Reasoning on Controversial Science Issues in Science Education and Science Communication
Abstract
:1. Introduction
2. Theoretical Background
2.1. Socioscientific Issues (SSI) and Controversial Science Issues (CSI)
2.2. Informal and Scientific Reasoning
2.3. Argumentation Frameworks
2.4. Research Questions
- To what extent can justifications identified in the field of CSI be grouped, with regard to theoretical criteria? (RQ1)
- To what extent are justifications specific for certain CSI (topic-specific)? (RQ2)
- How are acceptance and rejection of CSI related to the use of different justifications? (RQ3)
- How does knowledge about NOS, religiousness, and conspiracy ideation relate with the use of different justifications? (RQ4)
3. Materials and Methods
3.1. Participants and Data Collection
3.2. Instruments
3.3. Data Analysis
4. Results
5. Discussion
5.1. Justification Types in the Field of Controversial Science Issues (RQ1)
5.2. Topic-Specific Justifications (RQ2)
5.3. Relationship between Acceptance of CSI and the Use of Different Justifications (RQ3)
5.4. Relationship between NOS, Religiousness, and Conspiracy Ideation with the Use of Different Justifications (RQ4)
6. Conclusions and Outlook
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD. OECD Future of Education and Skills 2030. OECD Learning Compass 2030. A Series of Concept Notes. Available online: http://www.oecd.org/education/2030-project/contact/OECD_Learning_Compass_2030_Concept_Note_Series.pdf (accessed on 18 July 2021).
- Gauchat, G. Politicization of Science in the Public Sphere: A Study of Public Trust in the United States, 1974 to 2010. Am. Sociol. Rev. 2012, 77, 167–187. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.W.C. Science Denial and the Science Classroom. CBE Life Sci. Educ. 2012, 11, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, P.; Michal, A.; Ibrahim, A.; Rhodes, R.; Rodriguez, F. What makes everyday scientific reasoning so challenging? Psychol. Learn. Motiv. 2017, 66, 251–299. [Google Scholar] [CrossRef]
- Sadler, T.D. Informal reasoning regarding socioscientific issues: A critical review of research. J. Res. Sci. Teach. 2004, 41, 513–536. [Google Scholar] [CrossRef]
- Zeidler, D.L.; Sadler, T.D.; Simmons, M.L.; Howes, E.V. Beyond STS: A research-based framework for socioscientific issues education. Sci. Educ. 2005, 89, 357–377. [Google Scholar] [CrossRef]
- Romine, W.L.; Sadler, T.D.; Dauer, J.M.; Kinslow, A. Measurement of socio-scientific reasoning (SSR) and exploration of SSR as a progression of competencies. Int. J. Sci. Educ. 2020, 42, 2981–3002. [Google Scholar] [CrossRef]
- Sadler, T.D.; Barab, S.A.; Scott, B. What do students gain by engaging in socioscientific inquiry? Res. Sci. Educ. 2007, 37, 371–391. [Google Scholar] [CrossRef]
- Zeidler, D.; Sadler, T.; Applebaum, S.; Callahan, B. Advancing reflective judgment through socioscientific issues. J. Res. Sci. Teach. 2009, 46, 74–101. [Google Scholar] [CrossRef]
- Rutjens, B.T.; van der Linden, S.; van der Lee, R. Science skepticism in times of COVID-19. Group Process. Intergr. Relat. 2021, 24, 276–283. [Google Scholar] [CrossRef]
- Borgerding, L.A.; Dagistan, M. Preservice science teachers’ concerns and approaches for teaching socioscientific and controversial issues. J. Sci. Teach. Educ. 2018, 29, 283–306. [Google Scholar] [CrossRef]
