The Role of Gender and Culture in Vocational Orientation in Science
Abstract
:1. Introduction
2. Theoretical Framework
2.1. The Impact of Gender, Race, and Class on Career Choices
2.2. Sources of Information in Vocational Orientation in Science
3. Research Questions
- (Q1)
- Secondary school students. How do male and female secondary school students with and without a migration background differ in their vocational orientation regarding science?
- (Q1a)
- Do they differ in science aspirations?
- (Q1b)
- Do they differ in their need for more information on jobs in science?
- (Q1c)
- What sources of information do they use in their vocational orientation regarding science?
- (Q1d)
- What sources of information would they like to use more in their vocational orientation regarding science?
- (Q2)
- University students. How do university students of natural science and other subjects differ in their vocational orientation?
- (Q2a)
- Do the students differ in their reasons for studying their subject?
- (Q2b)
- What sources of information did they use in their vocational orientation?
- (Q2c)
- What sources of information would they have liked to use more in their vocational orientation?
4. Methods
4.1. Study 1: Secondary School Students
4.1.1. Sample
4.1.2. Instrument
4.1.3. Analysis
4.2. Study 2: University Students
4.2.1. Sample
4.2.2. Instrument
4.2.3. Analysis
5. Results
5.1. Study I: Secondary School Students
5.2. Study 2: University Students
6. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- OECD. Encouraging Student Interest in Science and Technology Studies; OECD: Paris, France, 2008. [Google Scholar]
- OECD. Chart A4.6 Tertiary Graduates in Science-Related Fields among 25–34 Years-Old in Employment, by Gender. 2009. Available online: https://doi.org/10.1787/888932460192 (accessed on 17 August 2020).
- Archer, L.; DeWitt, J.; Osborne, J.; Dillon, J.; Willis, B.; Wong, B. “Doing” science versus “being” a scientist: Examining 10/11-year-old schoolchildren’s constructions of science through the lens of identity. Sci. Educ. 2010, 94, 617–639. [Google Scholar] [CrossRef]
- DeWitt, J.; Osborne, J.; Archer, L.; Dillon, J.; Willis, B.; Wong, B. Young children’s aspirations in science: The unequivocal, the uncertain and the unthinkable. Int. J. Sci. Educ. 2013, 35, 1037–1063. [Google Scholar] [CrossRef] [Green Version]
- Kultusministerkonferenz. Empfehlung Zur Beruflichen Orientierung an Schulen (Beschluss Der Kultusministerkonferenz Vom 07.12.2017); Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland: Berlin, Germany, 2017. [Google Scholar]
- Markic, S.; Prechtl, M.; Hönig, M.; Küsel, J.; Rüschenpöhler, L.; Stubbe, U. DiSenSu. Diversity Sensitive Support for Girls with Migration Background for STEM Careers. In Building bridges across disciplines; Eilks, I., Markic, S., Ralle, B., Eds.; Shaker: Aachen, Germany, 2018; pp. 215–218. [Google Scholar]
- van Tuijl, C.; van der Molen, J.H.W. Study choice and career development in STEM fields: An overview and integration of the research. Int. J. Technol. Des. Educ. 2016, 26, 159–183. [Google Scholar] [CrossRef]
- Holland, J.L. Making Vocational Choices: A Theory of Vocational Personalities and Work Environments, 3rd ed.; Psychological Assessment Resources: Odessa, FL, USA, 1997. [Google Scholar]
- Eccles, J.S.; Wang, M.-T. What motivates females and males to pursue careers in mathematics and science? Int. J. Behav. Dev. 2016, 40, 100–106. [Google Scholar] [CrossRef]
- Lent, R.W.; Brown, S.D.; Hackett, G. Toward a unifying social cognitive theory of career and academic interest, choice, and performance. J. Vocat. Behav. 1994, 45, 79–122. [Google Scholar] [CrossRef]
