Does Gender Equality in Managerial Positions Improve the Gender Wage Gap? Comparative Evidence from Europe
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Measuring Gender Equality in Managerial Positions
3.2. Baseline Estimates
3.3. Unconditional Quantile Regression
4. Data and Sample Description
5. Econometric Results
5.1. Baseline Estimates
5.2. Unconditional Quantile Regression Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | The formula used to calculate the index of gender equality in managerial positions is based on the gender wage gap measure used in the construction of the Gender Equality Index by the European Institute for Gender Equality (EIGE 2017). |
2 | Equation (6) is estimated using the STATA module rifghde by Ríos-Ávila (2020). The command uses a two-step procedure. First, RIF are estimated as in Equation (4), and second, OLS with one high-dimensional fixed effect (the establishment fixed effect) is applied. The module is part of the STATA package RIF available at: https://github.com/friosavila/stpackages/tree/main/rif (accessed on 27 March 2023). |
3 | International Standard Classification of Occupations, year 2008. |
4 | We do not present the results for the rest of control variables due to space limitations. The overall results are available upon request on the authors. |
References
- Abraham, Mabel. 2017. Pay Formalization Revisited: Considering the Effects of Manager Gender and Discretion on Closing the Gender Wage Gap. Academy of Management Journal 60: 29–54. [Google Scholar] [CrossRef]
- Akerlof, George A., and Rachel E. Kranton. 2000. Economics and identity. The Quarterly Journal of Economics 115: 715–53. [Google Scholar] [CrossRef]
- Albrecht, James, Anders Bjorklund, and Susan Vroman. 2003. Is there a glass ceiling in Sweden? Journal of Labor Economics 21: 145–77. [Google Scholar] [CrossRef]
- Arulampalam, Wiji, Alison L. Booth, and Mark L. Bryan. 2007. Is There a Glass Ceiling over Europe? Exploring the Gender Pay Gap across the Wage Distribution. ILR Review 60: 163–86. [Google Scholar] [CrossRef]
- Bächmann, Ann-Christin, Corinna Frodermann, and Dana Müller. 2020. Does the Firm Make the Difference? The Influence of Organizational Family-Friendly Arrangements on the Duration of Employment Interruptions after Childbirth. European Sociological Review 36: 798–813. [Google Scholar] [CrossRef]
- Beaman, Lori, Esther Duflo, Rohini Pande, and Petia Topalova. 2012. Female Leadership Raises Aspirations and Educational Attainment for Girls. Science 335: 582–86. [Google Scholar] [CrossRef] [PubMed]
- Beaman, Lori, Raghabendra Chattopadhyay, Esther Duflo, Rohini Pande, and Petia Topalova. 2009. Powerful Women: Does Exposure Reduce Bias? The Quarterly Journal of Economics 124: 1497–540. [Google Scholar] [CrossRef]
- Becker, Gary S. 1957. The Economics of Discrimination. Chicago: University of Chicago Press. 137p. [Google Scholar]
- Becker, Gary S. 1962. Investment in human capital: A theoretical analysis. Journal of Political Economy 70: 9–49. [Google Scholar] [CrossRef]
- Bell, Linda A. 2005. Women-led firms and the gender gap in top executive jobs. IZA Discussion Paper 1689. [Google Scholar] [CrossRef]
- Bertrand, Marianne, Claudia Goldin, and Lawrence F. Katz. 2010. Dynamics of the Gender Gap for Young Professionals in the Financial and Corporate Sectors. American Economic Journal Applied Economics 2: 228–55. [Google Scholar] [CrossRef]
- Bertrand, Marianne, Sandra E. Black, Sissel Jensen, and Adriana Lleras-Muney. 2019. Breaking the Glass Ceiling? The Effect of Board Quotas on Female Labour Market Outcomes in Norway. The Review of Economic Studies 86: 191–239. [Google Scholar] [CrossRef]
- Blau, Francine D., and Lawrence M. Kahn. 2017. The gender wage gap: Extent, trends, and explanations. Journal of Economic Literature 55: 789–865. [Google Scholar] [CrossRef]
