Makey Makey as an Interactive Robotic Tool for High School Students’ Learning in Multicultural Contexts
Abstract
:1. Introduction
Study Objective and Research Questions
2. Materials and Methods
2.1. Research Design
2.2. Participants
2.3. Study Dimensions
2.4. Instrument
2.5. Procedure
2.6. Data Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hrastinski, S.; Rising, M.E. Communities, networks and ICT professional development across schools in close physical proximity. Technol. Pedagog. Educ. 2020, 29, 219–229. [Google Scholar] [CrossRef]
- Bardakci, S.; Ünver, T.K. Preservice ICT teachers’ technology metaphors in the margin of technological determinism. Educ. Inf. Technol. 2019, 25, 905–925. [Google Scholar] [CrossRef]
- Aznar-Díaz, I.; Trujillo-Torres, J.M.; Romero-Rodríguez, J.M. Estudio bibliométrico sobre la realidad virtual aplicada a la neurorrehabilitación y su influencia en la literatura científica. Rev. Cuba. Inf. Cienc. Salud 2018, 29, 1–11. [Google Scholar] [CrossRef]
- Rodríguez-García, A.M.; Cáceres-Reche, M.P.; Alonso-García, S. La competencia digital del futuro docente: Análisis bibliométrico de la productividad científica indexada en Scopus. Int. J. Educ. Res. Innov. 2018, 10, 317–333. [Google Scholar]
- Ifinedo, E.; Rikala, J.; Hämäläinen, T. Factors affecting Nigerian teacher educators’ technology integration: Considering characteristics, knowledge constructs, ICT practices and beliefs. Comput. Educ. 2020, 146, 103760. [Google Scholar] [CrossRef]
- Chen, C.-L.; Wu, C.-C.; Chen, C.-L.; Cheng-Chih, W. Students’ behavioral intention to use and achievements in ICT-Integrated mathematics remedial instruction: Case study of a calculus course. Comput. Educ. 2020, 145, 103740. [Google Scholar] [CrossRef]
- Aznar, I.; Cáceres, M.P.; Trujillo, J.M.; Romero, J.M. Impacto de las apps móviles en la actividad física: Un metaanálisis. Retos Nuevas Tendencias Educación Física Deporte Recreación 2019, 36, 52–57. [Google Scholar]
- López-Belmonte, J.; Pozo-Sánchez, S.; Fuentes-Cabrera, A.; Vicente-Bujez, M.R. Escenarios innovadores en Educación Física: El trabajo de la expresión corporal y musical mediado por la robótica. Retos Nuevas Tend. Educ. Fís. Deporte Recreac. 2020, 38, 567–575. [Google Scholar]
- Prain, V.; Waldrip, B. An Exploratory Study of Teachers’ and Students’ Use of Multi-modal Representations of Concepts in Primary Science. Int. J. Sci. Educ. 2006, 28, 1843–1866. [Google Scholar] [CrossRef]
- Murcia, K. Interactive and multimodal pedagogy: A case study of how teachers and students use interactive whiteboard technology in primary science. Aust. J. Educ. 2014, 58, 74–88. [Google Scholar] [CrossRef]
- Andyani, H.; Setyosari, P.; Wiyono, B.B.; Djatmika, E.T. Does Technological Pedagogical Content Knowledge Impact on the Use of ICT In Pedagogy? Int. J. Emerg. Technol. Learn. (iJET) 2020, 15, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Kim, H.; Lai, W.; Hwang, G.-J. Cognitive regulations in ICT-supported flipped classroom interactions: An activity theory perspective. Br. J. Educ. Technol. 2019, 51, 103–130. [Google Scholar] [CrossRef]