- Bandura, A. Social cognitive theory: An agentic perspective. Annu. Rev. Psychol. 2001, 52, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Bourdieu, P. Esquisse d’une Théorie de la Pratique: Précédé de Trois Etudes D’ethnologie Kabyle; Droz: Geneva, Switzerland, 1972. [Google Scholar]
- Archer, L.; Dawson, E.; DeWitt, J.; Seakins, A.; Wong, B. “Science capital”: A conceptual, methodological, and empirical argument for extending bourdieusian notions of capital beyond the arts. J. Res. Sci. Teach. 2015, 52, 922–948. [Google Scholar] [CrossRef] [Green Version]
- Vilhjálmsdóttir, G.; Arnkelsson, G.B. Social aspects of career choice from the perspective of habitus theory. J. Vocat. Behav. 2013, 83, 581–590. [Google Scholar] [CrossRef]
- Archer, L.; Dewitt, J.; Osborne, J. Is science for us? Black students’ and parents’ views of science and science careers. Sci. Educ. 2015, 99, 199–237. [Google Scholar] [CrossRef] [Green Version]
- Archer, L.; DeWitt, J.; Osborne, J.; Dillon, J.; Willis, B.; Wong, B. “Balancing acts”: Elementary school girls’ negotiations of femininity, achievement, and science. Sci. Educ. 2012, 96, 967–989. [Google Scholar] [CrossRef]
- Gorard, S.; See, B.H. The impact of socio-economic status on participation and attainment in science. Stud. Sci. Educ. 2009, 45, 93–129. [Google Scholar] [CrossRef]
- Henderson, M.; Sullivan, A.; Anders, J.; Moulton, V. Social class, gender and ethnic differences in subjects taken at age 14. Curric. J. 2018, 29, 298–318. [Google Scholar] [CrossRef]
- Riegle-Crumb, C.; Moore, C.; Ramos-Wada, A. Who wants to have a career in science or math? Exploring adolescents’ future aspirations by gender and race/ethnicity. Sci. Educ. 2011, 95, 458–476. [Google Scholar] [CrossRef] [Green Version]
- Bøe, M.V.; Henriksen, E.K.; Lyons, T.; Schreiner, C. Participation in science and technology: Young people’s achievement-related choices in late-modern societies. Stud. Sci. Educ. 2011, 47, 37–72. [Google Scholar] [CrossRef]
- Mangan, K. Despite Efforts to Close Gender Gaps, Some Disciplines Remain Lopsided; The Chronicle of Higher Education: Washington, DC, USA, 2012. [Google Scholar]
- Funk, C.; Parker, K. Women and Men in STEM Often at Odds over Workplace Equity; Pew Research Center: Washington, DC, USA, 2018. [Google Scholar]
- The Royal Society. A Picture of the UK Scientific Workforce: Diversity Data Analysis for the Royal Society; The Royal Society: London, UK, 2014. [Google Scholar]
- Jansen, M.; Schroeders, U.; Lüdtke, O. Academic self-concept in science: Multidimensionality, relations to achievement measures, and gender differences. Learn. Individ. Differ. 2014, 30, 11–21. [Google Scholar] [CrossRef]
- Archer, L.; DeWitt, J.; Osborne, J.; Dillon, J.; Willis, B.; Wong, B. ‘Not girly, not sexy, not glamorous’: Primary school girls’ and parents’ constructions of science aspirations. Pedagog. Cult. Soc. 2013, 21, 171–194. [Google Scholar] [CrossRef]
- Eccles, J.S.; Jacobs, J.E.; Harold, R.D. Gender role stereotypes, expectancy effects, and parents’ socialization of gender differences. J. Soc. Issues 1990, 46, 183–201. [Google Scholar] [CrossRef]
- Archer, L.; DeWitt, J.; Osborne, J.; Dillon, J.; Willis, B.; Wong, B. Science aspirations, capital, and family habitus: How families shape children’s engagement and identification with science. Am. Educ. Res. J. 2012, 49, 881–908. [Google Scholar] [CrossRef]
- Archer, L.; DeWitt, J.; Willis, B. Adolescent boys’ science aspirations: Masculinity, capital, and power. J. Res. Sci. Teach. 2014, 51, 1–30. [Google Scholar] [CrossRef]
- Carlone, H.B.; Webb, A.W.; Archer, L.; Taylor, M. What kind of boy does science? A critical perspective on the science trajectories of four scientifically talented boys. Sci. Educ. 2015, 99, 438–464. [Google Scholar] [CrossRef]