- Busch, Felix. 2020. Gender Segregation, Occupational Sorting, and Growth of Wage Disparities Between Women. Demography 57: 1063–1088. [Google Scholar] [CrossRef]
- Cardoso, Ana R., and Rudolf Winter-Ebmer. 2010. Female-led firms and gender wage policies. ILR Review 64: 143–63. [Google Scholar] [CrossRef]
- Casado-Díaz, José M., Oana Driha, and Hipólito Simón. 2020. The Gender Wage Gap in Hospitality: New Evidence from Spain. Cornell Hospitality Quarterly 63: 399–417. [Google Scholar] [CrossRef]
- Christofides, Louis N., Alexandros Polycarpou, and Konstantinos Vrachimis. 2013. Gender wage gaps, ‘sticky floors’ and glass ceilings in Europe. Labor Economics 21: 86–102. [Google Scholar] [CrossRef]
- Chzhen, Yekaterina, and Karen Mumford. 2011. Gender gaps across the earnings distribution for full-time employees in Britain: Allowing for sample selection. Labour Economics 18: 837–44. [Google Scholar] [CrossRef]
- Cohen, Philip N., and Matt L. Huffman. 2007. Working for the Woman? Female Managers and the Gender Wage Gap. American Sociological Review 72: 681–704. [Google Scholar] [CrossRef]
- Collett, Clementine, Gina Neff, and Livia Gouvea. 2022. Los Efectos de la IA en la vida Laboral de las Mujeres. Paris: UNESCO, Organisation for Economic Co-operation and Development and Inter-American Development Bank. [Google Scholar] [CrossRef]
- Conde-Ruiz, J. Ignacio, and Ignacio Marra de Artíñano. 2016. Gender gaps in the Spanish labor market. In Estudios sobre la Economía Española—2016/32. Madrid: FEDEA. [Google Scholar]
- Cotter, David A., Joan M. Hermsen, Seth Ovadia, and Reeve Vanneman. 2001. The Glass Ceiling Effect. Social Forces 80: 655–81. [Google Scholar] [CrossRef]
- Cramarenco, Romana Emilia, Monica Ioana Burcă-Voicu, and Dan-Cristian Dabija. 2023. The impact of artificial intelligence (AI) on employees’ skills and well-being in global labor markets: A systematic review. Oeconomia Copernicana 14: 731–67. [Google Scholar] [CrossRef]
- Dalvit, Nicolò, Aseem Patel, and Joanne Tan. 2021. Intra-Firm Hierarchies and Gender Gaps. Labour Economics 77: 102029. [Google Scholar] [CrossRef]
- De la Rica, Sara, Juan J. Dolado, and Raquel Vegas. 2015. Gender Gaps in Performance Pay: New Evidence from Spain. Annals of Economics and Statistics 117/118: 41–59. [Google Scholar] [CrossRef]
- Derks, Belle, Naomi Ellemers, Colette van Laar, and Kim de Groot. 2011. Do sexist organizational cultures create the Queen Bee? British Journal of Social Psychology 50: 519–35. [Google Scholar] [CrossRef]
- Eagly, Alice H., and Steven J. Karau. 2002. Role Congruity Theory of Prejudice Toward Female Leaders. Psychological Review 109: 573–98. [Google Scholar] [CrossRef]
- England, Paula. 1992. Comparable Worth: Theories and Evidence. New York: Routledge. [Google Scholar] [CrossRef]
- Eurofound and EIGE. 2021. Upward Convergence in Gender Equality: How Close Is the Union of Equality? Luxembourg: Publications Office of the European Union. [Google Scholar]
- European Commission. 2021. Report on Equality between Women and Men in the EU 2021. Luxembourg: Publications Office of the European Union. Available online: https://ec.europa.eu/info/sites/default/files/aid_development_cooperation_fundamental_rights/annual_report_ge_2021_en.pdf (accessed on 27 March 2023).
- European Institute for Gender Equality. 2017. Gender Equality Index 2017: Methodological Report. Available online: https://eige.europa.eu/publications-resources/publications/gender-equality-index-2017-methodological-report?language_content_entity=en (accessed on 10 May 2023).
- Eurostat. 2020. 8 March 2020: International Women’s Day. 40/2020–6 March 2020. Available online: https://ec.europa.eu/eurostat/documents/2995521/10474926/3-06032020-AP-EN.pdf/763901be-81b7-ecd6-534e-8a2b83e82934 (accessed on 10 May 2023).