- Gemiya, A.G. Factors Affecting the Use of ICT Services in Ethiopia. Int. J. Inf. Commun. Technol. Educ. 2020, 16, 50–60. [Google Scholar] [CrossRef]
- Rodríguez-García, A.; Sánchez, F.R.; Ruiz-Palmero, J. Competencia digital, educación superior y formación del profesorado: Un estudio de meta-análisis en la web of science. Pixel BIT Rev. Medios Educ. 2019, 54, 65–82. [Google Scholar] [CrossRef] [Green Version]
- López-Belmonte, J.; Pozo-Sánchez, S.; Cabrera, A.F.; Torres, J.M.T. Analytical Competences of Teachers in Big Data in the Era of Digitalized Learning. Educ. Sci. 2019, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Sharma, E. Developing ICT adoption model based on the perceived awareness and perceived usefulness of technology among telecom users. Int. J. Technol. Enhanc. Learn. 2020, 12, 99. [Google Scholar] [CrossRef]
- Senkbeil, M.; Ihme, J.M.; Schöber, C. Wie gut sind angehende und fortgeschrittene Studierende auf das Leben und Arbeiten in der digitalen Welt vorbereitet? Ergebnisse eines Standard Setting-Verfahrens zur Beschreibung von ICT-bezogenen Kompetenzniveaus. Z. Erzieh. 2019, 22, 1359–1384. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, B.O.-A.; Correa, J.M.; Barragán, A.G.-C. Las TIC en la atención a la diversidad educativa: El caso de la Comunidad Autónoma Vasca. Rev. Educ. Distancia (RED) 2019, 19, 1–21. [Google Scholar] [CrossRef]
- Bújez, A.V.; Mohedo, M.T.D. New Challenges for Music Studies in Higher Education. Proc. Soc. Behav. Sci. 2012, 69, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Camilleri, P. Minding the Gap. Proposing a Teacher Learning-Training Framework for the Integration of Robotics in Primary Schools. Inform. Educ. 2017, 16, 165–179. [Google Scholar] [CrossRef]
- López-Belmonte, J.; Pozo-Sánchez, S.; Cabrera, A.F.; Romero-Rodríguez, J.-M. Análisis del Liderazgo Electrónico y la Competencia Digital del Profesorado de Cooperativas Educativas de Andalucía (España). Multidiscip. J. Educ. Res. 2019, 9, 194–223. [Google Scholar] [CrossRef]
- Jung, S.E.; Lee, K.; Cherniak, S.; Cho, E. Non-sequential Learning in a Robotics Class: Insights from the Engagement of a Child with Autism Spectrum Disorder. Technol. Knowl. Learn. 2019, 25, 63–81. [Google Scholar] [CrossRef]
- Benitti, F.B.V. Exploring the educational potential of robotics in schools: A systematic review. Comput. Educ. 2012, 58, 978–988. [Google Scholar] [CrossRef]
- Zhong, B.; Li, T. Can Pair Learning Improve Students’ Troubleshooting Performance in Robotics Education? J. Educ. Comput. Res. 2019, 58, 220–248. [Google Scholar] [CrossRef]
- Newton, K.J.; Leonard, J.; Buss, A.; Wright, C.G.; Barnes-Johnson, J. Informal STEM: Learning with robotics and game design in an urban context. J. Res. Technol. Educ. 2020, 52, 129–147. [Google Scholar] [CrossRef]
- López-Belmonte, J.L.; Pozo-Sánchez, S.; Vicente-Bújez, M.R.; Díaz-Mohedo, M.T. Herramientas robóticas para la dinamización de nuevos espacios educativos. Campus Virtuales 2019, 8, 63–73. [Google Scholar]
