A Process-Oriented Approach to Assessing High School Students’ Mathematical Problem-Solving Competence: Insights from Multidimensional Eye-Tracking Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Understanding Mathematical Competence in High School Education
2.2. Assessing Mathematical Problem-Solving in High School Education
2.3. Eye-Tracking Technology in Mathematical Competence Assessment
3. Research Questions and Hypotheses
4. Materials and Methods
4.1. Participants
4.2. The Materials: Context-Based Mathematical Problems
4.3. Eye-Tracking Apparatus
4.4. Procedure
4.4.1. Preparation Phase
4.4.2. Problem-Solving Phase
4.5. Data Analysis
4.5.1. Data Preparation
- (1).
- Division of Areas of Interest (AOIs)
- (2).
- Extraction of eye movement features
- (3).
- Controlling for problem-solving duration
4.5.2. Partial Least Squares Regression Analysis
5. Results
6. Discussion
6.1. The Assessment Capability of the Multidimensional Eye Movement Feature Model
6.2. Performance of the PLSR Model in Higher-Difficulty Problem-Solving Tasks
6.3. The Contributions of Various Eye Movement Features to the Assessment of Mathematical Problem-Solving Competence
6.4. Theoretical Insights and Practical Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNCEE | China’s College Entrance Examination |
VIP | Variable Importance in the Projection |
PLSR | Partial Least Squares Regression |
LOOCV | Leave-One-participant-Out Cross-Validation |
AOIs | Areas of Interest |
Q | Problem-Reading Area |
R | Key Information Area |
A | Problem-Solving Area |
Appendix A
Eye Movement Features | Problem #1 | Problem #2 | Problem #3 | Problem #4 | Problem #5 | Problem #6 |
---|---|---|---|---|---|---|
NDT_Q | 0.404 ** | 0.551 ** | 0.766 ** | 0.841 ** | 0.615 ** | 0.774 ** |
NDT_R | 0.331 * | 0.515 ** | 0.469 ** | 0.777 ** | 0.587 ** | 0.530 ** |
NDT_A | 0.868 ** | 0.525 ** | 0.857 ** | 0.919 ** | 0.689 ** | 0.722 ** |
DT_Q | 0.423 ** | 0.567 ** | 0.781 ** | 0.852 ** | 0.637 ** | 0.768 ** |
DT_R | 0.329 * | 0.519 ** | 0.476 ** | 0.767 ** | 0.587 ** | 0.526 ** |
DT_A | 0.877 ** | 0.536 ** | 0.861 ** | 0.914 ** | 0.695 ** | 0.721 ** |
DD_Q | 0.447 ** | 0.575 ** | 0.784 ** | 0.864 ** | 0.643 ** | 0.774 ** |
DD_R | 0.402 ** | 0.549 ** | 0.509 ** | 0.786 ** | 0.602 ** | 0.533 ** |
DD_A | 0.880 ** | 0.535 ** | 0.862 ** | 0.915 ** | 0.697 ** | 0.725 ** |
GD_Q | 0.435 ** | 0.569 ** | 0.783 ** | 0.858 ** | 0.638 ** | 0.770 ** |
GD_R | 0.370 * | 0.536 ** | 0.495 ** | 0.780 ** | 0.599 ** | 0.530 ** |
GD_A | 0.879 ** | 0.536 ** | 0.862 ** | 0.914 ** | 0.697 ** | 0.724 ** |
VID_Q | 0.400 ** | 0.545 ** | 0.766 ** | 0.822 ** | 0.607 ** | 0.774 ** |
VID_R | 0.326 * | 0.503 ** | 0.471 ** | 0.766 ** | 0.575 ** | 0.530 ** |
VID_A | 0.865 ** | 0.523 ** | 0.854 ** | 0.919 ** | 0.688 ** | 0.715 ** |
VIC_Q | 0.555 ** | 0.698 ** | 0.808 ** | 0.874 ** | 0.744 ** | 0.812 ** |
VIC_R | 0.532 ** | 0.645 ** | 0.550 ** | 0.813 ** | 0.634 ** | 0.574 ** |
VIC_A | 0.935 ** | 0.609 ** | 0.881 ** | 0.938 ** | 0.745 ** | 0.795 ** |
NDT%_Q | −0.475 ** | −0.059 | −0.233 | −0.438 ** | −0.031 | −0.030 |
NDT%_R | −0.418 ** | −0.152 | −0.202 | −0.343 * | −0.059 | 0.545 ** |
NDT%_A | 0.373 * | −0.003 | 0.356 * | 0.426 ** | 0.167 | 0.086 |
DT%_Q | −0.491 ** | −0.082 | −0.237 | −0.507 ** | −0.045 | −0.082 |
DT%_R | −0.425 ** | −0.147 | −0.200 | −0.352 * | −0.052 | 0.525 ** |
DT%_A | 0.412 ** | 0.014 | 0.372 * | 0.403 ** | 0.165 | 0.082 |
VID%_Q | −0.466 ** | −0.052 | −0.230 | −0.413 ** | −0.033 | −0.035 |
VID%_R | −0.406 ** | −0.145 | −0.207 | −0.330 * | −0.064 | 0.061 |
VID%_A | 0.362 * | −0.007 | 0.351 * | 0.422 ** | 0.163 | 0.084 |
AverageVID_Q | −0.204 | 0.074 | 0.164 | 0.152 | 0.073 | 0.221 |
AverageVID_R | −0.225 | −0.109 | 0.162 | −0.012 | 0.072 | 0.154 |
AverageVID_A | −0.302 * | −0.213 | −0.229 | 0.006 | −0.028 | −0.157 |
FirstVID_Q | −0.155 | −0.065 | 0.145 | 0.280 | −0.079 | 0.235 |
FirstVID_R | −0.160 | −0.092 | 0.129 | −0.192 | −0.063 | −0.016 |
FirstVID_A | −0.181 | 0.029 | −0.073 | −0.024 | −0.033 | −0.240 |
Revisit_Q | 0.594 ** | 0.298 * | 0.532 ** | 0.800 ** | 0.631 ** | 0.625 ** |
Revisit_R | 0.583 ** | 0.623 ** | 0.570 ** | 0.854 ** | 0.638 ** | 0.670 ** |