- Eurostat. 2023. Data Browser, Gender Pay Gap in Unadjusted Form. Available online: https://ec.europa.eu/eurostat/databrowser/view/sdg_05_20/default/table?lang=en (accessed on 10 May 2023).
- Firpo, Sergio, Nicole M. Fortin, and Thomas Lemieux. 2009. Unconditional quantile regressions. Econometrica 77: 953–73. Available online: http://www.jstor.org/stable/40263848 (accessed on 27 March 2023).
- Flabbi, Luca, Mario Macis, Andrea Moro, and Fabiano Schivardi. 2019. Do female executives make a difference? The impact of female leadership on gender gaps and firm performance. The Economic Journal 129: 2390–423. [Google Scholar] [CrossRef]
- Fortin, Nicole M. 2005. Gender role attitudes and the labour-market outcomes of women across OECD countries. Oxford Review of Economic Policy 21: 416–38. [Google Scholar] [CrossRef]
- Gharehgozli, Orkideh, and Vidya Atal. 2021. Gender Wage Gap: Within and Across Borders. Studies in Business and Economics 16: 74–83. [Google Scholar] [CrossRef]
- Goldin, Claudia. 2014. A grand gender convergence: Its last chapter. American Economic Review 104: 1091–119. [Google Scholar] [CrossRef]
- Groshen, Erica L. 1991. The structure of the female/male wage differential: Is it who you are, what you do, or where you work? The Journal of Human Resources 26: 457–73. [Google Scholar] [CrossRef]
- Hara, Hiromi. 2018. The gender wage gap across the wage distribution in Japan: Within- and between-establishment effects. Labour Economics 53: 213–29. [Google Scholar] [CrossRef]
- Hensvik, Lena E. 2014. Manager impartiality: Worker–firm matching and the gender wage gap. ILR Review 67: 395–421. [Google Scholar] [CrossRef]
- Hirsch, Boris. 2013. The impact of female managers on the gender pay gap: Evidence from linked employer–employee data for Germany. Economics Letters 119: 348–50. [Google Scholar] [CrossRef]
- Huddy, Leoni, and Nayda Terkildsen. 1993. Gender Stereotypes and the Perception of Male and Female Candidates. American Journal of Political Science 37: 119–47. [Google Scholar] [CrossRef]
- Huffman, Matt L. 2004. Gender Inequality Across Local Wage Hierarchies. Work and Occupations 31: 323–44. [Google Scholar] [CrossRef]
- Huffman, Matt L. 2016. Does the presence of women in management impact gender inequality? In Handbook on Well-Being of Working Women. Edited by Mary L. Connerley and Jiyun Wu. Dordrecht: Springer, pp. 175–87. [Google Scholar] [CrossRef]
- Huffman, Matt L., Joe King, and Malte Reichelt. 2017. Equality for Whom? Organizational Policies and the Gender Gap across the German Earnings Distribution. ILR Review 70: 16–41. [Google Scholar] [CrossRef]
- Hultin, Mia, and Ryszard Szulkin. 2003. Mechanisms of inequality: Unequal access to organizational power and the gender wage gap. European Sociological Review 19: 143–59. [Google Scholar] [CrossRef]
- International Labour Organization. 2019. Women in Business and Management. The Business Case of Change. International Labor Office, Geneva, Switzerland. Available online: https://www.ilo.org/wcmsp5/groups/public/---dgreports/---dcomm/---publ/documents/publication/wcms_700953.pdf (accessed on 10 May 2023).
