Design and Validation of Software for the Training and Automatic Evaluation of Music Intonation on Non-Fixed Pitch Instruments for Novice Students
Abstract
:1. Introduction
2. Literature Review
2.1. Teaching and Learning Intonation on Musical Instruments
2.2. Software for Musical Intonation
2.3. Online Software for Real-Time Instrumental Intonation
3. Method
3.1. Design
3.2. Sample
3.3. Validation Instrument and Dimensions
3.4. Preliminary Context and Validation Procedure
4. Results
4.1. Personal and Academic Covariate
4.2. Digital Self-Competence Covariate
4.3. Covariates: Musical Self-Competence
4.4. Technical-Didactic Dimension
4.5. Emotional Balance Dimension
4.6. Overall Assessment Dimension
4.7. Preferred, Non-Preferred Elements, and Suggested Changes
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morrison, S.J.; Fyk, J. Intonation. In The Science & Psychology of Music Performance: Creative Strategies for Teaching and Learning; Parncutt, R., McPherson, G., Eds.; Oxford University Press: Oxford, UK, 2002; pp. 182–197. [Google Scholar] [CrossRef]
- Zatorre, R.; Chen, J.; Penhune, V.B. When the brain plays music: Auditory-motor interactions in music perception and production. Nat. Rev. Neurosci. 2007, 8, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Chaffin, R.; Imreh, G.; Lemieux, A.; Chen, C. Seeing the Big Picture: Piano Practice as Expert Problem Solving. Music Percept. 2003, 20, 465–490. [Google Scholar] [CrossRef]
- Pardue, L.S.; McPherson, A. Real-time aural and visual feedback for improving violin intonation. Front. Psychol. 2019, 10, 627. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R. Extending the Discussion: Intonation Pedagogy for Bowed Stringed Instruments, Part 1. Update Appl. Res. Music. Educ. 2020, 38, 55–58. [Google Scholar] [CrossRef]
- Garzoli, J. Competing Epistemologies of Tuning, Intonation and Melody in the Performance of Thai Classical Music on Non-Fixed-Pitch Instruments. SOJOURN J. Soc. Issues Southeast Asia 2020, 35, 407–436. [Google Scholar] [CrossRef]
- Geringer, J.M.; MacLeod, R.B.; Madsen, C.K.; Nápoles, J. Perception of melodic intonation in performances with and without vibrato. Psychol. Music 2015, 43, 675–685. [Google Scholar] [CrossRef]
- Larrouy-Maestri, P.; Pfordresher, P.Q. Pitch perception in music: Do scoops matter? J. Exp. Psychol. Hum. 2018, 44, 1523–1541. [Google Scholar] [CrossRef]
- Aleman, A.; Nieuwenstein, M.R.; Böcker, K.B.; de Haan, E.H. Music training and mental imagery ability. Neuropsychologia 2000, 38, 1664–1668. [Google Scholar] [CrossRef]
- Stambaugh, L.A. Implications of extrinsic cognitive load on three levels of adult woodwind players. Psychol. Music 2016, 44, 1318–1330. [Google Scholar] [CrossRef]
- Johnson, M.; Larson, S. ‘Something in the Way She Moves’ Metaphors of Musical Motion. Metaphor. Symb. 2003, 18, 63–84. [Google Scholar] [CrossRef]
- Powell, S.R. Wind instrument intonation: A research synthesis. Bull. Coun. Res. Mus. Ed. 2010, 184, 79–96. [Google Scholar] [CrossRef]
- Schlegel, A.; Springer, D. Effects of accurate and inaccurate visual feedback on the tuning accuracy of high school and college trombonists. Int. J. Music Educ. 2018, 36, 394–406. [Google Scholar] [CrossRef]
- Dalmont, J.P.; Gazengel, B.; Gilbert, J.; Kergomard, J. Some aspects of tuning and clean intonation in reed instruments. Appl. Acoust. 1995, 46, 19–60. [Google Scholar] [CrossRef]
- Zendri, G.; Valdan, M.; Gratton, L.M.; Oss, S. Musical intonation of wind instruments and temperature. Phys. Educ. 2015, 50, 348. [Google Scholar] [CrossRef]
- Heyne, M.; Derrick, D.; Al-Tamimi, J. Native Language Influence on Brass Instrument Performance: An Application of Generalized Additive Mixed Models (GAMMs) to Midsagittal Ultrasound Images of the Tongue. Front. Psychol. 2019, 10, 2597. [Google Scholar] [CrossRef]
- Bucur, V. Resonant Air Column in Wind Instruments. In Handbook of Materials for Wind Musical Instruments; Springer: Cham, Switzerland, 2019; pp. 337–358. ISBN 978-3-030-19175-7. [Google Scholar]
- López-Calatayud, F. Music perception, sound production, and their relationships in bowed string instrumentalists: A systematic review. Rev. Electrónica LEEME 2023, 51, 55–81. [Google Scholar] [CrossRef]