Revisit_A | 0.580 ** | 0.348 * | 0.544 ** | 0.807 ** | 0.615 ** | 0.639 ** |
SaccadeInto_Q | 0.470 ** | 0.068 | 0.348 * | 0.610 ** | 0.315 * | 0.467 ** |
SaccadeInto_R | 0.480 ** | 0.426 ** | 0.549 ** | 0.607 ** | 0.444 ** | 0.548 ** |
SaccadeInto_A | 0.433 ** | 0.246 | 0.436 ** | 0.613 ** | 0.410 ** | 0.484 ** |
SaccadeOut_Q | 0.438 ** | 0.245 | 0.435 ** | 0.612 ** | 0.477 ** | 0.491 ** |
SaccadeOut_R | 0.470 ** | 0.458 ** | 0.549 ** | 0.634 ** | 0.448 ** | 0.528 ** |
SaccadeOut_A | 0.494 ** | 0.073 | 0.362 * | 0.563 ** | 0.240 | 0.473 ** |
GC_Q | 0.594 ** | 0.298 * | 0.532 ** | 0.800 ** | 0.631 ** | 0.625 ** |
GC_R | 0.585 ** | 0.619 ** | 0.570 ** | 0.854 ** | 0.638 ** | 0.672 ** |
GC_A | 0.580 ** | 0.348 * | 0.544 ** | 0.807 ** | 0.615 ** | 0.639 ** |
(a) Problem #1. | ||||
---|---|---|---|---|
Variable | Equation: CNCEE Mathematics Score~NDT%_Q + NDT%_R + … + GC_A | |||
Eye Movement Features | Estimate | td. Error | t-Value | p-Value |
NDT%_Q | −0.139 | 0.388 | −2.430 | 0.019 * |
NDT%_R | 0.013 | 0.444 | 0.200 | 0.843 |
NDT%_A | 0.076 | 0.453 | 1.134 | 0.263 |
DT%_Q | −0.094 | 0.391 | −1.638 | 0.109 |
DT%_R | 0.017 | 0.448 | 0.260 | 0.796 |
DT%_A | 0.101 | 0.456 | 1.497 | 0.142 |
VID%_Q | −0.140 | 0.393 | −2.407 | 0.020 * |
VID%_R | 0.002 | 0.447 | 0.024 | 0.981 |
VID%_A | 0.062 | 0.452 | 0.925 | 0.360 |
AverageVID_Q | −0.090 | 0.468 | −1.297 | 0.202 |
AverageVID_R | −0.121 | 0.514 | −1.594 | 0.118 |
AverageVID_A | 0.026 | 0.444 | 0.390 | 0.698 |
FirstVID_Q | 0.165 | 0.392 | 2.859 | 0.006 ** |
FirstVID_R | 0.030 | 0.388 | 0.520 | 0.605 |
FirstVID_A | 0.247 | 0.436 | 3.845 | <0.001 *** |
Revisit_Q | 0.452 | 0.365 | 8.402 | <0.001 *** |
Revisit_R | 0.075 | 0.402 | 1.264 | 0.213 |
Revisit_A | 0.539 | 0.337 | 10.835 | <0.001 *** |
SaccadeInto_Q | 0.576 | 0.346 | 11.289 | <0.001 *** |
SaccadeInto_R | 0.436 | 0.396 | 7.471 | <0.001 *** |
SaccadeInto_A | 0.728 | 0.337 | 14.653 | <0.001 *** |
SaccadeOut_Q | 0.719 | 0.330 | 14.753 | <0.001 *** |
SaccadeOut_R | 0.482 | 0.337 | 9.695 | <0.001 *** |
SaccadeOut_A | 0.583 | 0.320 | 12.361 | <0.001 *** |
GC_Q | 0.452 | 0.365 | 8.402 | <0.001 *** |
GC_R | 0.072 | 0.403 | 1.211 | 0.232 |
GC_A | 0.539 | 0.337 | 10.835 | <0.001 *** |
(b) Problem #2. | ||||
NDT%_Q | −0.566 | 0.375 | −10.215 | <0.001 *** |
NDT%_R | −0.386 | 0.408 | −6.404 | <0.001 *** |
NDT%_A | 0.516 | 0.454 | 7.707 | <0.001 *** |
DT%_Q | −0.516 | 0.385 | −9.087 | <0.001 *** |
DT%_R | −0.364 | 0.419 | −5.896 | <0.001 *** |
DT%_A | 0.517 | 0.452 | 7.768 | <0.001 *** |
VID%_Q | −0.577 | 0.376 | −10.408 | <0.001 *** |
VID%_R | −0.420 | 0.403 | −7.074 | <0.001 *** |
VID%_A | 0.701 | 0.644 | 7.379 | <0.001 *** |
AverageVID_Q | −0.243 | 0.523 | −3.153 | 0.003 ** |
AverageVID_R | −0.061 | 0.571 | −0.718 | 0.476 |
AverageVID_A | 0.701 | 0.644 | 7.379 | <0.001 *** |
FirstVID_Q | −0.811 | 0.727 | −7.570 | <0.001 *** |
FirstVID_R | −0.585 | 0.597 | −6.647 | <0.001 *** |
FirstVID_A | 0.278 | 0.680 | 2.777 | 0.008 ** |
Revisit_Q | −0.503 | 0.709 | −4.812 | <0.001 *** |
Revisit_R | 0.050 | 0.638 | 0.530 | 0.599 |
Revisit_A | −0.386 | 0.654 | −3.998 | <0.001 *** |
SaccadeInto_Q | −0.081 | 0.535 | −1.030 | 0.309 |
SaccadeInto_R | 0.523 | 0.662 | 5.363 | <0.001 *** |
SaccadeInto_A | 0.117 | 0.536 | 1.478 | 0.147 |
SaccadeOut_Q | 0.025 | 0.531 | 0.322 | 0.749 |
SaccadeOut_R | 0.491 | 0.672 | 4.962 | <0.001 *** |
SaccadeOut_A | −0.018 | 0.522 | −0.229 | 0.820 |
GC_Q | −0.503 | 0.709 | −4.812 | <0.001 *** |
GC_R | 0.067 | 0.643 | 0.707 | 0.483 |
GC_A | −0.386 | 0.654 | −3.998 | <0.001 *** |
(c) Problem #3. | ||||
NDT%_Q | 0.128 | 0.582 | 1.488 | 0.144 |
NDT%_R | 0.268 | 0.460 | 3.943 | <0.001 *** |
NDT%_A | −0.126 | 0.605 | −1.410 | 0.166 |
DT%_Q | 0.169 | 0.553 | 2.077 | 0.044 * |
DT%_R | 0.235 | 0.464 | 3.441 | 0.001 ** |
DT%_A | −0.117 | 0.601 | −1.321 | 0.193 |
VID%_Q | 0.090 | 0.593 | 1.029 | 0.309 |
VID%_R | 0.244 | 0.465 | 3.564 | 0.001 ** |
VID%_A | −0.156 | 0.609 | −1.737 | 0.089 |
AverageVID_Q | −0.478 | 0.738 | −4.387 | <0.001 *** |
AverageVID_R | −0.055 | 0.650 | −0.577 | 0.567 |
AverageVID_A | −0.402 | 0.663 | −4.109 | <0.001 *** |