- Reinhold, S.; Holzberger, D.; Seidel, T. Encouraging a career in science: A research review of secondary schools’ effects on students’ STEM orientation. Stud. Sci. Educ. 2018, 54, 69–103. [Google Scholar] [CrossRef]
- Robertson, I.J. Influences on choice of course made by university year 1 bioscience students: A case study. Int. J. Sci. Educ. 2000, 22, 1201–1218. [Google Scholar] [CrossRef]
- Esch, M.; Grosche, J. Fiktionale Fernsehprogramme im Berufsfindungsprozess. Ausgewählte Ergebnisse einer bundesweiten Befragung von Jugendlichen. In MINT und Chancengleichheit in fiktionalen Fernsehformaten; Bundesministerium für Bildung und Forschung: Bonn/Berlin, Germany, 2011. [Google Scholar]
- Callan, V.J.; Johnston, M.A. Social Media and Student Outcomes: Teacher, Student and Employer Views; National Centre for Vocational Education Research: Adelaide, Australia, 2017. [Google Scholar]
- Hoffner, C.A.; Levine, K.J.; Sullivan, Q.E.; Crowell, D.; Pedrick, L.; Berndt, P. TV characters at work: Television’s Role in the occupational aspirations of economically disadvantaged youths. J. Career Dev. 2006, 33, 3–18. [Google Scholar] [CrossRef]
- Rosenthal, S. Motivations to seek science videos on YouTube: Free-choice learning in a connected society. Int. J. Sci. Educ. Part B 2018, 8, 22–39. [Google Scholar] [CrossRef]
- Holbrook, A.; Panozza, L.; Prieto, E. Engineering in children’s fiction: Not a good story? Int. J. Sci. Math. Educ. 2009, 7, 723–740. [Google Scholar] [CrossRef]
- DeWitt, J.; Archer, L.; Osborne, J.; Dillon, J.; Willis, B.; Wong, B. High aspirations but low progression: The science aspirations-careers paradox amongst minority ethnic students. Int. J. Sci. Math. Educ. 2011, 9, 243–271. [Google Scholar] [CrossRef]
- Driesel-Lange, K.; Hany, E. Berufsorientierung am Ende des Gymnasiums: Die Qual der Wahl. In Schriften zur Berufsorientierung; Kracke, B., Hany, E., Eds.; Universität Erfurt: Erfurt, Germany, 2005. [Google Scholar]
- Venville, G.; Rennie, L.; Hanbury, C.; Longnecker, N. Scientists reflect on why they chose to study science. Res. Sci. Educ. 2013, 43, 2207–2233. [Google Scholar] [CrossRef] [Green Version]
- Spitzer, P. Untersuchungen zur Berufsorientierung als Baustein eines Relevanten Chemieunterrichts im Vergleich zwischen Mittel- und Oberstufe sowie Darstellung des Chem-Trucking-Projekts als Daraus Abgeleitete Interventionsmaßnahme für den Chemieunterricht; Universität Siegen: Siegen, Germany, 2017. [Google Scholar]
- Statistisches Bundesamt. Bevölkerung und Erwerbstätigkeit Bevölkerung mit Migrationshintergrund: Ergebnisse des Mikrozensus; Statistisches Bundesamt: Wiesbaden, Germany, 2013.
- A Language and Environment for Statistical Computing, R Version 3.4.2; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 17 August 2020).
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- psych: Procedures for Psychological, Psychometric, and Personality Research. R Package Version 1.7.8. Evanston, IL, USA. Available online: https://CRAN.R-project.org/package=psych (accessed on 17 August 2020).
- Sjstats: Statistical Functions for Regression Models. R Package Version 0.14.3. Available online: https://CRAN.R-project.org/package=sjstats (accessed on 17 August 2020).
- Ellenberger, L.; Ludwig-Mayerhofer, W. Studieren in Siegen 2005 Ergebnisse der Befragung der Studienanfängerkohorte im BA Social Science des Wintersemesters 2004/2005; Universität Siegen: Siegen, Germany, 2005. [Google Scholar]
- Hachmeister, C.-D.; Harde, M.E.; Langer, M.F. Einflussfaktoren der Studienentscheidung: Eine empirische Studie von CHE und Einstieg; CHE: Gütersloh, Germany, 2007. [Google Scholar]
- Gmodels: Various R Programming Tools for Model Fitting. R Package Version 2.18.1. Available online: https://CRAN.R-project.org/package=gmodels (accessed on 17 August 2020).