- Javdani, Mohsen. 2015. Glass ceilings or glass doors? The role of firms in male-female wage disparities. The Canadian Journal of Economics 48: 529–60. [Google Scholar] [CrossRef]
- Kalogeraki, Olga, and Dimitrios Georgakakis. 2021. Friend or foe? CEO gender, political ideology, and gender-pay disparities in executive compensation. Long Range Planning 55: 102126. [Google Scholar] [CrossRef]
- Killewald, Alexandra, and Jonathan M. Bearak. 2014. Is the motherhood penalty larger for low-wage women? A comment on quantile regression. American Sociological Review 79: 350–57. [Google Scholar] [CrossRef]
- Kunze, Astrid, and Amalia Miller. 2017. Women helping women? Evidence from private sector data on workplace hierarchies. Review of Economics and Statistics 99: 769–75. [Google Scholar] [CrossRef]
- Leythienne, Denis, and Marina Pérez-Julián. 2021. Gender Pay Gaps in the European Union-A Statistical Analysis. Luxembourg: Publications Office of the European Union. [Google Scholar] [CrossRef]
- Magda, Igan, and Ewa Cukrowska-Torzewska. 2019. Do Women Managers Lower Gender Pay Gaps? Evidence from Public and Private Firms. Feminist Economics 25: 185–210. [Google Scholar] [CrossRef]
- Mateos de Cabo, Ruth, Ricardo Gimeno, and Lorenzo Escot. 2011. Disentangling discrimination on Spanish boards of directors. Corporate Governance: An International Review 19: 77–95. [Google Scholar] [CrossRef]
- Matsa, David A., and Amalia R. Miller. 2011. Chipping away at the glass ceiling: Gender spillovers in corporate leadership. American Economic Review 101: 635–39. [Google Scholar] [CrossRef]
- Mincer, Jacob A. 1974. Schooling and Earnings. In Schooling, Experience, and Earnings. Cambridge, MA: NBER, pp. 41–63. [Google Scholar]
- Mincer, Jacob, and Solomon Polachek. 1977. An exchange: The theory of human capital and the earnings of women: Women’s earnings reexamined. The Journal of Human Resources 13: 118–34. [Google Scholar] [CrossRef]
- Phelps, Edmund S. 1972. The statistical theory of racism and sexism. The American Economic Review 62: 659–61. [Google Scholar]
- Ríos-Ávila, Fernando. 2020. Recentered influence functions (RIFs) in Stata: RIF regression and RIF decomposition. The Stata Journal 20: 51–94. [Google Scholar] [CrossRef]
- Rubery, Jill, Damian Grimshaw, and Hugo Figueiredo. 2005. How to close the gender pay gap in Europe: Towards the gender mainstreaming of pay policy. Industrial Relations Journal 36: 184–213. [Google Scholar] [CrossRef]
- Santero-Sánchez, Rosa, and Belén Castro Núñez. 2022. Pursuing equal pay for equal work: Gender diversity in management positions and the gender pay gap throughout the wage distribution. BRQ Business Research Quarterly 0: 1–15. [Google Scholar] [CrossRef]
- Sccichiano, Sergio. 2014. The gender wage gap among Spanish managers. International Journal of Manpower 35: 327–44. [Google Scholar] [CrossRef]
- Sorensen, Elaine. 1989. Measuring pay disparity between typically female occupations and other jobs: A bivariate selectivity approach. ILR Review 42: 624–39. [Google Scholar] [CrossRef]