- González-Martínez, J.; Minguell, M.E.; Bosch, M.P. ¿Robots o programación? El concepto de Pensamiento Computacional y los futuros maestros. Educ. Knowl. Soc. (EKS) 2018, 19, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Noh, J.; Lee, J. Effects of robotics programming on the computational thinking and creativity of elementary school students. Educ. Technol. Res. Dev. 2019, 68, 463–484. [Google Scholar] [CrossRef]
- Gummineni, M. Implementing Bloom’s Taxonomy Tool for Better Learning Outcomes of PLC and Robotics Course. Int. J. Emerg. Technol. Learn. (iJET) 2020, 15, 184–192. [Google Scholar] [CrossRef]
- Scherer, S. Multimodal Behavior Analytics for Interactive Technologies. KI-Künstl. Intell. 2015, 30, 91–92. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.C.W.; Lo, K.M.J. From Teacher-Designer to Student-Researcher: A Study of Attitude Change Regarding Creativity in STEAM Education by Using Makey Makey as a Platform for Human-Centred Design Instrument. J. STEM Educ. Res. 2019, 2, 75–91. [Google Scholar] [CrossRef]
- Mäkelä, S.; Vellonen, V. Designing for appropriation: A DIY kit as an educator’s tool in special education schools. Int. J. Hum.-Comput. Stud. 2018, 118, 14–23. [Google Scholar] [CrossRef]
- López-Belmonte, J.; Segura-Robles, A.; Moreno-Guerrero, A.J.; Parra-González, M.E. Machine Learning and Big Data in the Impact Literature. A Bibliometric Review with Scientific Mapping in Web of Sciebce. Symmetry 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Lauzurica, B.; Moreno-Salinas, D. Computational Thinking and Robotics: A Teaching Experience in Compulsory Secondary Education with Students with High Degree of Apathy and Demotivation. Sustainability 2019, 11, 5109. [Google Scholar] [CrossRef] [Green Version]
- López-Belmonte, J.; Marín-Marín, J.A.; Soler-Costa, R.; Moreno-Guerrero, A.J. Arduino advances in web of science. A Scientific mapping of literary production. IEEE Access 2020, 8, 128674–128682. [Google Scholar] [CrossRef]
- Chaves, I.; Esquivel, J.; Jiménez, A.C.; Sánchez, H. Makey Makey and its Possible Application in Libraries. Ecienc. Inf. 2018, 8, 190–205. [Google Scholar]
- Arís, N.; Orcos, L. Educational Robotics in the Stage of Secondary Education: Empirical Study on Motivation and STEM Skills. Educ. Sci. 2019, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.; Bers, M.U. Investigating the use of robotics to increase girls’ interest in engineering during early elementary school. Int. J. Technol. Des. Educ. 2018, 29, 1033–1051. [Google Scholar] [CrossRef]
- Del Olmo-Muñoz, J.; Gutiérrez, R.C.; González-Calero, J.A. Computational thinking through unplugged activities in early years of Primary Education. Comput. Educ. 2020, 150, 103832. [Google Scholar] [CrossRef]
- López, J.M.S.; Sevillano-García, M.-L.; Vazquez-Cano, E. The effect of programming on primary school students’ mathematical and scientific understanding: Educational use of mBot. Educ. Technol. Res. Dev. 2019, 67, 1405–1425. [Google Scholar] [CrossRef]
- Ponce, P.; Molina, A.; Lopez-Caudana, E.; Reyes, G.E.B.; Parra, N.M. Improving education in developing countries using robotic platforms. Int. J. Interact. Des. Manuf. (IJIDeM) 2019, 13, 1401–1422. [Google Scholar] [CrossRef]
