The Role of the Abacus and Physical Exercise in the Cognitive Development of Students in Primary Education
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Study
2.2. Participants
2.3. Outcomes
2.3.1. Selective Attention and Concentration
2.3.2. Memory
2.3.3. Difference Perception
2.3.4. General Intelligence
2.4. Intervention
2.5. Procedure
2.6. Statistical Analysis
3. Results
3.1. Selective Attention and Concentration
3.2. Memory
3.3. Difference Perception and Impulsivity
3.4. General Intelligence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, D. R., & Subrahmanyam, K. (2017). Cognitive impacts of digital media workgroup. Digital screen media and cognitive development. Pediatrics, 140(Suppl. 2), S57–S61. [Google Scholar] [CrossRef] [PubMed]
- Barner, D., Alvarez, G., Sullivan, J., Brooks, N., Srinivasan, M., & Frank, M. C. (2016). Learning mathematics in a visuospatial format: A randomized, controlled trial of mental abacus instruction. Child Development, 87(4), 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Bergman Nutley, S., & Söderqvist, S. (2017). How is working memory training likely to influence academic performance? Current evidence and methodological considerations. Frontiers in Psychology, 7, 69. [Google Scholar] [CrossRef]
- Best, J. R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Developmental Review, 30(4), 331–551. [Google Scholar] [CrossRef] [PubMed]
- Bherer, L., Erickson, K. I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of Aging Research, 2013, 657508. [Google Scholar] [CrossRef]
- Bidzan-Bluma, I., & Lipowska, M. (2018). Physical activity and cognitive functioning of children: A systematic review. International journal of Environmental Research and Public Health, 15(4), 800. [Google Scholar] [CrossRef]
- Budde, H., Voelcker-Rehage, C., Pietrabyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441(3), 219–223. [Google Scholar] [CrossRef]
- Chaddock-Heyman, L., Hillman, C. H., Cohen, N. J., & Kramer, A. F. (2014). The importance of physical activity and aerobic fitness for cognitive control and memory in children. Monographs of the Society for Research in Child Development, 79(4), 25–50. [Google Scholar] [CrossRef]
- Chang, Y. K., Tsai, Y. J., Chen, T. T., & Hung, T. M. (2013). The impacts of coordinative exercise on executive function in kindergarten children: An ERP study. Experimental Brain Research, 225(2), 187–196. [Google Scholar] [CrossRef]
- Chen, M. S., Wang, T. C., & Wang, C. N. (2011). Effect of mental abacus training on working memory for children. Journal of the Chinese Institute of Industrial Engineers, 28(6), 450–457. [Google Scholar] [CrossRef]
- Clemente-Suárez, V. J., Beltrán-Velasco, A. I., Herrero-Roldán, S., Rodriguez-Besteiro, S., Martínez-Guardado, I., Martín-Rodríguez, A., & Tornero-Aguilera, J. F. (2024). Digital device usage and childhood cognitive development: Exploring effects on cognitive abilities. Children, 11(11), 1299. [Google Scholar] [CrossRef]
- Cuartas, J., Hanno, E., Lesaux, N. K., & Jones, S. M. (2022). Executive function, self-regulation skills, behaviors, and socioeconomic status in early childhood. PLoS ONE, 17(11), e0277013. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C., Shing, Y. L., McKay, C., Rafetseder, E., & Wijeakumar, S. (2023). The first year in formal schooling improves working memory and academic abilities. Developmental Cognitive Neuroscience, 60, 101205. [Google Scholar] [CrossRef]
- Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. [Google Scholar] [CrossRef]
- Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333(6045), 959–964. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Dong, S., Wang, C., Xie, Y., Hu, Y., Weng, J., & Chen, F. (2016). The impact of abacus training on working memory and underlying neural correlates in young adults. Neuroscience, 22, 181–190. [Google Scholar] [CrossRef]
- Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., & Wojcicki, T. R. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017–3022. [Google Scholar] [CrossRef]
- Föcker, J., Atkins, P., Vantzos, F. C., Wilhelm, M., Schenk, T., & Meyerhoff, H. S. (2022). Exploring the effectiveness of auditory, visual, and audio-visual sensory cues in a multiple object tracking environment. Attention, Perception & Psychophysics, 84(5), 1611–1624. [Google Scholar] [CrossRef]
- Frank, M. C., & Barner, D. (2012). Representing exact number visually using mental abacus. Journal of Experimental Psychology: General, 141(1), 134–149. [Google Scholar] [CrossRef]
- Goldberg, H. (2022). Growing brains, nurturing minds-neuroscience as an educational tool to support students’ development as life-long learners. Brain Sciences, 12(12), 1622. [Google Scholar] [CrossRef]
- Han, K., Hadjipantelis, P. Z., Wang, J. L., Kramer, M. S., Yang, S., Martin, R. M., & Müller, H. G. (2018). Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development. PLoS ONE, 13(11), e0207073. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P. D. (2019). Domains of cognition and their assessment. Dialogues in Clinical Neuroscience, 21(3), 227–237. [Google Scholar] [CrossRef]
- Hillman, C. H., Erickson, K., & Kramer, A. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C. H., McDonald, K. M., & Logan, N. E. (2020). A review of the effects of physical activity on cognition and brain health across children and adolescence. Nestle Nutrition Institute Workshop Series, 95, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044–1054. [Google Scholar] [CrossRef]
- Huang, H., Li, R., & Zhang, J. (2023). A review of visual sustained attention: Neural mechanisms and computational models. PeerJ, 11, e15351. [Google Scholar] [CrossRef]
- Ison, M. S., & Carrada, M. (2012). Tipificación argentina del Test de Percepción de Diferencias (CARAS). In T. Louis Leon, & Y. Mariano (Eds.), Test de Percepción de Diferencias Revisado (CARAS-R) (pp. 37–63). Tea Edition. [Google Scholar]
- Khan, N. A., & Hillman, C. H. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: A review. Pediatric Exercise Science, 26(2), 138–146. [Google Scholar] [CrossRef]
- Kowatari, Y., Lee, S. H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30(5), 1678–1690. [Google Scholar] [CrossRef]
- Latino, F., & Tafuri, F. (2023). Physical activity and academic performance in school-age children: A systematic review. Sustainability, 15(8), 6616. [Google Scholar] [CrossRef]
- Li, Y., Chen, F., & Huang, W. (2016). Neural plasticity following abacus training in humans: A review and future directions. Neural Plasticity, 2016, 1213723. [Google Scholar] [CrossRef]
- Lima-Silva, T. B., Barbosa, M. E. C., Zumkeller, M. G., Verga, C. E. R., Prata, P. L., Cardoso, N. P., de Moraes, L. C., & Brucki, S. M. D. (2021). Cognitive training using the abacus: A literature review study on the benefits for different age groups. Dementia & Neuropsychologia, 15(2), 256–266. [Google Scholar] [CrossRef]
- Mahindru, A., Patil, P., & Agrawal, V. (2023). Role of physical activity on mental health and well-being: A review. Cureus, 15(1), e33475. [Google Scholar] [CrossRef]
- Mandolesi, L., Polverino, A., Montuori, S., Foti, F., Ferraioli, G., Sorrentino, P., & Sorrentino, G. (2018). Effects of physical exercise on cognitive functioning and wellbeing: Biological and psychological benefits. Frontiers in Psychology, 9, 509. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, J. (2020). Test de atención d2: Consistencia interna, estabilidad temporal y evidencias de validez. Revista Costarricense de Psicología, 39(1), 145–165. [Google Scholar] [CrossRef]