FirstVID_Q | −1.050 | 0.982 | −7.254 | <0.001 *** |
FirstVID_R | −0.627 | 0.701 | −6.066 | <0.001 *** |
FirstVID_A | 0.133 | 0.750 | 1.204 | 0.235 |
Revisit_Q | −0.186 | 0.624 | −2.024 | 0.049 * |
Revisit_R | 0.370 | 0.520 | 4.823 | <0.001 *** |
Revisit_A | 0.077 | 0.612 | 0.850 | 0.400 |
SaccadeInto_Q | 0.231 | 0.522 | 2.996 | 0.004 ** |
SaccadeInto_R | 0.794 | 0.610 | 8.838 | <0.001 *** |
SaccadeInto_A | 0.369 | 0.511 | 4.895 | <0.001 *** |
SaccadeOut_Q | 0.122 | 0.529 | 1.563 | 0.125 |
SaccadeOut_R | 0.309 | 0.617 | 3.398 | 0.001 ** |
SaccadeOut_A | 0.671 | 0.594 | 7.651 | <0.001 *** |
GC_Q | −0.186 | 0.624 | −2.024 | 0.049 * |
GC_R | 0.366 | 0.518 | 4.783 | <0.001 *** |
GC_A | 0.077 | 0.612 | 0.850 | 0.400 |
(d) Problem #4. | ||||
NDT%_Q | −0.047 | 0.426 | −0.745 | 0.460 |
NDT%_R | −0.176 | 0.431 | −2.771 | 0.008 ** |
NDT%_A | −0.445 | 0.422 | −7.155 | <0.001 *** |
DT%_Q | −0.029 | 0.419 | −0.465 | 0.644 |
DT%_R | −0.181 | 0.437 | −2.801 | 0.008 ** |
DT%_A | −0.423 | 0.443 | −6.480 | <0.001 *** |
VID%_Q | −0.066 | 0.427 | −1.055 | 0.297 |
VID%_R | −0.190 | 0.422 | −3.051 | 0.004 ** |
VID%_A | −0.473 | 0.419 | −7.658 | <0.001 *** |
AverageVID_Q | −0.274 | 0.469 | −3.962 | <0.001 *** |
AverageVID_R | −0.306 | 0.471 | −4.406 | <0.001 *** |
AverageVID_A | −0.208 | 0.389 | −3.627 | 0.001 ** |
FirstVID_Q | −0.351 | 0.522 | −4.559 | <0.001 *** |
FirstVID_R | −0.728 | 0.516 | −9.575 | <0.001 *** |
FirstVID_A | 0.802 | 0.497 | 10.950 | <0.001 *** |
Revisit_Q | 0.502 | 0.398 | 8.557 | <0.001 *** |
Revisit_R | 0.650 | 0.413 | 10.682 | <0.001 *** |
Revisit_A | 0.566 | 0.363 | 10.564 | <0.001 *** |
SaccadeInto_Q | 0.393 | 0.502 | 5.306 | <0.001 *** |
SaccadeInto_R | 0.496 | 0.474 | 7.091 | <0.001 *** |
SaccadeInto_A | 0.278 | 0.447 | 4.218 | <0.001 *** |
SaccadeOut_Q | 0.262 | 0.451 | 3.952 | <0.001 *** |
SaccadeOut_R | 0.440 | 0.496 | 6.019 | <0.001 *** |
SaccadeOut_A | 0.406 | 0.491 | 5.608 | <0.001 *** |
GC_Q | 0.502 | 0.398 | 8.557 | <0.001 *** |
GC_R | 0.650 | 0.413 | 10.682 | <0.001 *** |
GC_A | 0.566 | 0.363 | 10.564 | <0.001 *** |
(e) Problem #5. | ||||
NDT%_Q | 0.433 | 0.634 | 4.638 | <0.001 *** |
NDT%_R | −1.266 | 0.968 | −8.869 | <0.001 *** |
NDT%_A | −0.813 | 0.776 | −7.098 | <0.001 *** |
DT%_Q | 0.653 | 0.637 | 6.950 | <0.001 *** |
DT%_R | −1.293 | 1.045 | −8.392 | <0.001 *** |
DT%_A | −0.758 | 0.767 | −6.700 | <0.001 *** |
VID%_Q | 0.281 | 0.631 | 3.019 | 0.004 ** |
VID%_R | −1.324 | 0.961 | −9.346 | <0.001 *** |
VID%_A | −0.882 | 0.783 | −7.638 | <0.001 *** |
AverageVID_Q | −0.031 | 1.278 | −0.163 | 0.871 |
AverageVID_R | −0.238 | 1.432 | −1.128 | 0.266 |
AverageVID_A | 1.046 | 1.435 | 4.941 | <0.001 *** |
FirstVID_Q | 1.301 | 1.631 | 5.411 | <0.001 *** |
FirstVID_R | −2.313 | 2.245 | −6.988 | <0.001 *** |
FirstVID_A | −0.472 | 1.464 | −2.187 | 0.034 * |
Revisit_Q | 0.058 | 0.811 | 0.485 | 0.630 |
Revisit_R | −0.458 | 1.056 | −2.940 | 0.005 ** |
Revisit_A | −0.459 | 0.863 | −3.610 | 0.001 ** |
SaccadeInto_Q | 0.180 | 0.746 | 1.636 | 0.109 |
SaccadeInto_R | 0.768 | 0.982 | 5.304 | <0.001 *** |
SaccadeInto_A | −0.419 | 0.836 | −3.396 | 0.001 ** |
SaccadeOut_Q | −0.102 | 0.721 | −0.961 | 0.342 |
SaccadeOut_R | 0.448 | 1.014 | 2.996 | 0.005 ** |
SaccadeOut_A | −0.648 | 0.819 | −5.368 | <0.001 *** |
GC_Q | 0.058 | 0.811 | 0.485 | 0.630 |
GC_R | −0.446 | 1.057 | −2.863 | 0.006 ** |
GC_A | −0.459 | 0.863 | −3.610 | 0.001 ** |
References
- ACT, Inc. (2006). Ready for college and ready for work: Same or different? American College Tests, Inc. [Google Scholar]
- Amalia, L., Makmuri, M., & Hakim, L. E. (2024). Learning design: To improve mathematical problem-solving skills using a contextual approach. JIIP—Jurnal Ilmiah Ilmu Pendidikan, 7(3), 2353–2366. [Google Scholar] [CrossRef]
- Andrá, C., Lindström, P., Arzarello, F., Holmqvist, K., Robutti, O., & Sabena, C. (2015). Reading mathematics representations: An eye-tracking study. International Journal of Science and Mathematics Education, 13(2), 237–259. [Google Scholar] [CrossRef]
- Bednarik, R. (2012). Expertise-dependent visual attention strategies develop over time during debugging with multiple code representations. International Journal of Human-Computer Studies, 70(2), 143–155. [Google Scholar] [CrossRef]
- Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-first century skills. In E. Care, P. Griffin, & M. Wilson (Eds.), Assessment and teaching of 21st century skills (pp. 17–66). Springer. [Google Scholar]
- Black, P., Burkhardt, H., Daro, P., Jones, I., Lappan, G., Pead, D., & Stephens, M. (2012). High-stakes examinations to support policy. Educational Designer, 2(5), 1–31. [Google Scholar]
- Borchers, C., Carvalho, P. F., Xia, M., Liu, P., Koedinger, K. R., & Aleven, V. (2023). What makes problem-solving practice effective? Comparing paper and AI tutoring. In European conference on technology enhanced learning (pp. 44–59). Springer Nature Switzerland. [Google Scholar]
- Büchele, S., & Feudel, F. (2023). Changes in students’ mathematical competencies at the beginning of higher education within the last decade at a German university. International Journal of Science and Mathematics Education, 21(8), 2325–2347. [Google Scholar] [CrossRef]
- Chen, J., Qian, P., Gao, X., Li, B., Zhang, Y., & Zhang, D. (2023). Inter-brain coupling reflects disciplinary differences in real-world classroom learning. npj Science Learnning, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Chen, J., Yan, H., & Xiang, J. (2011). Study of decoding mental state based on eye tracks using SVM. Computer Engineering and Applications, 47(11), 39–42. [Google Scholar]
- Chen, L. J., & Zheng, X. (2014). An eye-movement study on problem finding process of undergraduates. Acta Psychologica Sinica, 46(3), 367–384. [Google Scholar] [CrossRef]
- Chen, X. (2011). Visuelle analyse von eye-tracking-daten [Visual analysis of eye-tracking data] [Master’s thesis, Universität Stuttgart]. [Google Scholar]
- Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. [Google Scholar] [CrossRef]
- Cilia, F., Carette, R., Elbattah, M., Dequen, G., Guérin, J. L., Bosche, J., Vandromme, L., & Le Driant, B. (2021). Computer-aided screening of autism spectrum disorder: Eye-tracking study using data visualization and deep learning. JMIR Human Factors, 8(4), e27706. [Google Scholar] [CrossRef] [PubMed]
- Confederation of British Industry (CBI). (2006). Working with the three rs: Employers’ priorities for functional skills in mathematics and English. DfES. [Google Scholar]
- da Silva Soares, R., Jr., Barreto, C., & Sato, J. (2023). Perspectives in eye-tracking technology for applications in education. South African Journal of Childhood Education, 13(1), 1–8. [Google Scholar] [CrossRef]
- Duchowski, A. T. (2002). A breadth-first survey of eye tracking applications. Behavior Research Methods, Instruments, & Computers, 34(4), 455–470. [Google Scholar]
- Epelboim, J., & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry. Vision Research, 41(12), 1561–1574. [Google Scholar] [CrossRef] [PubMed]
- Feng, H., Yin, G., & An, R. (2007). A study on eye movement in solving comparison problems. Journal of Psychological Science, 30(1), 37–40. [Google Scholar]
- Hang, Y., Unenbat, B., Tang, S., Wang, F., Lin, B., & Zhang, D. (2024). Exploring the neural correlates of flow experience with multifaceted tasks and a single-channel prefrontal EEG recording. Sensors, 24(6), 1894. [Google Scholar] [CrossRef]
- Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684. [Google Scholar] [CrossRef]
- Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic word problems: Evidence from students’ eye fixations. Journal of Educational Psychology, 84(1), 76–84. [Google Scholar] [CrossRef]
- Hidayat, W., & Sariningsih, R. (2018). Kemampuan pemecahan masalah matematis dan adversity quotient siswa SMP melalui pembelajaran open ended. Jurnal Nasional Pendidikan Matematika, 2(1), 109–118. [Google Scholar] [CrossRef]
- Hofer, B. K. (2000). Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology, 25(4), 378–405. [Google Scholar] [CrossRef]
- Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford University Press. [Google Scholar]