- Rumjaun, A.; Narod, F. Social Learning Theory—Albert Bandura. In Education in Theory and Practice. An Introductory Guide to Learning Theory; Akpan, B., Kennedy, T.J., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Springer, D.G. Research to Resource: Evidence-Based Strategies for Improving Wind Intonation. Update Appl. Res. Music. Educ. 2020, 39, 4–7. [Google Scholar] [CrossRef]
- Blanco, A.D.; Tassani, S.; Ramírez, R. Effects of Visual and Auditory Feedback in Violin and Singing Voice Pitch Matching Tasks. Front. Psychol. 2021, 12, 684693. [Google Scholar] [CrossRef]
- Owens, P.; Sweller, J. Cognitive load theory and music instruction. Educ. Psychol. 2008, 28, 29–45. [Google Scholar] [CrossRef]
- Ayres, P.; Cierniak, G. Split-Attention Effect. In Encyclopedia of the Sciences of Learning; Seel, N.M., Ed.; Springer: Cham, Switzerland, 2012; pp. 3172–3175. ISBN 978-1-4419-1428-6_19. [Google Scholar]
- Castro-Alonso, J.C.; Sweller, J. The Modality Effect of Cognitive Load Theory. In Advances in Human Factors in Training, Education, and Learning Sciences; Karwowski, W., Ahram, T., Nazir, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 75–84. [Google Scholar] [CrossRef]
- Low, R.; Sweller, J. The modality principle in multimedia learning. In The Cambridge Handbook of Multimedia Learning, 2nd ed.; Mayer, R.E., Ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 227–246. [Google Scholar] [CrossRef]
- Liao, C.-W.; Chen, C.-H.; Shih, S.-J. The interactivity of video and collaboration for learning achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment. Comput. Educ. 2019, 133, 43–55. [Google Scholar] [CrossRef]
- Fonteles-Furtado, P.G.; Hirashima, T.; Hayashi, Y. Reducing Cognitive Load During Closed Concept Map Construction and Consequences on Reading Comprehension and Retention. IEEE Trans. Learn. Technol. 2019, 12, 402–412. [Google Scholar] [CrossRef]
- Welch, G.; Rush, C.; Howard, D. Real-time visual feedback in the development of vocal pitch accuracy in singing. Psychol. Music 1989, 17, 146–157. [Google Scholar] [CrossRef]
- Cantovation. Sing & See, version 1.5.8; Cantovation: Auckland, New Zeland, 2023. [Google Scholar]
- Wilson, P.; Lee, K.; Callaghan, J.; Thorpe, W. Learning to sing in tune: Does real-time visual feedback help? J. Interdiscip. Music. Stud. 2008, 2, 157–172. [Google Scholar]
- Howard, D.; Brereton, J.; Welch, G.; Himonides, E.; DeCosta, M.; Williams, J.; Howard, A. Are real-time displays of benefit in the singing studio? An exploratory study. J. Voice 2007, 21, 20–34. [Google Scholar] [CrossRef]
- Agin, J. Intonia, version 1.5.1; Intonia Software: Pittsburgh, PA, USA, 2021; Available online: http://intonia.com/index.shtml (accessed on 3 September 2022).
- Pérez-Gil, M.; Tejada, J.; Morant, R.; Pérez, A. Cantus: Construction and evaluation of a software for real-time vocal music training and musical intonation assessment for music education. J. Music. Technol. Educ. 2016, 9, 125–144. [Google Scholar] [CrossRef]
- Cummings, D. The Effects of Vocal Modeling, Musical Aptitude, and Home Environment on Pitch Accuracy of Young Children. Bull. Counc. Res. Music. Educ. 2006, 169, 39–50. [Google Scholar]
- Gordon, E. A Music Learning Theory for Newborn and Young Children; GIA Publications: Chicago, IL, USA, 2003; ISBN 978-1579990039. [Google Scholar]
- Miller, G. The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 1956, 63, 81–97. [Google Scholar] [CrossRef]
- Dresch, A.; Pacheco, D.; Valle, J.A. Design Science Research. A Method for Science and Technology Advancement; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-07374-3. [Google Scholar]
- Peffers, K.; Tuunanen, T.; Rothenberger, M.; Chatterjee, S. A Design Science Research Methodology for Information Systems Research. J. Manag. Inf. Syst. 2008, 24, 45–77. [Google Scholar] [CrossRef]
- Tejada, J.; Murillo, J.; Mateu-Luján, B. The Initial teaching of intonation in the brass wind instruments and music reading in Spain. An exploratory study with music school teachers. Revista Electrónica Complutense de Investigación en Educación Musical 2022, 19, 209–221. [Google Scholar] [CrossRef]
- Nielsen, J. Usability Testing with 5 Users: Design Process (Video Recordings). 2018. Available online: https://www.youtube.com/watch?v=RhgUirqki50 (accessed on 12 January 2023).