- Peng, P., & Rogier, A. K. (2020). The development of academic achievement and cognitive abilities: A bidirectional perspective. Child Development Perspectives, 14(1), 15–20. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. Journal of Sport & Exercise Psychology, 34(6), 766–786. [Google Scholar] [CrossRef]
- Ratey, J. J., & Loehr, J. E. (2011). The positive impact of physical activity on cognition during adulthood: A review of underlying mechanisms, evidence and recommendations. Reviews in the Neurosciences, 22(2), 171–185. [Google Scholar] [CrossRef]
- Raven, J. C. (1957). Test de matrices progresivas. Escala especial Buenos Aires. Paidós. [Google Scholar]
- Rominger, C., Schneider, M., Fink, A., Tran, U. S., Perchtold-Stefan, C. M., & Schwerdtfeger, A. R. (2022). Acute and chronic physical activity increases creative ideation performance: A systematic review and multilevel meta-analysis. Sports Med-Open, 8, 62. [Google Scholar] [CrossRef]
- Ruhland, S., & Lange, K. W. (2021). Effect of classroom-based physical activity interventions on attention and on-task behavior in schoolchildren: A systematic review. Sports Medicine and Health Science, 3(3), 125–133. [Google Scholar] [CrossRef]
- Ruiz-Ariza, A., Casuso, R. A., Suarez-Manzano, S., & Martínez-López, E. J. (2018). Effect of augmented reality game Pokémon GO on cognitive performance and emotional intelligence in adolescent youth. Computers & Education, 116, 49–63. [Google Scholar] [CrossRef]
- Santamaría-Fernández, P., & Fernández-Pinto, I. (2013). Adaptación Española de RIAS. Reynolds intellectual assessment scales. TEA Ediciones. [Google Scholar]
- Schmidt, M., Mavilidi, M. F., Singh, A., & Englert, C. (2020). Combining physical and cognitive training to improve kindergarten children’s executive functions: A cluster randomized controlled trial. Contemporaru Educational Psychology, 63, 101908. [Google Scholar] [CrossRef]
- Schneider, F., Horowitz, A., Lesch, K. P., & Dandekar, T. (2020). Delaying memory decline: Different options and emerging solutions. Translational Psychiatry, 10(1), 13. [Google Scholar] [CrossRef] [PubMed]
- Scionti, N., Cavallero, M., Zogmaister, C., & Marzocchi, G. M. (2020). Is cognitive training effective for improving executive functions in preschoolers? A systematic review and meta-analysis. Frontiers in Psychology, 10, 2812. [Google Scholar] [CrossRef]
- Seisdedos, N. (2012). Adaptación Española D2, test de atención de brickenkamp. TEA Ediciones. [Google Scholar]
- Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Effects of training of processing speed on neural systems. Journal of Neuroscience, 31(34), 12139–12148. [Google Scholar] [CrossRef]
- Thurstone, L. L., & Yela, M. (2012). CARAS-R. Test de percepción de diferencias-revisado. TEA Ediciones. [Google Scholar]
- Voss, M. W., Nagamatsu, L. S., Liu-Ambrose, T., & Kramer, A. F. (2011). Exercise, brain, and cognition across the life span. Journal of Applied Physiology, 111(5), 1505–1513. [Google Scholar] [CrossRef]
- Wang, C. (2020). A review of the effects of abacus training on cognitive functions and neural systems in humans. Frontiers in Neuroscience, 14, 913. [Google Scholar] [CrossRef]
- Wang, C., Weng, J., Yao, Y., Dong, S., Liu, Y., & Chen, F. (2017). Effect of abacus training on executive function development and underlying neural correlates in Chinese children. Human Brain Mapping, 38(11), 5234–5249. [Google Scholar] [CrossRef]