- Streiner, D.L. Starting at the beginning: An introduction to coefficient alpha and internal consistency. J. Personal. Assess. 2003, 80, 99–103. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modeling: A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Marsh, H.W.; Hau, K.-T.; Wen, Z. In search of golden rules: Comment on hypothesis-testing Approaches to Setting Cutoff values for fit indexes and dangers in overgeneralizing findings. Struct. Equ. Modeling A Multidiscip. J. 2004, 11, 320–341. [Google Scholar] [CrossRef]
- Nguyen-Kim, M.T. Kanalinfo. maiLab. Available online: https://www.youtube.com/channel/UCyHDQ5C6z1NDmJ4g6SerW8g/about (accessed on 8 September 2020).
- Eilks, I.; Nielsen, J.A.; Hofstein, A. Learning about the role and function of science in public debate as an essential component of scientific literacy. In Topics and Trends in Current Science Education; Bruguière, C., Tiberghien, A., Clément, P., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 1, pp. 85–100. [Google Scholar] [CrossRef]
- Techtastisch. Techtastischer Kanaltrailer. Available online: https://youtu.be/akalsyYH9Dw (accessed on 8 September 2020).
Age | Total Number of Students (% of the Total Sample) | Female (% of the Age Group) | with Migration Background (% of the Age Group) |
---|---|---|---|
13 | 3 (< 0.01%) | 1 (33.0%) | 3 (100.0%) |
14 | 85 (18.9%) | 40 (47.1%) | 39 (45.9%) |
15 | 200 (44.4%) | 96 (48.0%) | 94 (47.0%) |
16 | 107 (23.8%) | 44 (41.1%) | 56 (51.4%) |
17 | 46 (10.2%) | 19 (41.3%) | 27 (58.7%) |
18 | 6 (0.01%) | 3 (50.0%) | 2 (33.0%) |
19 | 3 (< 0.01%) | 3 (100.0%) | 2 (33.0%) |
value is missing | -- | 1 (< 0.01%) | 8 (< 0.01%) |
total | 450 (100%) | 206 (45.7%) | 223 (49.6%) |
Latent Variable | Indicator | b | SE | z | β | sig |
---|---|---|---|---|---|---|
science aspirations | sa1 | 0.744 | 0.041 | 17.976 | 0.762 | *** |
sa2 | 0.761 | 0.041 | 18.758 | 0.786 | *** | |
sa3 | 0.784 | 0.037 | 21.305 | 0.858 | *** | |
sa4 | 0.770 | 0.041 | 18.856 | 0.789 | *** | |
need for information | ni2 | 0.376 | 0.053 | 7.097 | 0.370 | *** |
ni3 | 0.629 | 0.049 | 12.724 | 0.648 | *** | |
ni4 | 0.805 | 0.049 | 16.365 | 0.855 | *** | |
ni5 | 0.576 | 0.052 | 11.173 | 0.567 | *** |
Sources the Students have Used | Sources the Students Would Like to Use More | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b | SE | eb | CIlower | CIlower | p | b | SE | eb | CIlower | CIlower | p | ||
online video platforms | fem | −0.70 | 0.19 | 0.50 | 0.34 | 0.73 | < 0.001 *** | −0.11 | 0.34 | 0.89 | 0.45 | 1.76 | 0.752 |
mig | 0.23 | 0.19 | 1.25 | 0.86 | 1.83 | 0.245 | −0.74 | 0.36 | 0.47 | 0.23 | 0.94 | 0.038 * | |
teachers | fem | 0.09 | 0.23 | 1.09 | 0.70 | 1.70 | 0.701 | 0.59 | 0.34 | 1.81 | 0.93 | 3.56 | 0.081 |
mig | 0.01 | 0.23 | 1.01 | 0.65 | 1.57 | 0.970 | 0.96 | 0.36 | 2.61 | 1.31 | 5.49 | 0.008 ** | |