- Hoogland, K., Pepin, B., de Koning, J., Bakker, A., & Gravemeijer, K. (2018). Word problems versus image-rich problems: An analysis of effects of task characteristics on students’ performance on contextual mathematics problems. Research in Mathematics Education, 20(1), 37–52. [Google Scholar] [CrossRef]
- Huang, M., Wang, D., Song, G., Liang, Y., Su, R., Chen, Y., Wang, L., & Yan, N. (2023). Autism spectrum disorder prediction model based on gaze trajectory of natural emotional perception. Journal of Integration Technology, 12(4), 64–76. [Google Scholar]
- Huang, P. S. (2017). An exploratory study on remote associates problem solving: Evidence of eye movement indicators. Thinking Skills and Creativity, 24, 63–72. [Google Scholar] [CrossRef]
- Hyönä, J., Lorch, R. F., Jr., & Kaakinen, J. K. (2002). Individual differences in reading to summarize expository text: Evidence from eye fixation patterns. Journal of Educational Psychology, 94(1), 44. [Google Scholar] [CrossRef]
- Jones, I., Swan, M., & Pollitt, A. (2015). Assessing mathematical problem solving using comparative judgement. International Journal of Science and Mathematics Education, 13(1), 151–177. [Google Scholar] [CrossRef]
- Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329. [Google Scholar] [CrossRef]
- Kamekona-Mendoza, K. (2018). Novice versus expert algebraic problem-solving strategies: An eye tracking approach [Master’s thesis, University of Nevada]. [Google Scholar]
- Li, T., Sun, G., Zhou, X., & Wang, T. (2023). Controlled attention, but not temporal storage of working memory correlates to math problem solving. Educational Psychology, 43(8), 895–913. [Google Scholar] [CrossRef]
- Lin, J. J. H. (2024). AI-assisted evaluation of problem-solving performance using eye movement and handwriting. Journal of Research on Technology in Education, 1–25. [Google Scholar] [CrossRef]
- Lu, R., Zhang, X., & Shi, J. (2021). The application of eye-movement technique in the study of individual cognitive differences. The Journal of Psychological Science, 44, 552–558. [Google Scholar]
- Maamin, M., Maat, S. M., & Iksan, Z. H. (2021). The influence of student engagement on mathematical achievement among secondary school students. Mathematics, 10(1), 41. [Google Scholar] [CrossRef]
- Mele, M. L., & Federici, S. (2012). Gaze and eye-tracking solutions for psychological research. Cognitive Processing, 13, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Education of the People’s Republic of China. (2021). The ministry of education issues the national compulsory education quality monitoring plan notice of the 2021 revised edition. Available online: http://www.moe.gov.cn/srcsite/A11/moe_1789/202109/t20210926_567095.html (accessed on 24 September 2021).
- Muldner, K., & Burleston, W. (2015). Utilizing sensor data to model students’ creativity in a digital environment. Computers in Human Behavior, 42, 127–137. [Google Scholar] [CrossRef]
- National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics. [Google Scholar]
- Navianto, A. (2023). Improving mathematics learning through contextual teaching and learning models using the math city map app. In Proceedings of the 7th international symposium on mathematics education and innovation (ISMEI 2022) (pp. 141–151). Atlantis Press. [Google Scholar]
- Neumann, R., Parry, S., & Becher, T. (2002). Teaching and learning in their disciplinary contexts: A conceptual analysis. Studies in Higher Education, 27(4), 405–417. [Google Scholar] [CrossRef]
- Novita, R., & Putra, M. (2016). Using task like PISA’s problem to support student’s creativity in mathematics. Journal on Mathematics Education, 7(1), 31–42. [Google Scholar] [CrossRef]
- OECD. (2009). PISA 2009 assessment framework: Key competencies in reading, mathematics and science. OECD. [Google Scholar]
- Ofsted. (2008). Mathematics: Understanding the score. Office for Standards in Education. [Google Scholar]
- Ofsted. (2012). School inspection handbook. Ofsted. [Google Scholar]
- Ontario Ministry of Training, Colleges and Universities. (2005). Ontario: A leader in learning. Ontario Ministry of Training, Colleges and Universities. Available online: https://ucarecdn.com/826771e2-3c0d-47d6-857f-33224d47e1b2/ (accessed on 8 May 2025).