- Wang, Y., Lu, C., & Chen, C. (2019). The effect of abacus-based mental calculation on the cognitive performance of elementary school students: A meta-analysis. Frontiers in Psychology, 10, 1818. [Google Scholar] [CrossRef]
Total (n = 82) | Experimental (n = 41) | Control (n = 41) | p-Value | ||
---|---|---|---|---|---|
Age (months) | 6.67 ± 1.02 | 6.68 ± 1.04 | 6.66 ± 1.01 | 0.848 | |
Sex (%) | Boy | 48 (58.50) | 23 (47.90) | 25 (52.10) | 0.394 |
Girl | 34 (41.50) | 18 (52.90) | 16 (47.90) | ||
School year (%) | First course | 39 (47.60) | 19 (46.30) | 20 (48.80) | 0.697 |
Second course | 43 (52.40) | 22 (53.70) | 21 (51.20) | ||
Weight (kg) | 22.50 ± 4.23 | 22.63 ± 4.12 | 22.37 ± 4.38 | 0.705 | |
Height (m) | 1.20 ± 0.78 | 1.20 ± 0.07 | 1.21 ± 0.08 | 0.582 | |
BMI (kg/m2) | 22.50 ± 4.23 | 22.63 ± 4.12 | 22.37 ± 4.38 | 0.705 | |
Mother’s employment situation (%) | Works | 51 (62.2) | 24 (58.5) | 27 (65.9) | 0.194 |
Does not work | 31 (37.8) | 17 (41.5) | 14 (34.1) | ||
Selective attention | 65.02 ± 11.18 | 60.07 ± 11.08 | 69.98 ± 8.93 | 0.231 | |
Concentration | 60.35 ± 14.21 | 61.02 ± 13.48 | 59.68 ± 15.04 | 0.166 | |
Memory | 8.23 ± 4.18 | 8.80 ± 4.02 | 7.66 ± 4.31 | 0.664 | |
Difference perception | 4.45 ± 1.99 | 3.41 ± 1.92 | 5.49 ± 1.45 | 0.119 | |
Impulsivity Control Index | 3.88 ± 1.53 | 3.71 ± 1.52 | 4.05 ± 1.53 | 0.462 | |
General intelligence | 18.93 ± 5.12 | 19.98 ± 5.28 | 17.88 ± 4.79 | 0.516 |
EG (n = 41) | CG (n = 41) | Group | Time | Group × Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | F(80) | p-Value | η2 | F(80) | p-Value | η2 | F(80) | p-Value | η2 | |
Concentration_D2 | 61.02 ± 13.48 | 68.17 ± 12.37 | 59.68 ± 15.04 | 60.85 ± 18.77 | 1.753 | 0.189 | 0.021 | 38.999 | 0.000 | 0.328 | 20.131 | 0.000 | 0.201 |
Selective attention_D2 | 60.07 ± 11.08 | 59.56 ± 11.78 | 69.98 ± 8.93 | 69.44 ± 8.97 | 20.068 | 0.000 | 0.201 | 1.022 | 0.315 | 0.013 | 22.001 | 0.031 | 0.198 |
Memory_RIAS | 8.80 ± 4.02 | 10.93 ± 4.01 | 7.66 ± 4.31 | 7.71 ± 4.19 | 5.809 | 0.018 | 0.068 | 91.678 | 0.000 | 0.534 | 83.623 | 0.000 | 0.511 |
Difference perception | 3.41 ± 1.92 | 4.66 ± 1.24 | 5.49 ± 1.45 | 5.29 1.40 | 21.170 | 0.000 | 0.209 | 10.149 | 0.002 | 0.114 | 19.296 | 0.000 | 0.194 |
Impulsivity Control Index | 3.71 ± 1.52 | 5.00 ± 1.34 | 4.05 ± 1.53 | 4.37 ± 1.45 | 0.296 | 0.588 | 0.004 | 20.298 | 0.000 | 0.202 | 7.456 | 0.008 | 0.085 |
General intelligence | 19.98 ± 5.28 | 22.15 ± 4.83 | 17.88 ± 4.79 | 16.39 ± 3.77 | 19.958 | 0.000 | 0.200 | 0.382 | 0.538 | 0.005 | 10.953 | 0.001 | 0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carcelén-Fraile, M.d.C.; Aibar-Almazán, A.; Solas-Martínez, J.L.; Loureiro, V. The Role of the Abacus and Physical Exercise in the Cognitive Development of Students in Primary Education. Educ. Sci. 2025, 15, 335. https://doi.org/10.3390/educsci15030335
Carcelén-Fraile MdC, Aibar-Almazán A, Solas-Martínez JL, Loureiro V. The Role of the Abacus and Physical Exercise in the Cognitive Development of Students in Primary Education. Education Sciences. 2025; 15(3):335. https://doi.org/10.3390/educsci15030335
Chicago/Turabian StyleCarcelén-Fraile, María del Carmen, Agustín Aibar-Almazán, José Luis Solas-Martínez, and Vânia Loureiro. 2025. "The Role of the Abacus and Physical Exercise in the Cognitive Development of Students in Primary Education" Education Sciences 15, no. 3: 335. https://doi.org/10.3390/educsci15030335
APA StyleCarcelén-Fraile, M. d. C., Aibar-Almazán, A., Solas-Martínez, J. L., & Loureiro, V. (2025). The Role of the Abacus and Physical Exercise in the Cognitive Development of Students in Primary Education. Education Sciences, 15(3), 335. https://doi.org/10.3390/educsci15030335