- McComas, W.F. Controversial Science Issues. In The Language of Science Education, 1st ed.; McComas, W.F., Ed.; SensePublishers: Rotterdam, The Netherlands, 2014; p. 26. [Google Scholar] [CrossRef]
- Hornsey, M.J.; Fielding, K.S. Attitude roots and Jiu Jitsu persuasion: Understanding and overcoming the motivated rejection of science. Am. Psychol. 2017, 72, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Sadler, T.D.; Zeidler, D.L. Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. J. Res. Sci. Teach. 2009, 46, 909–921. [Google Scholar] [CrossRef]
- Burns, T.W.; O’Connor, D.J.; Stocklmayer, S.M. Science communication: A contemporary definition. Public Underst. Sci. 2003, 12, 183–202. [Google Scholar] [CrossRef]
- Eastwood, J.L.; Schlegel, W.M.; Cook, K.L. Effects of an Interdisciplinary Program on Students’ Reasoning with Socioscientific Issues and Perceptions of Their Learning Experiences. In Socio-Scientific Issues in the Classroom—Teaching, Learning and Research, 1st ed.; Sadler, T.D., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 89–126. [Google Scholar] [CrossRef]
- Upmeier zu Belzen, A.; Beniermann, A. Naturwissenschaftliche Grundbildung im Fächerkanon der Schule. Z. Padagog. 2020, 66, 642–665. [Google Scholar]
- Baram-Tsabari, A.; Osborne, J. Bridging science education and science communication research. J. Res. Sci. Teach. 2015, 52, 135–144. [Google Scholar] [CrossRef]
- Bromme, R.; Goldman, S.R. The public’s bounded understanding of science. Educ. Psychol. 2014, 49, 59–69. [Google Scholar] [CrossRef]
- Hartmann, S.; Upmeier zu Belzen, A.; Krüger, D.; Pant, H.A. Scientific reasoning in Higher Education: Constructing and Evaluating the Criterion-Related Validity of an Assessment of Preservice Science Teachers’ Competencies. Z. Psychol. 2015, 223, 47–53. [Google Scholar] [CrossRef]
- Osborne, J. The 21st century challenge for science education: Assessing scientific reasoning. Think. Ski. Creat. 2013, 10, 265–279. [Google Scholar] [CrossRef]
- Means, M.L.; Voss, J.F. Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cogn. Instr. 1996, 14, 139–178. [Google Scholar] [CrossRef]
- Jiménez-Aleixandre, M.P.; Erduran, S. Argumentation in Science Education: An Overview. In Argumentation in Science Education: Perspectives from Classroom-Based Research, 1st ed.; Erduran, S., Jiménez-Aleixandre, M.P., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 35, pp. 3–27. [Google Scholar] [CrossRef]
- Osborne, J.; Erduran, S.; Simon, S. Enhancing the quality of argumentation in school science. J. Res. Sci. Teach. 2004, 41, 994–1020. [Google Scholar] [CrossRef]
- Endres, D. Science and public participation: An analysis of public scientific argument in the Yucca Mountain controversy. Environ. Commun. 2009, 3, 49–75. [Google Scholar] [CrossRef]
- Gresch, H.; Schwanewedel, J. Argumentieren als naturwissenschaftliche Praktik. In Biologiedidaktische Forschung: Erträge für die Praxis, 1st ed.; Groß, J., Hammann, M., Schmiemann, P., Zabel, J., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2019; pp. 167–185. [Google Scholar] [CrossRef]
- Jafari, M.; Meisert, A. Activating students’ argumentative resources on socioscientific issues by indirectly instructed reasoning and negotiation processes. Res. Sci. Educ. 2019, 1–22. [Google Scholar] [CrossRef]