- Tajfel, Henri, and John C. Turner. 1979. An integrative theory of intergroup conflict. In The Social Psychology of Intergroup Relations. Edited by W. G. Austin and S. Worchel. Monterey, CA: Brooks/Cole, pp. 33–37. [Google Scholar]
- Theodoropoulos, Nikolaos, John Forth, and Alex Bryson. 2022. Are Women Doing It for Themselves? Female Managers and the Gender Wage Gap. Oxford Bulletin of Economics and Statistics 84: 1329–55. [Google Scholar] [CrossRef]
- Tomaskovic-Devey, Donald. 1993. Gender and Racial Inequality at Work: The Causes and Consequences of Job Segregation. Ithaca, NY: ILR Press. [Google Scholar]
- van Hek, Margriet, and Tanja van der Lippe. 2019. Are Female Managers Agents of Change or Cogs in the Machine? An Assessment with Three-Level Manager–Employee Linked Data. European Sociological Review 35: 316–31. [Google Scholar] [CrossRef]
- Vega, Pedro J., Rosa Santero, R. Belén Castro, and Nuria Gómez. 2016. Participación femenina en puestos directivos y desigualdad salarial. Un análisis en el mercado laboral español [Women Directors, Critical Mass and Gender Wage Gap. Evidence for Spain]. Estudios de Economía Aplicada 34: 155–77. [Google Scholar]
- Zimmermann, Florian. 2022. Managing the Gender Wage Gap—How Female Managers Influence the Gender Wage Gap among Workers. European Sociological Review 38: 355–70. [Google Scholar] [CrossRef]
Country | Code | Nº Workers | Nº of Local Units | Gender Equality in Management Positions (Mean) | Mean Hourly Wage | GWG (%) | |
---|---|---|---|---|---|---|---|
Male | Female | ||||||
Belgium | BE | 13,744 | 339 | 39.9 (40.8) | 26.7 (10.1) | 24.6 (10.0) | 8.0 |
Bulgaria | BG | 82,561 | 1761 | 48.9 (37.8) | 4.4 (4.0) | 3.6 (2.8) | 18.7 |
Cyprus | CY | 17,927 | 127 | 41.6 (34.6) | 16.2 (14.0) | 13.8 (9.3) | 14.6 |
Czechia | CZ | 2,153,729 | 7353 | 45.3 (32.4) | 8.4 (5.6) | 6.6 (3.4) | 21.5 |
Germany | DE | 120,910 | 3727 | 28.6 (38.8) | 31.5 (18.5) | 23.9 (11.1) | 24.2 |
Denmark | DK | 1,285,307 | 15,476 | 47.9 (35.8) | 34.8 (17.2) | 29.2 (11.4) | 15.9 |
Estonia | EE | 22,437 | 1046 | 34.2 (40.9) | 8.5 (5.3) | 6.8 (4.1) | 20.4 |
Greece | EL | 3382 | 189 | 42.4 (38.2) | 16.1 (17.2) | 11.5 (8.8) | 28.1 |
Spain | ES | 16,620 | 1063 | 46.1 (42.1) | 18.7 (11.5) | 16.2 (8.8) | 13.2 |
France | FR | 125,060 | 8790 | 51.4 (37.2) | 23.8 (24.8) | 19.2 (13.2) | 19.0 |
Croatia | HR | 21,370 | 621 | 52.6 (40.2) | 7.3 (5.5) | 6.6 (4.5) | 9.3 |
Hungary | HU | 606,293 | 7307 | 48.7 (36.8) | 6.5 (5.2) | 5.5 (3.1) | 16.3 |
Italy | IT | 12,805 | 479 | 40.1 (41.4) | 21.9 (23.6) | 17.7 (10.1) | 19.1 |
Latvia | LV | 139,945 | 3247 | 47.3 (37.3) | 7.3 (6.0) | 6.0 (4.5) | 17.0 |
Malta | MT | 31,161 | 227 | 50.9 (37.5) | 14.1 (10.5) | 12.2 (5.5) | 13.2 |
Netherlands | NL | 54,625 | 1243 | 46.7 (36.1) | 22.6 (15.1) | 18.7 (11.9) | 17.4 |
Norway | NO | 1,340,799 | 31,189 | 46.7 (36.1) | 35.0 (71.5) | 29.6 (61.4) | 15.5 |