- Hinojo-Lucena, F.J.; Dúo-Terrón, P.; Ramos, M.; Rodríguez-Jiménez, C.; Moreno-Guerrero, A.J. Scientific Performance and Mapping of the term STEM in Education on the Web of Science. Sustainability 2020, 12, 2279. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.; Mentzer, N.; Kramer-Bottiglio, R. Pilot analysis of the impacts of soft robotics design on high-school student engineering perceptions. Int. J. Technol. Des. Educ. 2018, 29, 1083–1104. [Google Scholar] [CrossRef]
- Graván, P.R.; Hervás-Gómez, C.; Padilla, A.H.M.; Fernández-Márquez, E. Perceptions about the Use of Educational Robotics in the Initial Training of Future Teachers: A Study on STEAM Sustainability among Female Teachers. Sustainability 2020, 12, 4154. [Google Scholar] [CrossRef]
- Chien, L.; Yu, C. Increase in physical activities in kindergarten children with cerebral palsy by employing MaKey–MaKey-based task systems. Res. Dev. Disabil. 2014, 35, 1963–1969. [Google Scholar]
- Hagerman, M.S. Les Bricoscientifiques: Exploring the Intersections of Disciplinary, Digital, and Maker Literacies Instruction in a Franco-Ontarian School. J. Adolesc. Adult Lit. 2017, 61, 319–325. [Google Scholar] [CrossRef]
- Lee, E.; Kafai, Y.; Vasudevan, V.; Davis, R. Playing in the arcade: Designing tangible interfaces with MaKey MaKey for Scratch games. In Playful User Interfaces; Springer: Singapore, 2014; pp. 277–292. [Google Scholar]
- Vega, J.; Plaza, J.M.C. PyBoKids: An Innovative Python-Based Educational Framework Using Real and Simulated Arduino Robots. Electronics 2019, 8, 899. [Google Scholar] [CrossRef] [Green Version]
- Fokides, E.; Papoutsi, A. Using Makey-Makey for teaching electricity to primary school students. A pilot study. Educ. Inf. Technol. 2019, 25, 1193–1215. [Google Scholar] [CrossRef]
- Lozano, P.A.; Guerrero, B.A.; Gordillo, W.D. Scratch y Makey Makey: Herramientas para fomentar habilidades del pensamiento de orden superior. Redes Ing. 2016, 1, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Morais, I.; Bachrach, M.S. Analyzing the Impact of Computer Science Workshops on Middle School Teachers. In Proceedings of the 2019 IEEE Integrated STEM Education Conference (ISEC), Princeton, NJ, USA, 16 March 2019; pp. 57–61. [Google Scholar] [CrossRef]
- Ulstad, S.O.; Halvari, H.; Deci, E.L. The Role of Students’ and Teachers’ Ratings of Autonomous Motivation in a Self-Determination Theory Model Predicting Participation in Physical Education. Scand. J. Educ. Res. 2018, 63, 1086–1101. [Google Scholar] [CrossRef]
- Hernández, R.; Fernández, C.; Baptista, M.P. Metodología de la Investigación, 6th ed.; McGraw Hill: Madrid, Spain, 2014; pp. 129–168. [Google Scholar]
- Rodríguez, N. Diseños experimentales en educación. Rev. Pedag. 2011, 32, 147–158. [Google Scholar]
- Hinojo-Lucena, F.-J.; López-Belmonte, J.; Cabrera, A.F.; Torres, J.M.T.; Pozo-Sánchez, S. Academic Effects of the Use of Flipped Learning in Physical Education. Int. J. Environ. Res. Public Health 2019, 17, 276. [Google Scholar] [CrossRef] [Green Version]
- López-Nuñez, J.A.; López-Belmonte, J.; Moreno-Guerrero, A.-J.; Marin-Marin, J.-A. Dietary Intervention through Flipped Learning as a Techno Pedagogy for the Promotion of Healthy Eating in Secondary Education. Int. J. Environ. Res. Public Health 2020, 17, 3007. [Google Scholar] [CrossRef] [PubMed]