- Zohar, A.; Nemet, F. Fostering Students’ Knowledge and Argumentation Skills Through Dilemmas in Human Genetics. J. Res. Sci. Teach. 2002, 39, 35–62. [Google Scholar] [CrossRef]
- Khishfe, R. Explicit nature of science and argumentation instruction in the context of socioscientific issues: An effect on student learning and transfer. Int. J. Sci. Educ. 2014, 36, 974–1016. [Google Scholar] [CrossRef]
- Sjöström, J.; Eilks, I. Reconsidering different visions of scientific literacy and science education based on the concept of Bildung. In Cognition, Metacognition, and Culture in STEM Education, 1st ed.; Dori, Y.J., Mevarech, Z.R., Baker, D.R., Eds.; Springer: Cham, Switzerland, 2018; pp. 65–88. [Google Scholar] [CrossRef]
- Sampson, V.; Clark, D.B. Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Sci. Educ. 2008, 92, 447–472. [Google Scholar] [CrossRef]
- Toulmin, S.E. The Uses of Argument; Cambridge University Press: Cambridge, UK, 2003; (Original Publication in 1958). [Google Scholar]
- Lazarou, D.; Erduran, S. “Evaluate What I Was Taught, Not What You Expected Me to Know”: Evaluating Students’ Arguments Based on Science Teachers’ Adaptations to Toulmin’s Argument Pattern. J. Sci. Teach. Educ. 2021, 32, 306–324. [Google Scholar] [CrossRef]
- Henderson, B.J.; McNeill, K.L.; Gonzalez-Howard, M.; Close, K.; Evans, M. Key challenges and future directions for educational research on scientific argumentation. J. Res. Sci. Teach. 2017, 55, 5–18. [Google Scholar] [CrossRef]
- Garrecht, C.; Reiss, M.J.; Harms, U. ‘I wouldn’t want to be the animal in use nor the patient in need’—The role of issue familiarity in students’ socioscientific argumentation. Int. J. Sci. Educ. 2021, 1–22. [Google Scholar] [CrossRef]
- Lobato, E.J.; Zimmerman, C. Examining how people reason about controversial scientific topics. Think. Reason. 2019, 25, 231–255. [Google Scholar] [CrossRef]
- Sadler, T.D.; Zeidler, D.L. The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Sci. Educ. 2005, 89, 71–93. [Google Scholar] [CrossRef]
- Drummond, C.; Fischhoff, B. Individuals with greater science literacy and education have more polarized beliefs on controversial science topics. Proc. Natl. Acad. Sci. USA 2017, 114, 9587–9592. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.M. Seeking congruency or incongruency online? Examining selective exposure to four controversial science issues. Sci. Commun. 2014, 36, 143–167. [Google Scholar] [CrossRef]
- Evagorou, M.; Dillon, J. Introduction: Socio-scientific Issues as Promoting Responsible Citizenship and the Relevance of Science. In Science Teacher Education for Responsible Citizenship, 1st ed.; Evagorou, M., Nielsen, J., Dillon, J., Eds.; Contemporary Trends and Issues in Science Education; Springer: Cham, Switzerland, 2020; pp. 1–11. [Google Scholar] [CrossRef]
- Zeidler, D.L. Socioscientific issues as a curriculum emphasis: Theory, research and practice. In Handbook of Research on Science Education; Lederman, N.G., Abell, S.K., Eds.; Routledge: New York, NY, USA, 2014; Volume 2, pp. 697–726. [Google Scholar]
- Zeidler, D.L.; Herman, B.C.; Sadler, T.D. New directions in socioscientific issues research. Discipl. Interdiscip. Sci. Educ. Res. 2019, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Beniermann, A. Evolution–von Akzeptanz und Zweifeln- Empirische Studien über Einstellungen zu Evolution und Bewusstsein, 1st ed.; Springer Fachmedien: Wiesbaden Germany, 2019; pp. 1–469. [Google Scholar]