Poland | PL | 646,405 | 11,546 | 49.3 (34.3) | 7.1 (5.9) | 6.1 (4.1) | 14.3 |
Portugal | PT | 14,337 | 548 | 48.0 (41.9) | 11.8 (10.4) | 9.5 (7.0) | 19.5 |
Romania | RO | 179,634 | 7266 | 65.4 (35.3) | 6.1 (5.5) | 6.0 (4.7) | 1.6 |
Sweden | SE | 229,130 | 2080 | 53.5 (29.3) | 22.6 (11.5) | 19.3 (7.0) | 14.5 |
Slovakia | SK | 811,412 | 4291 | 47.2 (33.9) | 8.0 (7.0) | 6.2 (3.6) | 22.1 |
Country | Female | Gender Equality in Management (GEM) | Female × GEM | N | R2 | |||
---|---|---|---|---|---|---|---|---|
Coefficient | (s.e.) | Coefficient | (s.e.) | Coefficient | (s.e.) | |||
BE | −0.0136 | (0.0083) | 0.0146 * | (0.0081) | 0.0191 | (0.0172) | 13,744 | 0.86 |
BG | −0.1636 *** | (0.0061) | 0.0158 ** | (0.0070) | 0.0702 *** | (0.0094) | 82,561 | 0.43 |
CY | −0.1621 *** | (0.0125) | −0.0060 | (0.0228) | 0.0996 *** | (0.0261) | 17,927 | 0.74 |
CZ | −0.1721 *** | (0.0022) | −0.0336 *** | (0.0034) | −0.0055 | (0.0038) | 2,153,729 | 0.52 |
DE | −0.0861 *** | (0.0039) | −0.0063 | (0.0056) | −0.0088 | (0.0072) | 120,910 | 0.60 |
DK | −0.1068 *** | (0.0011) | 0.0053 *** | (0.0013) | 0.0094 *** | (0.0017) | 1,285,307 | 0.56 |
EE | −0.1901 *** | (0.0143) | −0.0976 *** | (0.0202) | 0.0499 * | (0.0257) | 22,437 | 0.34 |
EL | −0.0964 *** | (0.0294) | −0.0021 | (0.0354) | −0.0449 | (0.0470) | 3382 | 0.53 |
ES | −0.1335 *** | (0.0159) | 0.0092 | (0.0147) | 0.0103 | (0.0217) | 16,620 | 0.49 |
FR | −0.1311 *** | (0.0077) | 0.0173 ** | (0.0072) | −0.0150 | (0.0108) | 125,060 | 0.46 |
HR | −0.1620 *** | (0.0093) | −0.0165 * | (0.0092) | 0.0006 | (0.0135) | 21,370 | 0.48 |
HU | −0.0958 *** | (0.0036) | −0.0031 | (0.0048) | 0.0098 * | (0.0055) | 606,293 | 0.58 |
IT | −0.1496 *** | (0.0113) | −0.0503 *** | (0.0151) | 0.0834 *** | (0.0178) | 12,805 | 0.50 |
LV | −0.2117 *** | (0.0090) | −0.0280 ** | (0.0119) | 0.0855 *** | (0.0145) | 139,945 | 0.39 |
MT | −0.0883 *** | (0.0189) | −0.0463 ** | (0.0234) | −0.0205 | (0.0286) | 31,161 | 0.48 |
NL | −0.0640 *** | (0.0061) | 0.0301 *** | (0.0078) | −0.0126 | (0.0091) | 54,625 | 0.71 |
NO | −0.1029 *** | (0.0009) | −0.0058 *** | (0.0010) | 0.0102 *** | (0.0013) | 1,340,799 | 0.51 |
PL | −0.1654 *** | (0.0019) | −0.0068 *** | (0.0023) | 0.0127 *** | (0.0030) | 646,405 | 0.48 |
PT | −0.1497 *** | (0.0131) | −0.0401 ** | (0.0158) | 0.0190 | (0.0213) | 14,337 | 0.70 |
RO | −0.0897 *** | (0.0057) | 0.0098 * | (0.0053) | −0.0465 *** | (0.0074) | 179,634 | 0.53 |
SE | −0.0565 *** | (0.0032) | 0.0140 *** | (0.0039) | −0.0092 * | (0.0048) | 229,130 | 0.54 |
SK | −0.2114 *** | (0.0049) | −0.0357 *** | (0.0073) | 0.0282 *** | (0.0087) | 811,412 | 0.44 |
Country | Female | Female × GEM | N | R2 | ||
---|---|---|---|---|---|---|
Coefficient | (s.e.) | Coefficient | (s.e.) | |||
BE | −0.0136 * | (0.0081) | 0.0180 | (0.0190) | 13,744 | 0.87 |
BG | −0.1104 *** | (0.0049) | 0.0309 *** | (0.0077) | 82,561 | 0.74 |
CY | −0.1157 *** | (0.0134) | 0.0461 * | (0.0249) | 17,927 | 0.79 |
CZ | −0.1479 *** | (0.0020) | 0.0063 * | (0.0034) | 2,153,729 | 0.69 |