- Palmér, H., & Van Bommel, J. (2020). Young students posing problem-solving tasks: What does posing a similar task imply to students? ZDM Mathematics Education, 52(4), 743–752. [Google Scholar] [CrossRef]
- Parviainen, P., Eklund, K., Koivula, M., Liinamaa, T., & Rutanen, N. (2023). Teaching early mathematical skills to 3- to 7-year-old children differences related to mathematical skill category, children’s age group and teachers’ characteristics. International Journal of Science and Mathematics Education, 21(7), 1961–1983. [Google Scholar] [CrossRef]
- Passolunghi, M. C., Cargnelutti, E., & Pellizzoni, S. (2019). The relation between cognitive and emotional factors and arithmetic problem-solving. Educational Studies in Mathematics, 100, 271–290. [Google Scholar] [CrossRef]
- Pinheiro, E. D., Sato, J. R., Soares Junior, R. S., Barreto, C., & Oku, A. Y. A. (2024). Eye-tracker and fNIRS: Using neuroscientific tools to assess the learning experience during children’s educational robotics activities. Trends in Neuroscience and Education, 36, 100234. [Google Scholar] [CrossRef]
- Polya, G. (2007). How to solve it: A new aspect of mathematical method (H. Tu, & C. Feng, Trans.). Science Press/Shanghai Scientific & Educational Publishing House. (Original work published 1982). [Google Scholar]
- Raju, G., & Madhusudan, J. (2021). Exploring the role of mathematics in shaping society. Journal of Nonlinear Analysis and Optimization, 12(2), 306–311. [Google Scholar]
- Rayner, K. (2009). The 35th Sir Frederick Bartlett Lecture: Eye trackings and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62(8), 1457–1506. [Google Scholar] [CrossRef]
- Rellensmann, J., Schukajlow, S., & Leopold, C. (2017). Make a drawing. Effects of strategic knowledge, drawing accuracy, and type of drawing on students’ mathematical modelling performance. Educational Studies in Mathematics, 95, 53–78. [Google Scholar] [CrossRef]
- Samo, D. D., & Kartasasmita, B. G. (2018). Culture-based contextual learning to increase problem-solving ability of first year university student. Journal on Mathematics Education, 9(1), 81–94. [Google Scholar] [CrossRef]
- Sangwin, C., & Kocher, N. (2016). Automation of mathematics examinations. Computers & Education, 94, 215–227. [Google Scholar]
- Scheinost, D., Noble, S., Horien, C., Greene, A. S., Lake, E. M., Salehi, M., Gao, S., Shen, X., O’Connor, D., Barron, D. S., Yip, S. W., Rosenberg, M. D., & Constable, R. T. (2019). Ten simple rules for predictive modeling of individual differences in neuroimaging. NeuroImage, 193, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Schindler, M., & Lilienthal, A. J. (2019). Domain-specific interpretation of eye tracking data: Towards a refined use of the eye-mind hypothesis for the field of geometry. Educational Studies in Mathematics, 101, 123–139. [Google Scholar] [CrossRef]
- Sharaev, M., Sushchinskaya, S., Bachurina, V., Taranov, G., Burnaev, E., & Arsalidou, M. (2021). Machine learning, eye movements and mathematical problem solving. Journal of Vision, 21(9), 2397. [Google Scholar] [CrossRef]
- Sinay, E., & Nahornick, A. (2016). Teaching and learning mathematics research series I: Effective instructional strategies. Toronto District School Board, 16, 8. [Google Scholar]
- Soares, R. d. S., Jr., Pinheiro, E. D., Oku, A. Y. A., Rizzo, M. B., Vieira, C. d. N., & Sato, J. R. (2024). Integrating students’ real-time gaze in teacher–student interactions: Case studies on the benefits and challenges of eye tracking in primary education. Applied Sciences, 14(23), 11007. [Google Scholar] [CrossRef]
- Strohmaier, A. R., MacKay, K. J., Obersteiner, A., & Reiss, K. M. (2020). Eye tracking methodology in mathematics education research: A systematic literature review. Educational Studies in Mathematics, 104(2), 147–200. [Google Scholar] [CrossRef]
- Susac, A. N., Bubic, A., Kaponja, J., Planinic, M., & Palmovic, M. (2014). Eye trackings reveal students’ strategies in simple equation solving. International Journal of Science and Mathematics Education, 12, 555–577. [Google Scholar] [CrossRef]
- Tang, H., & Pienta, N. (2012). Eye-tracking study of complexity in gas law problems. Journal of Chemical Education, 89(8), 988–994. [Google Scholar] [CrossRef]
- Ting, C. C., & Gluth, S. (2024). Unraveling information processes of decision-making with eye-tracking data. Frontiers in Behavioral Economics, 3, 1384713. [Google Scholar] [CrossRef]
- Toner, P. (2011). Workforce skills and innovation (OECD Education Working Papers). OECD. [Google Scholar]
- Tong, L., Li, B., Yan, B., Zhang, C., Gao, H., Chen, P., & Liu, T. (2024). Eye movement-based image interpretation cognitive ability assessment method and system (China Patent , No. CN117481593A). [Google Scholar]
- Trezise, K., & Reeve, R. A. (2014). Cognition-emotion interactions: Patterns of change and implications for math problem solving. Frontiers in Psychology, 5, 840. [Google Scholar] [CrossRef] [PubMed]