- Kahan, D.M. Climate-science communication and the measurement problem. Political Psychol. 2015, 36, 1–43. [Google Scholar] [CrossRef]
- Eagly, A.H.; Chaiken, S. The Psychology of Attitudes; Harcourt Brace Jovanovich College Publishers: Fort Worth, TX, USA, 1993. [Google Scholar]
- Betsch, C.; Schmid, P.; Heinemeier, D.; Korn, L.; Holtmann, C.; Böhm, R. Beyond confidence: Development of a measure assessing the 5C psychological antecedents of vaccination. PLoS ONE 2018, 13, e0208601. [Google Scholar] [CrossRef] [Green Version]
- Christenson, N.; Rundgren, S.N.C. A framework for teachers’ assessment of socio-scientific argumentation: An example using the GMO issue. J. Biol. Educ. 2015, 49, 204–212. [Google Scholar] [CrossRef]
- Graf, D.; Soran, H. Einstellung und Wissen von Lehramtsstudierenden zur Evolution—Ein Vergleich zwischen Deutschland und der Türkei. In Evolutionstheorie—Akzeptanz und Vermittlung im Europäischen Vergleich, 1st ed.; Graf, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 141–161. [Google Scholar] [CrossRef]
- Dunlap, R.E.; McCright, A.M. A widening gap: Republican and Democratic views on climate change. Environ. Sci. Policy 2008, 50, 26–35. [Google Scholar] [CrossRef]
- Kahan, D.M.; Wittlin, M.; Peters, E.; Slovic, P.; Ouellette, L.L.; Braman, D.; Mandel, G.N. The tragedy of the risk-perception commons: Culture conflict, rationality conflict, and climate change. Temple Univ. Leg. Stud. Res. Pap. 2011, 26, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.E.; Inbar, Y.; Wirz, C.D.; Brossard, D.; Rozin, P. An overview of attitudes toward genetically engineered food. Annu. Rev. Nutr. 2018, 38, 459–479. [Google Scholar] [CrossRef] [PubMed]
- Blancke, S.; Van Breusegem, F.; De Jaeger, G.; Braeckman, J.; Van Montagu, M. Fatal attraction: The intuitive appeal of GMO opposition. Trends Plant Sci. 2015, 20, 414–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutjens, B.T.; Sutton, R.M.; van der Lee, R. Not all skepticism is equal: Exploring the ideological antecedents of science acceptance and rejection. Pers. Soc. Psychol. 2018, 44, 384–405. [Google Scholar] [CrossRef] [Green Version]
- Rutjens, B.T.; van der Lee, R. Spiritual skepticism? Heterogeneous science skepticism in the Netherlands. Public Underst. Sci. 2020, 29, 335–352. [Google Scholar] [CrossRef] [Green Version]
- Marques, M.D.; Kerr, J.R.; Williams, M.N.; Ling, M.; McLennan, J. Associations between conspiracism and the rejection of scientific innovations. Public Underst. Sci. 2021, 1–14. [Google Scholar] [CrossRef]
- Weisberg, D.S.; Landrum, A.R.; Hamilton, J.; Weisberg, M. Knowledge about the nature of science increases public acceptance of science regardless of identity factors. Public Underst. Sci. 2021, 30, 120–138. [Google Scholar] [CrossRef]
- Shaw, V.F. The cognitive processes in informal reasoning. Think. Reason. 1996, 2, 51–80. [Google Scholar] [CrossRef]
- Evans, J.S.B.T.; Thompson, V.A. Informal reasoning: Theory and method. Can. J. Exp. Psychol. 2004, 58, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.S.B.T. Logic and human reasoning: An assessment of the deduction paradigm. Psychol. Bull. 2002, 128, 978–996. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D. Connecting scientific and informal reasoning. Merrill-Palmer Q. 1993, 39, 74–103. [Google Scholar]