- López-Calatayud, F.; Tejada, J. Self-regulation strategies and behaviors in the initial learning of the viola and violin with the support of software for real-time instrumental intonation assessment. Res. Stud. Music. Educ. 2023. online first. [Google Scholar] [CrossRef]
- Cole, M. Cultural Psychology; The Belknap Press of Harvard University Press: London, UK, 1996; ISBN 0674179560. [Google Scholar]
- Barret, L.; Ochsner, K.; Gross, J. On the automaticity of emotion. In Social Psychology and the Unconscious: The Automaticity of Higher Mental Processes; Bargh, J.A., Ed.; Psychology Press: London, UK, 2007; pp. 173–217. ISBN 9781138010000. [Google Scholar]
- Bostock, S.; Lizhi, W. Gender in student online discussions. Innov. Educ. Teach. Int. 2005, 43, 73–85. [Google Scholar] [CrossRef]
- Pekrun, R. Progress and open problems in educational emotion research. Learn. Instr. 2005, 15, 497–506. [Google Scholar] [CrossRef]
- Tejada, J.; Pérez-Gil, M.; Pérez, R. Tactus: Didactic Design and Implementation of a Pedagogically Sound Based Rhythm-Training Computer Program. J. Music. Technol. Educ. 2011, 3, 155–165. [Google Scholar] [CrossRef]
- Tejada, J.; Pérez-Gil, M.; García-Pérez, R. Discere rhytmum, discere Tactus. Construcción y evaluación de un software educativo para el adiestramiento del ritmo musical. In Proceedings of the Congreso Reinventar la Profesión Docente, Málaga, Spain, 8 October 2010; pp. 399–418. [Google Scholar]
- Silvey, B.; Nápoles, J.; Springer, G. Effects of Pre-Tuning Vocalization Behaviors on the Tuning Accuracy of College Instrumentalists. J. Res. Music Educ. 2019, 66, 392–407. [Google Scholar] [CrossRef]
Skills Factor Items 1 | SD | |
---|---|---|
Self-perception of technological skills | 3.39 | 0.73 |
Self-perception of learning with technology | 3.43 | 0.72 |
Use of technology factor items 1 | ||
Frequency of computer use | 2.23 | 0.86 |
Frequency of mobile phone use | 3.24 | 0.96 |
Frequency of ICT use for gaming | 2.57 | 1.04 |
Musical Self-Competence Items 1 | SD | |
---|---|---|
General music skills | 7.94 | 1.45 |
Instrumental music skills | 7.49 | 1.65 |
Intonation skills (perception) | 7.14 | 1.61 |
Intonation skills (production) | 7.39 | 2.20 |
Items of the Technical Opinion Factor | SD | |
---|---|---|
Evaluation system | 3.37 | 0.72 |
Usefulness of audio message feedback | 3.14 | 0.83 |
Preference for visual feedback | 3.46 | 0.79 |
Preference for the exercise creation module | 3.70 | 0.49 |
Preference for immediate evaluation | 3.68 | 0.62 |
Ease of use of the interface | 3.48 | 0.65 |
Items of the interaction factor | ||
Understanding actions to intonate | 3.49 | 0.69 |
Understanding the interface | 3.37 | 0.80 |
Understanding software operating instructions | 3.49 | 0.70 |
Software performance | 3.50 | 0.70 |
Items of the didactic opinion factor | ||
Amenity of the exercises | 3.28 | 0.62 |
Ease of exercises | 3.46 | 0.75 |
Facilitating intonation practice | 3.35 | 0.67 |
Facilitating understanding of intonation | 3.22 | 0.82 |
Scale Items 1 | SD | |
---|---|---|
Preference to continue using the software in their studies | 3.42 | 0.74 |
Preference for using the software at home | 3.35 | 0.70 |
Preference for spend more time on intonation with software | 2.96 | 0.91 |
Preference for use in intonation activities | 3.36 | 0.72 |
SD | α Cronbach | ||
---|---|---|---|
Scales 1 | |||
Technical-didactic dimension | 3.35 | 0.36 | 0.73 |
Overall assessment dimension | 3.27 | 0.76 | 0.80 |
Overall questionnaire | 3.34 | 0.37 | 0.82 |
Global evaluation questions | |||
Software rating question 1 | 3.58 | 0.49 | - |
Software recommendation question 2 | yes = 140; no = 1 | ||
Emotional balance question 3 | well-being = 496; discomfort = 93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tejada, J.; Fernández-Villar, M.Á. Design and Validation of Software for the Training and Automatic Evaluation of Music Intonation on Non-Fixed Pitch Instruments for Novice Students. Educ. Sci. 2023, 13, 860. https://doi.org/10.3390/educsci13090860
Tejada J, Fernández-Villar MÁ. Design and Validation of Software for the Training and Automatic Evaluation of Music Intonation on Non-Fixed Pitch Instruments for Novice Students. Education Sciences. 2023; 13(9):860. https://doi.org/10.3390/educsci13090860
Chicago/Turabian StyleTejada, Jesús, and María Ángeles Fernández-Villar. 2023. "Design and Validation of Software for the Training and Automatic Evaluation of Music Intonation on Non-Fixed Pitch Instruments for Novice Students" Education Sciences 13, no. 9: 860. https://doi.org/10.3390/educsci13090860
APA StyleTejada, J., & Fernández-Villar, M. Á. (2023). Design and Validation of Software for the Training and Automatic Evaluation of Music Intonation on Non-Fixed Pitch Instruments for Novice Students. Education Sciences, 13(9), 860. https://doi.org/10.3390/educsci13090860