male family member | fem | 0.24 | 0.21 | 1.27 | 0.85 | 1.92 | 0.244 | 0.08 | 0.62 | 1.08 | 0.31 | 3.68 | 0.896 |
mig | −0.52 | 0.21 | 0.59 | 0.39 | 0.89 | 0.012 * | 1.52 | 0.79 | 4.59 | 1.16 | 30.40 | 0.053 | |
female family member | fem | 0.57 | 0.21 | 1.77 | 1.17 | 2.67 | 0.007 ** | −0.74 | 0.60 | 0.48 | 0.13 | 1.46 | 0.220 |
mig | −0.16 | 0.21 | 0.85 | 0.57 | 1.29 | 0.454 | 0.54 | 0.56 | 1.71 | 0.58 | 5.66 | 0.344 | |
fair | fem | 0.56 | 0.22 | 1.75 | 1.14 | 2.71 | 0.011 * | 0.59 | 0.30 | 1.80 | 1.00 | 3.29 | 0.053 |
mig | −0.30 | 0.22 | 0.74 | 0.48 | 1.15 | 0.181 | −0.02 | 0.30 | 0.98 | 0.54 | 1.77 | 0.946 | |
open day university | fem | −0.10 | 0.27 | 0.90 | 0.53 | 1.52 | 0.702 | 0.71 | 0.32 | 2.04 | 2.09 | 3.88 | 0.027 * |
mig | 0.21 | 0.26 | 1.24 | 0.74 | 2.08 | 0.422 | 0.43 | 0.32 | 1.54 | 0.83 | 2.91 | 0.177 | |
other activity university | fem | 0.06 | 0.36 | 1.06 | 0.52 | 2.14 | 0.872 | 0.53 | 0.36 | 1.70 | 0.85 | 3.46 | 0.137 |
mig | 0.11 | 0.36 | 1.12 | 0.55 | 2.28 | 0.754 | 1.38 | 0.42 | 3.97 | 1.84 | 9.56 | < 0.001 *** |
Latent Variable | Indicator | b | SE | z | β | sig |
---|---|---|---|---|---|---|
inclination | i1 | 0.576 | 0.033 | 17.676 | 0.857 | *** |
i2 | 0.532 | 0.043 | 12.288 | 0.641 | *** | |
i3 | 0.462 | 0.029 | 15.739 | 0.783 | *** | |
belief in success | bs1 | 0.425 | 0.046 | 9.276 | 0.529 | *** |
bs2 | 0.647 | 0.046 | 14.034 | 0.770 | *** | |
bs3 | 0.535 | 0.040 | 13.251 | 0.729 | *** | |
financial security | fs1 | 0.725 | 0.041 | 17.596 | 0.818 | *** |
fs2 | 0.731 | 0.045 | 16.233 | 0.772 | *** | |
fs3 | 0.818 | 0.040 | 20.632 | 0.912 | *** | |
prestige | p1 | 0.685 | 0.048 | 14.234 | 0.720 | *** |
p2 | 0.738 | 0.049 | 15.053 | 0.752 | *** | |
p3 | 0.605 | 0.040 | 15.281 | 0.760 | *** | |
importance for society | s1 | 0.759 | 0.052 | 14.611 | 0.726 | *** |
s2 | 0.776 | 0.045 | 17.251 | 0.822 | *** | |
s3 | 0.818 | 0.046 | 17.838 | 0.843 | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rüschenpöhler, L.; Hönig, M.; Küsel, J.; Markic, S. The Role of Gender and Culture in Vocational Orientation in Science. Educ. Sci. 2020, 10, 240. https://doi.org/10.3390/educsci10090240
Rüschenpöhler L, Hönig M, Küsel J, Markic S. The Role of Gender and Culture in Vocational Orientation in Science. Education Sciences. 2020; 10(9):240. https://doi.org/10.3390/educsci10090240
Chicago/Turabian StyleRüschenpöhler, Lilith, Marina Hönig, Julian Küsel, and Silvija Markic. 2020. "The Role of Gender and Culture in Vocational Orientation in Science" Education Sciences 10, no. 9: 240. https://doi.org/10.3390/educsci10090240
APA StyleRüschenpöhler, L., Hönig, M., Küsel, J., & Markic, S. (2020). The Role of Gender and Culture in Vocational Orientation in Science. Education Sciences, 10(9), 240. https://doi.org/10.3390/educsci10090240