- Wu, Y.T.; Tsai, C.C. High school students’ informal reasoning on a socio-scientific issue: Qualitative and quantitative analyses. Int. J. Sci. Educ. 2007, 29, 1163–1187. [Google Scholar] [CrossRef]
- Kolstø, S.D. Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Sci. Educ. 2001, 85, 291–310. [Google Scholar] [CrossRef]
- Zeidler, D.L.; Lewis, J. Unifying themes in moral reasoning on socioscientific issues and discourse. In The Role of Moral Reasoning on Socioscientific Issues and Discourse in Science Education, 1st ed.; Zeidler, D.L., Ed.; Springer: Dordrecht, The Netherlands, 2003; Volume 19, pp. 289–306. [Google Scholar]
- Zeidler, D.L.; Nichols, B.H. Socioscientific issues: Theory and practice. J. Elem. Sci. Educ. 2009, 21, 49–58. [Google Scholar] [CrossRef]
- Romine, W.L.; Sadler, T.D.; Kinslow, A.T. Assessment of scientific literacy: Development and validation of the Quantitative Assessment of Socio-Scientific Reasoning (QuASSR). J. Res. Sci. Teach. 2017, 54, 274–295. [Google Scholar] [CrossRef]
- Eggert, S.; Bögeholz, S. Students’ use of decision-making strategies with regard to socioscientific issues: An application of the Rasch partial credit model. Sci. Educ. 2010, 94, 230–258. [Google Scholar] [CrossRef]
- Klaver, L.T.; Walma van der Molen, J.H. Measuring Pupils’ Attitudes Towards Socioscientific Issues. Sci. Educ. 2021, 30, 317–344. [Google Scholar] [CrossRef]
- Yang, F.Y.; Anderson, O.R. Senior high school students’ preference and reasoning modes about nuclear energy use. Int. J. Sci. Educ. 2003, 25, 221–244. [Google Scholar] [CrossRef]
- Sadler, T.D.; Klosterman, M.L.; Topcu, M.S. Learning Science Content and Socio-scientific Reasoning Through Classroom Explorations of Global Climate Change. In Socio-Scientific Issues in the Classroom—Teaching, Learning and Research, 1st ed.; Sadler, T.D., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 45–77. [Google Scholar] [CrossRef]
- Cian, H. The influence of context: Comparing high school students’ socioscientific reasoning by socioscientific topic. Int. J. Sci. Educ. 2020, 42, 1503–1521. [Google Scholar] [CrossRef]
- Topcu, M.S.; Sadler, T.D.; Yilmaz-Tuzun, O. Preservice science teachers’ informal reasoning about socioscientific issues: The influence of issue context. Int. J. Sci. Educ. 2010, 32, 2475–2495. [Google Scholar] [CrossRef]
- Driver, R.; Newton, P.; Osborne, J. Establishing the norms of scientific argumentation in classrooms. Sci. Educ. 2000, 84, 287–312. [Google Scholar] [CrossRef]
- Siegel, H. Why should educators care about argumentation? Inform. Log. 1995, 17, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, B.; Glassner, A. The blind and the paralytic: Supporting argumentation in everyday and scientific issues. In Arguing to Learn: Confronting Cognitions in Computer-Supported Collaborative Learning Environments, 1st ed.; Andriessen, J., Baker, M., Suthers, D., Eds.; Springer: Dordrecht, The Netherlands, 2003; Volume 1, pp. 227–260. [Google Scholar] [CrossRef]
- Sandoval, W.A.; Millwood, K. The quality of students’ use of evidence in written scientific explanations. Cogn. Instr. 2005, 23, 23–55. [Google Scholar] [CrossRef]