- López-Nuñez, J.A.; López-Belmonte, J.; Moreno-Guerrero, A.-J.; Pozo-Sánchez, S. Effectiveness of Innovate Educational Practices with Flipped Learning and Remote Sensing in Earth and Environmental Sciences—An Exploratory Case Study. Remote Sens. 2020, 12, 897. [Google Scholar] [CrossRef] [Green Version]
- Pozo-Sánchez, S.; López-Belmonte, J.; Cabrera, A.F.; López-Nuñez, J.A. Gamification as a Methodological Complement to Flipped Learning—An Incident Factor in Learning Improvement. Multimodal Technol. Interact. 2020, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Guerrero, A.-J.; Romero-Rodríguez, J.-M.; López-Belmonte, J.; García, S.A. Flipped Learning Approach as Educational Innovation in Water Literacy. Water 2020, 12, 574. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Guerrero, A.-J.; García, M.R.; Heredia, N.M.; García, A.M.R. Collaborative Learning Based on Harry Potter for Learning Geometric Figures in the Subject of Mathematics. Mathematics 2020, 8, 369. [Google Scholar] [CrossRef] [Green Version]
- Chou, P.-N.; Feng, S.-T. Using a Tablet Computer Application to Advance High School Students’ Laboratory Learning Experiences: A Focus on Electrical Engineering Education. Sustainability 2019, 11, 381. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, A.; Soyer, F. Effect of Physical Education and Play Applications on School Social Behaviors of Mild-Level Intellectually Disabled Children. Educ. Sci. 2018, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Parra-González, M.; López-Belmonte, J.; Segura-Robles, A.; Cabrera, A.F. Active and Emerging Methodologies for Ubiquitous Education: Potentials of Flipped Learning and Gamification. Sustainability 2020, 12, 602. [Google Scholar] [CrossRef] [Green Version]
- Jöreskog, K.G. Analysis of Ordinal Variables 2: Cross-Sectional Data Text of the Workshop “Structural Equation Modelling with LISREL 8.51”; Friedrich-Schiller-Universität Jena: Jena, Germany, 2001; pp. 116–119. [Google Scholar]
Likert Scale n (%) | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dimensions | None | Few | Enough | Completely | M | SD | Skw | Kme | |
Control group | Motivation | 12 (13.5) | 18 (20.2) | 29 (32.6) | 30 (33.7) | 2.87 | 1.03 | −0.477 | −0.936 |
Teacher–student | 13 (14.6) | 18 (20.2) | 29 (32.6) | 29 (32.6) | 2.83 | 1.04 | −0.444 | −0.990 | |
Student–content | 13 (14.6) | 13 (14.6) | 34 (38.2) | 29 (32.6) | 2.89 | 1.02 | −0.606 | −0.729 | |
Student–student | 10 (11.2) | 23 (25.8) | 29 (32.6) | 27 (30.3) | 2.82 | 0.995 | −0.336 | −0.964 | |
Autonomy | 12 (13.5) | 18 (20.2) | 26 (29.2) | 33 (37.1) | 2.90 | 1.05 | −0.505 | −0.987 | |
Collaboration | 12 (13.5) | 18 (20.2) | 27 (30.3) | 32 (36) | 2.89 | 1.04 | −0.495 | −0.972 | |
Deepening | 14 (15.7) | 16 (18) | 29 (32.6) | 30 (33.7) | 2.84 | 1.06 | −0.487 | −0.993 | |
Resolution | 12 (13.5) | 20 (22.5) | 29 (32.6) | 28 (31.5) | 2.82 | 1.02 | −0.398 | −0.986 | |
Class time | 11 (12.4) | 20 (22.5) | 29 (32.6) | 29 (32.6) | 2.85 | 1.01 | −0.428 | −0.941 | |
