). First- and second-order scaffolding of argumentation competence and domain-specific knowledge acquisition: A systematic review. Technology, Pedagogy and Education, 28(3), 329–345. [Google Scholar] [CrossRef]
- van Eemeren, F. H., Garssen, B., Krabbe, E. C. W., Henkemans, A. F. S., Verheij, B., & Wagemans, J. H. M. (2021). Toulmin’s model of argumentation. In F. H. van Eemeren, B. Garssen, B. Verheij, E. C. W. Krabbe, A. F. Snoeck Henkemans, & J. H. M. Wagemans (Eds.), Handbook of argumentation theory (pp. 1–47). Springer. [Google Scholar] [CrossRef]
- Wallander, L. (2022). Uncovering social workers’ knowledge use. Social Work and Social Sciences Review, 22(3). [Google Scholar] [CrossRef]
- Wambsganss, T., Janson, A., Söllner, M., Koedinger, K., & Leimeister, J. M. (2025). Improving students’ argumentation skills using dynamic machine-learning-based modeling. Information Systems Research, 36(1), 474–507. [Google Scholar] [CrossRef]
- Yang, R., & Pan, H. (2023). Whole-to-part argumentation instruction: An action research study aimed at Improving Chinese college students’ English argumentative writing based on the toulmin model. Sage Open, 13(4), 21582440231207738. [Google Scholar] [CrossRef]
- Yu, S., & Chen, X. (2023). How to justify a backing’s eligibility for a warrant: The justification of a legal interpretation in a hard case. Artificial Intelligence and Law, 31(2), 239–268. [Google Scholar] [CrossRef]
- Zarębski, T. (2024). Wittgenstein and toulmin’s model of argument: The riddle explained away. Argumentation, 38(4), 435–455. [Google Scholar] [CrossRef]
- Zhang, J., & Browne, W. J. (2023). Exploring Chinese high school students’ performance and perceptions of scientific argumentation by understanding it as a three-component progression of competencies. Journal of Research in Science Teaching, 60(4), 847–884. [Google Scholar] [CrossRef]
- Zulkarnain, N. Z., & Mansor, M. (2024). Introducing artificial intelligence through classroom debates: A student-centric approach. In M. F. b. Romlie, S. H. Shaikh Ali, Z. B. Hari, & M. C. Leow (Eds.), Lecture notes in educational technology, Proceedings of the international conference on advancing and redesigning education 2023 (pp. 615–622). Springer Nature. [Google Scholar] [CrossRef]
Toulmin Component | Illustrative Excerpt from a Student Essay |
---|---|
Claim | Artificial intelligence is a useful tool for humanity. |
Data | ChatGPT can already write essays. |
Warrant | Since ChatGPT can imitate human text, we can assume that AI will soon replace some human jobs. |
Backing | According to scientists, the development of AI is exponential. |
Qualifier | AI will probably change many aspects of our lives. |
Rebuttal | Although AI is useful, it also hides dangers. |
Component | Presence (%) | Explicitness (%) |
---|---|---|
Claim | 100 | 92.5 |
Data/grounds | 89.8 | 91.9 |
Warrant | 56.2 | 85.4 |
Backing | 2.4 | 27.3 |
Qualifier | 7.3 | 90.9 |
Rebuttal | 67.5 | 74.1 |
Patterns | N | % |
---|---|---|
C | 31 | 6.9 |
C + D | 54 | 11.9 |
C + D + B | 2 | 0.4 |
C + D + B + R | 1 | 0.2 |
C + D + Q | 1 | 0.2 |
C + D + Q + R | 3 | 0.7 |
C + D + R | 91 | 20.1 |
C + D + W | 55 | 12.2 |
C + D + W + B + Q + R | 3 | 0.7 |
C + D + W + B + R | 5 | 1.1 |
C + D + W + Q | 2 | 0.4 |
C + D + W + Q + R | 22 | 4.9 |
C + D + W + R | 167 | 36.9 |
C + Q | 2 | 0.4 |
C + R | 13 | 2.9 |
Cluster | Claim | Data/Grounds | Warrant | Backing | Qualifier | Rebuttal | N |
---|---|---|---|---|---|---|---|
1 | 1.00 | 0.99 | 0.98 | 0.03 | 0.13 | 0.77 | 260 |
2 | 1.00 | 0.56 | 0.00 | 0.03 | 0.00 | 0.14 | 101 |
3 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turós, M.; Kenyeres, A.Z.; Balla, G.; Gazdag, E.; Szabó, E.; Szűts, Z. A Toulmin Model Analysis of Student Argumentation on Artificial Intelligence. Educ. Sci. 2025, 15, 1226. https://doi.org/10.3390/educsci15091226
Turós M, Kenyeres AZ, Balla G, Gazdag E, Szabó E, Szűts Z. A Toulmin Model Analysis of Student Argumentation on Artificial Intelligence. Education Sciences. 2025; 15(9):1226. https://doi.org/10.3390/educsci15091226
Chicago/Turabian StyleTurós, Mátyás, Attila Zoltán Kenyeres, Georgina Balla, Emma Gazdag, Emília Szabó, and Zoltán Szűts. 2025. "A Toulmin Model Analysis of Student Argumentation on Artificial Intelligence" Education Sciences 15, no. 9: 1226. https://doi.org/10.3390/educsci15091226
APA StyleTurós, M., Kenyeres, A. Z., Balla, G., Gazdag, E., Szabó, E., & Szűts, Z. (2025). A Toulmin Model Analysis of Student Argumentation on Artificial Intelligence. Education Sciences, 15(9), 1226. https://doi.org/10.3390/educsci15091226