- Paglieri, F. Coding between the Lines: On the Implicit Structure of Arguments and Its Import for Science Education; ISTC-CNR Roma; University of Siena: Siena, Italy, 2006. [Google Scholar]
- Erduran, S.; Simon, S.; Osborne, J. TAPping into argumentation: Developments in the application of Toulmin’s Argument Pattern for studying science discourse. Sci. Educ. 2004, 88, 915–933. [Google Scholar] [CrossRef]
- Koomen, H.M.; Rodriguez, E.; Hoffman, A.; Petersen, C.; Oberhauser, K. Authentic science with citizen science and student-driven science fair projects. Sci. Educ. 2018, 102, 593–644. [Google Scholar] [CrossRef]
- McNeill, K.L.; Lizotte, D.J.; Krajcik, J.; Marx, R.W. Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. J. Learn. Sci. 2006, 15, 153–191. [Google Scholar] [CrossRef] [Green Version]
- Kelly, G.J.; Druker, S.; Chen, C. Students’ reasoning about electricity: Combining performance assessments with argumentation analysis. Int. J. Sci. Educ. 1998, 20, 849–871. [Google Scholar] [CrossRef]
- Kelly, G.; Takao, A. Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Sci. Educ. 2002, 86, 314–342. [Google Scholar] [CrossRef]
- Dawson, V.; Carson, K. Introducing argumentation about climate change socioscientific issues in a disadvantaged school. Res. Sci. Educ. 2018, 50, 863–883. [Google Scholar] [CrossRef]
- Shtulman, A. Epistemic similarities between students’ scientific and supernatural beliefs. J. Educ. Psychol. 2013, 105, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Khishfe, R. Relationship between nature of science understandings and argumentation skills: A role for counterargument and contextual factors. J. Res. Sci. Teach. 2012, 49, 489–514. [Google Scholar] [CrossRef]
- Simonneaux, L. Argumentation in socio-scientific contexts. In Argumentation in Science Education: Perspectives from Classroom-Based Research, 1st ed.; Erduran, S., Jiménez-Aleixandre, M.P., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 35, pp. 179–199. [Google Scholar] [CrossRef]
- Basel, N.; Harms, U.; Prechtl, H.; Weiß, T.; Rothgangel, M. Students’ arguments on the science and religion issue: The example of evolutionary theory and Genesis. J. Biol. Educ. 2014, 48, 179–187. [Google Scholar] [CrossRef]
- Agley, J. Assessing changes in US public trust in science amid the COVID-19 pandemic. Public Health 2020, 183, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Urhahne, D.; Kremer, K.; Mayer, J. Conceptions of the nature of science—are they general or context specific? Int. J. Sci. Math. Educ. 2011, 9, 707–730. [Google Scholar] [CrossRef]
- Beniermann, A.; Kuschmierz, P.; Pinxten, R.; Aivelo, T.; Bohlin, G.; Brennecke, J.S.; Cebesoy, U.B.; Cvetković, D.; Đorđević, M.; Dvořáková, R.M.; et al. Evolution Education Questionnaire on Acceptance and Knowledge (EEQ) - Standardised and ready-to-use protocols to measure acceptance of evolution and knowledge about evolution in an international context. Zenodo 2021. [Google Scholar] [CrossRef]
- Bruder, M.; Haffke, P.; Neave, N.; Nouripanah, N.; Imhoff, R. Measuring individual differences in generic beliefs in conspiracy theories across cultures: Conspiracy Mentality Questionnaire. Front. Psychol. 2013, 4, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayring, P. Qualitative Inhaltsanalyse, 12th ed.; Beltz: Weinheim, Germany, 2015. [Google Scholar]