- Türkoğlu, H., & Yalçınalp, S. (2024). Investigating problem-solving behaviours of university students through an eye-tracking system using GeoGebra in geometry: A case study. Education and Information Technologies, 29(12), 15761–15791. [Google Scholar] [CrossRef]
- Ukobizaba, F., Nizeyimana, G., & Mukuka, A. (2021). Assessment strategies for enhancing students’ mathematical problem-solving skills: A review of literature. Eurasia Journal of Mathematics, Science and Technology Education, 17(3), em1945. [Google Scholar] [CrossRef]
- Van der Schoot, M., Arkema, A. H. B., Horsley, T. M., & van Lieshout, E. C. (2009). The consistency effect depends on markedness in less successful but not successful problem solvers: An eye tracking study in primary school children. Contemporary Educational Psychology, 34(1), 58–66. [Google Scholar] [CrossRef]
- Van Gog, T., & Jarodzka, H. (2013). Eye tracking as a tool to study and enhance cognitive and metacognitive processes in computer-based learning environments. In International handbook of metacognition and learning technologies (pp. 143–156). Springer New York. [Google Scholar]
- Van Gog, T., Jarodzka, H., Scheiter, K., Gerjets, P., & Paas, F. (2009). Attention guidance during example study via the model’s eye movements. Computers in Human Behavior, 25(3), 785–791. [Google Scholar] [CrossRef]
- Van Harpen, X. Y., & Sriraman, B. (2013). Creativity and mathematical problem posing: An analysis of high school students’ mathematical problem posing in China and the USA. Educational Studies in Mathematics, 82, 201–221. [Google Scholar] [CrossRef]
- Vessonen, T., Dahlberg, M., Hellstrand, H., Widlund, A., Korhonen, J., Aunio, P., & Laine, A. (2024). Task characteristics associated with mathematical word problem-solving performance among elementary school-aged children: A systematic review and meta-analysis. Educational Psychology Review, 36(4), 117. [Google Scholar] [CrossRef]
- Vordermann, C., Porkess, R., Budd, C., Dunne, R., & Rahman-Hart, P. (2011). A world-class mathematics education for all our young people. The Conservative Party. [Google Scholar]
- Walport, M., Goodfellow, J., McLoughlin, F., Post, M., Sjøvoll, J., Taylor, M., & Waboso, D. (2010). Science and mathematics secondary education for the 21st century: Report of the science and learning expert group. Department for Business, Industry and Skills. [Google Scholar]
- Wang, H., Yang, J., Hu, M., Tang, J., & Yu, W. (2024). A comparative analysis for eye tracking characteristics between professional and non-professional players in FIFA eSports game. Displays, 81, 102599. [Google Scholar] [CrossRef]
- Wang, X., Kang, W., Huang, L., & Li, L. (2022). The impact of illustrations on solving mathematical word problems for Chinese primary school students: Evidence for a split attention effect on eye-movement research. ZDM–Mathematics Education, 54(3), 555–567. [Google Scholar] [CrossRef]
- Wang, Y., Wei, X., Li, J., Zhang, L., & Chen, H. (2021). A human-computer interaction intent recognition method combining EEG and eye movement signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1234–1243. [Google Scholar]
- Wen, P., Lu, F., & Mohamad Ali, A. Z. (2024). Using attentional guidance methods in virtual reality laboratories reduces students’ cognitive load and improves their academic performance. Virtual Reality, 28(2), 110. [Google Scholar] [CrossRef]
- Wright, A. M., Salas, J. A., Carter, K. E., & Levin, D. T. (2022). Eye movement modeling examples guide viewer eye movements but do not improve learning. Learning and Instruction, 79, 101601. [Google Scholar] [CrossRef]
- Xu, H., Xuan, X., Zhang, L., Zhang, W., Zhu, M., & Zhao, X. (2021). New approach to intelligence screening for children with global development delay using eye-tracking technology: A pilot study. Frontiers in Neurology, 12, 723526. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z. (2022). An empirical study of the factors affecting the profitability of commercial banks—Based on partial least squares regression (PLSR) algorithm. The Theory and Practice of Finance and Economics, 4, 10–17. [Google Scholar]
- Yang, X., Li, J., & Cheng, Y. (2020). Cognitive strategy detection in complex problem solving: A multimodal approach using eye tracking and machine learning. Journal of Educational Psychology, 112(8), 1563–1581. [Google Scholar]
- Zhang, H., & Chen, Q. (2018). Study on influencing factors of academic journal influence based on the PLSR model. Information Science, 36(2), 53–57. [Google Scholar]
- Zhang, J., Shen, D., & Zang, C. (2006). Representation of arithmetic word problems: Evidence from undergraduates’ eye fixations. Studies of Psychology and Behavior, 4(3), 188–193. [Google Scholar]
- Zhao, X., Qi, L., Li, L., & Li, Y. (2021). The role of learning strategies in mathematics problem-solving of high school students: A study based on eye-tracking technique. Journal of Qinghai Normal University (Natural Science Edition), 37(1), 75–81. [Google Scholar]
Variable Types | The Detailed Information About Eye Movement Features | ||
---|---|---|---|
Dependent Variable | CNCEE Mathematics Score | ||