Ratings a | 7 (7.9) | 19 (21.3) | 27 (30.3) | 36 (40.4) | 3.03 | 0.971 | −0.602 | −0.736 | |
Teacher ratings a | 9 (10.1) | 21 (23.6) | 31 (34.8) | 28 (31.5) | 2.88 | 0.975 | −0.424 | −0.835 | |
Experimental group | Motivation | 4 (4.5) | 16 (18.2) | 18 (20.5) | 50 (56.8) | 3.30 | 0.924 | −0.985 | −0.261 |
Teacher–student | 3 (3.4) | 14 (15.9) | 23 (26.1) | 48 (54.5) | 3.32 | 0.865 | −0.999 | −0.037 | |
Student–content | 4 (4.5) | 17 (19.3) | 17 (19.3) | 50 (56.8) | 3.28 | 0.934 | −0.948 | −0.382 | |
Student–student | 9 (10.2) | 17 (19.3) | 21 (23.9) | 41 (46.6) | 3.07 | 1.03 | −0.708 | −0.790 | |
Autonomy | 11 (12.5) | 17 (19.3) | 17 (19.3) | 43 (48.9) | 3.05 | 1.09 | −0.687 | −0.957 | |
Collaboration | 6 (6.8) | 16 (18.2) | 17 (19.3) | 49 (55.7) | 3.24 | 0.983 | −0.946 | −0.339 | |
Deepening | 10 (11.4) | 14 (15.9) | 24 (27.3) | 40 (45.5) | 3.07 | 1.03 | −0.771 | −0.644 | |
Resolution | 9 (10.2) | 13 (14.8) | 18 (20.5) | 48 (54.5) | 3.19 | 1.03 | −0.967 | −0.401 | |
Class time | 9 (10.2) | 16 (18.2) | 27 (30.7) | 36 (40.9) | 3.02 | 1.01 | −0.671 | −0.684 | |
Ratings a | 6 (6.8) | 15 (17) | 18 (20.5) | 49 (55.7) | 3.25 | 0.974 | −0.984 | −0.286 | |
Teacher ratings a | 5 (5.7) | 14 (15.9) | 22 (25) | 47 (53.4) | 3.26 | 0.928 | −0.990 | −0.118 |
Dimensions | µ (X1−X2) | tn1 + n2-2 | df | d | rxy |
---|---|---|---|---|---|
Motivation | −0.464 (2.83−3.30) | −3.124 ** | 175 | 0.023 | 0.230 |
Teacher–student | −0520 (2.80−3.32) | −3.582 ** | 175 | 0.023 | 0.261 |
Student–content | −0.430 (2.85−3.28) | −2.895 ** | 175 | 0.046 | 0.214 |
Student–student | −0.282 (2.79−3.07) | n.s. | - | - | - |
Autonomy | −0.180 (2.87−3.05) | n.s. | - | - | - |
Collaboration | −0.385 (2.85−3.24) | −2.502 * | 175 | 0.017 | 0.186 |
Deepening | −0.259 (2.81−3.07) | n.s. | - | - | - |
Resolution | −0.407 (2.79−3.19) | −2.605 ** | 175 | −0.010 | 0.193 |
Class time | −0.203 (2.82−3.02) | n.s. | - | - | - |
Ratings a | −0.250 (3.00−3.25) | n.s. | - | - | - |
Teacher ratings a | −0.419 (2.84−3.26) | −2.905 ** | 175 | −0.006 | 0.215 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Marín, J.-A.; Costa, R.S.; Moreno-Guerrero, A.-J.; López-Belmonte, J. Makey Makey as an Interactive Robotic Tool for High School Students’ Learning in Multicultural Contexts. Educ. Sci. 2020, 10, 239. https://doi.org/10.3390/educsci10090239
Marín-Marín J-A, Costa RS, Moreno-Guerrero A-J, López-Belmonte J. Makey Makey as an Interactive Robotic Tool for High School Students’ Learning in Multicultural Contexts. Education Sciences. 2020; 10(9):239. https://doi.org/10.3390/educsci10090239
Chicago/Turabian StyleMarín-Marín, José-Antonio, Rebeca Soler Costa, Antonio-José Moreno-Guerrero, and Jesús López-Belmonte. 2020. "Makey Makey as an Interactive Robotic Tool for High School Students’ Learning in Multicultural Contexts" Education Sciences 10, no. 9: 239. https://doi.org/10.3390/educsci10090239
APA StyleMarín-Marín, J. -A., Costa, R. S., Moreno-Guerrero, A. -J., & López-Belmonte, J. (2020). Makey Makey as an Interactive Robotic Tool for High School Students’ Learning in Multicultural Contexts. Education Sciences, 10(9), 239. https://doi.org/10.3390/educsci10090239