- O’Connor, C.; Joffe, H. Intercoder Reliability in Qualitative Research: Debates and Practical Guidelines. Int. J. Qual. Methods 2020, 19, 1–13. [Google Scholar] [CrossRef]
- Upmeier zu Belzen, A.; Engelschalt, P.; Krüger, D. Modeling as Scientific Reasoning—The Role of Abductive Reasoning for Modeling Competence. Educ. Sci. 2021, 11, 495. [Google Scholar] [CrossRef]
- Kolstø, S.D. Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. Int. J. Sci. Educ. 2006, 28, 1689–1716. [Google Scholar] [CrossRef]
- Zeidler, D.L.; Osborne, J.; Erduran, S.; Simon, S.; Monk, M. The role of argument during discourse about socioscientific issues. In The Role of Moral Reasoning on Socioscientific Issues and Discourse in Science Education, 1st ed.; Zeidler, D.L., Ed.; Springer: Dordrecht, The Netherlands, 2003; Volume 19, pp. 97–116. [Google Scholar]
- Khishfe, R. Explicit Instruction and Student Learning of Argumentation and Nature of Science. J. Sci. Teach. Educ. 2021, 32, 325–349. [Google Scholar] [CrossRef]
- Kuhn, D.; Lerman, D. Yes but: Developing a critical stance toward evidence. Int. J. Sci. Educ. 2021, 43, 1036–1053. [Google Scholar] [CrossRef]
- Glassner, A.; Weinstock, M.; Neuman, Y. Pupils’ evaluation and generation of evidence and explanation in argumentation. Br. J. Educ. Psychol. 2005, 75, 105–118. [Google Scholar] [CrossRef]
- Höttecke, D.; Allchin, D. Reconceptualizing nature-of-science education in the age of social media. Sci. Educ. 2020, 104, 641–666. [Google Scholar] [CrossRef] [Green Version]
- American Educational Research Association (AERA); American Psychological Association (APA); National Council on Measurement in Education (NCME). Standards for Educational and Psychological Testing; American Educational Research Association: Washington, DC, USA, 2014. [Google Scholar]
CSI Topic | Original Statement [36] | Adjusted Statement | Adjusted Statement (German) |
---|---|---|---|
Evolution | Biological evolution is the best explanation for explaining the varieties of species of life. | The variety of life forms and species is rooted in evolution. | Die Vielfalt an Lebensformen und Arten ist auf Evolution zurückzuführen. |
Climate Change | The earth is experiencing a period of global climate change that human activity is contributing to. | The earth is experiencing a period of global climate change that human activity is largely contributing to. | Die Erde unterliegt einem klimatischen Wandel, zu dem der Mensch maßgeblich beiträgt. |
Genetically modified foods (GMF) | Genetically modified foods [also known as GM or GMO foods] are largely safe for human consumption. | Genetically modified foods are largely safe for human consumption. | Genetisch veränderte Lebensmittel sind größtenteils sicher für den menschlichen Verzehr. |
Vaccination | Medical research has demonstrated that childhood vaccinations are largely safe and effective. | Vaccinations are largely safe and effective. | Impfungen sind größtenteils sicher und effektiv. |
SARS-CoV-2 | - | The coronavirus (SARS-CoV-2) is a serious threat to human health. | Das Corona-Virus (SARS-CoV-2) ist eine ernsthafte Bedrohung für die menschliche Gesundheit. |
Argument Component | Evolution | Climate Change | GMF | Vaccination | SARS-CoV-2 | Total |
---|---|---|---|---|---|---|
claim | 5 (1.3%) | 13 (3.6%) | 12 (3.1%) | 13 (3.2%) | 3 (0.8%) | 46 (2.4%) |