Independent variables | Categories of eye movement features | Eye movement features (Abbreviation) | Abbreviation of eye movement features in each AOI |
Fixation features | Percentage of Net Dwell Time [%] (NDT%) | NDT%_Q | |
NDT%_R | |||
NDT%_A | |||
Percentage of Dwell Time [%] (DT%) | DT%_Q | ||
DT%_R | |||
DT%_A | |||
Percentage of Visual Intake Duration [%] (VID%) | VID%_Q | ||
VID%_R | |||
VID%_A | |||
Average Visual Intake Duration [ms] (AverageVID) | AverageVID_Q | ||
AverageVID_R | |||
AverageVID_A | |||
First Visual Intake Duration [ms] (FirstVID) | FirstVID_Q | ||
FirstVID_R | |||
FirstVID_A | |||
Revisit features | Revisit Count (Revisit) | Revisit_Q | |
Revisit_R | |||
Revisit_A | |||
Saccade features | Saccade time entering the AOI [ms] (SaccadeInto) | SaccadeInto_Q | |
SaccadeInto_R | |||
SaccadeInto_A | |||
Saccade time leaving the AOI [ms] (SaccadeOut) | SaccadeOut_Q | ||
SaccadeOut_R | |||
SaccadeOut_A | |||
Glance Count (GC) | GC_Q | ||
GC_R | |||
GC_A |
Problem | Optimal PLSR Component Number [Explanatory Power] | MSE | r | p | Prediction R2 |
---|---|---|---|---|---|
#6 | 2 [0.174, 0.097] | 394.323 | 0.520 | <0.001 | 0.271 |
#5 | 2 [0.081, 0.025] | 400.809 | 0.326 | 0.027 | 0.106 |
#4 | 1 [0.097] | 322.639 | 0.311 | 0.036 | 0.097 |
#3 | 1 [0.079] | 410.732 | 0.282 | 0.058 | 0.079 |
#2 | 1 [0.085] | 332.675 | 0.291 | 0.050 | 0.085 |
#1 | 1 [0.060] | 333.289 | 0.245 | 0.102 | 0.060 |
Variable | Equation: CNCEE Mathematics Score~FirstVID_R + Revisit_R + … + FirstVID_Q | |||
---|---|---|---|---|
Eye Movement Features | Estimate | td. Error | t-Value | p-Value |
FirstVID_R | 2.572 | 1.523 | 11.458 | <0.001 |
Revisit_R | 1.691 | 0.834 | 13.750 | <0.001 |
GC_R | 1.656 | 0.816 | 13.764 | <0.001 |
SaccadeInto_R | 1.379 | 0.665 | 14.056 | <0.001 |
NDT%_R | 1.369 | 0.658 | 14.116 | <0.001 |
SaccadeOut_R | 1.319 | 0.672 | 13.311 | <0.001 |
DT%_R | 1.307 | 0.664 | 13.346 | <0.001 |
AverageVID_R | 0.916 | 1.363 | 4.559 | <0.001 |
NDT%_A | 0.782 | 0.750 | 7.067 | <0.001 |
VID%_A | 0.763 | 0.766 | 6.753 | <0.001 |
Revisit_A | 0.666 | 0.734 | 6.148 | <0.001 |
GC_A | 0.661 | 0.731 | 6.135 | <0.001 |
DT%_A | 0.581 | 0.731 | 5.392 | <0.001 |
SaccadeOut_A | 0.475 | 0.898 | 3.587 | <0.001 |
SaccadeInto_Q | 0.230 | 0.910 | 1.715 | 0.094 |
GC_Q | 0.120 | 0.751 | 1.082 | 0.285 |
Revisit_Q | 0.120 | 0.751 | 1.082 | 0.285 |
VID%_R | 0.082 | 0.956 | 0.580 | 0.565 |
AverageVID_A | 0.020 | 1.247 | 0.109 | 0.913 |
FirstVID_A | −0.106 | 1.549 | −0.466 | 0.643 |
SaccadeInto_A | −0.338 | 0.781 | −2.936 | <0.001 |
SaccadeOut_Q | −0.413 | 0.722 | −3.882 | <0.001 |
NDT%_Q | −1.064 | 0.669 | −10.790 | <0.001 |
VID%_Q | −1.124 | 0.676 | −11.275 | <0.001 |
DT%_Q | −1.172 | 0.658 | −12.080 | <0.001 |
AverageVID_Q | −1.625 | 1.159 | −9.507 | <0.001 |
FirstVID_Q | −2.618 | 2.491 | −7.130 | <0.001 |
Problem | #6 | #5 | #4 | #3 | #2 | #1 |
---|---|---|---|---|---|---|
Prediction R2 | 0.271 | 0.106 | 0.097 | 0.079 | 0.085 | 0.060 |
NDT%_Q | 1.530 | |||||
NDT%_R | 1.037 | 1.550 | 1.053 | |||
NDT%_A | 1.102 | 1.359 | ||||
DT%_Q | 1.428 | |||||
DT%_R | 1.085 | 1.549 | ||||
DT%_A | 1.016 | 1.369 | ||||
VID%_Q | 1.555 | |||||
VID%_R | 1.593 | 1.127 | ||||
VID%_A | 1.172 | 1.059 | 1.353 | |||
AverageVID_Q | 1.166 | 1.174 | ||||
AverageVID_R | ||||||
AverageVID_A | 1.401 | 1.372 | ||||
FirstVID_Q | 1.739 | 1.221 | 2.625 | 1.735 | ||
FirstVID_R | 1.892 | 2.134 | 1.571 | 1.669 | 1.334 | |
FirstVID_A | 1.570 | |||||
Revisit_Q | 1.216 | 1.360 | ||||
Revisit_R | 1.049 | 1.350 | 1.074 | |||
Revisit_A | 1.380 | 1.522 | ||||
SaccadeInto_Q | 1.073 | 1.073 | 1.677 | |||
SaccadeInto_R | 1.045 | 1.213 | 2.075 | 1.244 | ||
SaccadeInto_A | 1.289 | 2.030 | ||||
SaccadeOut_Q | 1.298 | 2.025 | ||||
SaccadeOut_R | 1.097 | 1.363 | ||||
SaccadeOut_A | 1.096 | 1.097 | 1.598 | 1.691 | ||
GC_Q | 1.216 | 1.360 | ||||
GC_R | 1.028 | 1.350 | 1.063 | |||
GC_A | 1.380 | 1.522 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, S.; Pan, H.; Zhang, D. A Process-Oriented Approach to Assessing High School Students’ Mathematical Problem-Solving Competence: Insights from Multidimensional Eye-Tracking Analysis. Educ. Sci. 2025, 15, 761. https://doi.org/10.3390/educsci15060761
Hao S, Pan H, Zhang D. A Process-Oriented Approach to Assessing High School Students’ Mathematical Problem-Solving Competence: Insights from Multidimensional Eye-Tracking Analysis. Education Sciences. 2025; 15(6):761. https://doi.org/10.3390/educsci15060761
Chicago/Turabian StyleHao, Sijia, Huanghe Pan, and Dan Zhang. 2025. "A Process-Oriented Approach to Assessing High School Students’ Mathematical Problem-Solving Competence: Insights from Multidimensional Eye-Tracking Analysis" Education Sciences 15, no. 6: 761. https://doi.org/10.3390/educsci15060761
APA StyleHao, S., Pan, H., & Zhang, D. (2025). A Process-Oriented Approach to Assessing High School Students’ Mathematical Problem-Solving Competence: Insights from Multidimensional Eye-Tracking Analysis. Education Sciences, 15(6), 761. https://doi.org/10.3390/educsci15060761