data/warrant/rebuttal (i.e., justification) | 350 (88.8%) | 289 (80.1%) | 300 (76.5%) | 325 (79.9%) | 333 (84.1%) | 1597 (81.9%) |
qualifier | 17 (4.3%) | 23 (6.4%) | 22 (5.6%) | 34 (8.4%) | 37 (9.3%) | 133 (6.8%) |
problematization | 2 (0.5%) | 23 (6.4%) | 41 (10.5%) | 25 (6.1%) | 10 (2.5%) | 101 (5.2%) |
refusal | 6 (1.5%) | 2 (0.6%) | 6 (1.5%) | 4 (1.0 %) | 5 (1.3%) | 23 (1.2%) |
unrelated | 14 (3.6%) | 11 (3.1%) | 11 (2.8%) | 6 (1.5%) | 8 (2.0%) | 50 (2.6%) |
Total | 394 (100%) | 361 (100%) | 392 (100%) | 407 (100%) | 396 (100%) | 1950 (100%) |
CSI Topic | Rejection | Undecided | Acceptance | Total |
---|---|---|---|---|
Evolution | 13 (3.4 %) | 5 (1.3 %) | 361 (95.3 %) | 379 (100 %) |
Climate Change | 17 (5.3 %) | 23 (7.1 %) | 282 (87.6 %) | 322 (100 %) |
GMF | 61 (21.3 %) | 61 (21.3 %) | 165 (57.5 %) | 287 (100 %) |
Vaccination | 26 (9.4 %) | 13 (4.7 %) | 239 (86.0 %) | 278 (100 %) |
SARS-CoV-2 | 29 (10.7 %) | 18 (6.7 %) | 223 (82.6 %) | 270 (100 %) |
Type of Justification | Evolution | Climate Change | GMF | Vaccination | SARS-CoV-2 | NTotal |
---|---|---|---|---|---|---|
Subjective | 0.4% | 1.4% | 7.3% | 4.3% | 3.6% | 66 |
Deferential: Body of knowledge | 49.1% | 55.2% | 25.3% | 45.9% | 26.1% | 644 |
Deferential: Lack of knowledge | 9.1% | 5.9% | 38.0% | 6.5% | 13.8% | 230 |
Evidential: Theoretical | 17.1% | 6.2% | 3.0% | 12.3% | 1.5% | 132 |
Evidential: Empirical | 20.6% | 31.4% | 26.3% | 31.1% | 55.0% | 526 |
NTotal | 350 | 290 | 300 | 325 | 333 | 1598 |
Justification Type | Evolution | Climate Change | GMF | Vaccination | SARS-CoV-2 |
---|---|---|---|---|---|
Subjective | −0.141 ** | −0.175 ** | −0.064 | −0.186 ** | −0.153 * |
Deferential: Body of Knowledge | 0.044 | 0.060 | 0.114 | 0.128 * | 0.110 |
Deferential: Lack of Knowledge | 0.045 | 0.015 | −0.048 | −0.008 | 0.044 |
Evidential: Theoretical | 0.059 | −0.003 | 0.057 | −0.015 | −0.026 |
Evidential: Empirical | 0.056 | −0.036 | −0.074 | −0.016 | 0.053 |
Justification Type | NOS | Religiousness | Conspiracy Ideation | Acceptance of Scientific Consensus |
---|---|---|---|---|
Subjective | −0.045 | 0.029 | 0.180 ** | −0.185 ** |
Deferential: Body of Knowledge | 0.035 | −0.121 | 0.102 | 0.102 * |
Deferential: Lack of Knowledge | −0.024 | 0.009 | 0.030 | 0.020 |
Evidential: Theoretical | 0.011 | 0.047 | −0.036 | 0.007 |
Evidential: Empirical | 0.032 | 0.184 ** | 0.079 | −0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beniermann, A.; Mecklenburg, L.; Upmeier zu Belzen, A. Reasoning on Controversial Science Issues in Science Education and Science Communication. Educ. Sci. 2021, 11, 522. https://doi.org/10.3390/educsci11090522
Beniermann A, Mecklenburg L, Upmeier zu Belzen A. Reasoning on Controversial Science Issues in Science Education and Science Communication. Education Sciences. 2021; 11(9):522. https://doi.org/10.3390/educsci11090522
Chicago/Turabian StyleBeniermann, Anna, Laurens Mecklenburg, and Annette Upmeier zu Belzen. 2021. "Reasoning on Controversial Science Issues in Science Education and Science Communication" Education Sciences 11, no. 9: 522. https://doi.org/10.3390/educsci11090522
APA StyleBeniermann, A., Mecklenburg, L., & Upmeier zu Belzen, A. (2021). Reasoning on Controversial Science Issues in Science Education and Science Communication. Education Sciences, 11(9), 522. https://doi.org/10.3390/educsci11090522