DE | −0.1195 *** | (0.0048) | 0.0230 *** | (0.0079) | 120,910 | 0.73 |
DK | −0.0890 *** | (0.0010) | 0.0020 | (0.0016) | 1,285,307 | 0.66 |
EE | −0.1109 *** | (0.0132) | 0.0259 | (0.0217) | 22,437 | 0.65 |
EL | −0.0767 *** | (0.0246) | −0.0431 | (0.0391) | 3382 | 0.70 |
ES | −0.1222 *** | (0.0136) | 0.0227 | (0.0187) | 16,620 | 0.69 |
FR | −0.1171 *** | (0.0070) | −0.0234 ** | (0.0101) | 125,060 | 0.61 |
HR | −0.0991 *** | (0.0089) | −0.0346 ** | (0.0137) | 21,370 | 0.69 |
HU | −0.0897 *** | (0.0033) | 0.0177 *** | (0.0049) | 606,293 | 0.75 |
IT | −0.1196 *** | (0.0113) | 0.0366 ** | (0.0174) | 12,805 | 0.62 |
LV | −0.0878 *** | (0.0083) | −0.0380 *** | (0.0131) | 139,945 | 0.66 |
MT | −0.1122 *** | (0.0192) | 0.0317 | (0.0278) | 31,161 | 0.59 |
NL | −0.0657 *** | (0.0059) | −0.0004 | (0.0092) | 54,625 | 0.76 |
NO | −0.0728 *** | (0.0009) | −0.0137 *** | (0.0014) | 1,340,799 | 0.64 |
PL | −0.1167 *** | (0.0018) | −0.0121 *** | (0.0030) | 646,405 | 0.69 |
PT | −0.1447 *** | (0.0123) | 0.0466 ** | (0.0202) | 14,337 | 0.79 |
RO | −0.0950 *** | (0.0058) | −0.0266 *** | (0.0073) | 179,634 | 0.72 |
SE | −0.0647 *** | (0.0033) | 0.0092 * | (0.0051) | 229,130 | 0.62 |
SK | −0.1336 *** | (0.0042) | −0.0102 | (0.0070) | 811,412 | 0.67 |
Country | Variable | q10 | q25 | q50 | q75 | q90 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | (s.e.) | Coefficient | (s.e.) | Coefficient | (s.e.) | Coefficient | (s.e.) | Coefficient | (s.e.) | ||
Belgium | female | 0.0198 *** | (0.0046) | −0.0462 *** | (0.0043) | −0.0607 *** | (0.0031) | −0.0019 | (0.0032) | 0.0089 *** | (0.0030) |
GEM | 0.0172 *** | (0.0048) | −0.0002 | (0.0045) | −0.0121 *** | (0.0035) | −0.0110 *** | (0.0039) | 0.0299 *** | (0.0041) | |
female × GEM | 0.0620 *** | (0.0075) | 0.0862 *** | (0.0068) | 0.0308 *** | (0.0050) | 0.0084 | (0.0054) | −0.0077 | (0.0055) | |
Bulgaria | female | −0.0298 *** | (0.0021) | −0.1060 *** | (0.0024) | −0.1967 *** | (0.0025) | −0.2273 *** | (0.0031) | −0.2007 *** | (0.0039) |
GEM | −0.0128 *** | (0.0023) | −0.0004 | (0.0025) | 0.0345 *** | (0.0027) | 0.0228 *** | (0.0036) | 0.0628 *** | (0.0046) | |
female × GEM | 0.0465 *** | (0.0033) | 0.1024 *** | (0.0037) | 0.0821 *** | (0.0038) | 0.0679 *** | (0.0048) | 0.0026 | (0.0060) | |
Cyprus | female | −0.1588 *** | (0.0064) | −0.2423 *** | (0.0052) | −0.2339 *** | (0.0065) | −0.0379 *** | (0.0052) | −0.0164 *** | (0.0053) |
GEM | −0.0053 | (0.0081) | 0.0244 *** | (0.0073) | −0.1025 *** | (0.0098) | 0.0451 *** | (0.0091) | 0.0548 *** | (0.0105) | |
female × GEM | 0.1985 *** | (0.0099) | 0.2588 *** | (0.0088) | 0.1912 *** | (0.0120) | −0.0993 *** | (0.0107) | −0.1646 *** | (0.0119) | |
Czechia | female | −0.0971 *** | (0.0014) | −0.1501 *** | (0.0010) | −0.1854 *** | (0.0008) | −0.2188 *** | (0.0010) | −0.2282 *** | (0.0016) |
GEM | 0.0180 *** | (0.0017) | −0.0435 *** | (0.0012) | −0.0716 *** | (0.0010) | −0.0637 *** | (0.0013) | −0.0098 *** | (0.0024) | |
female × GEM | −0.0313 *** | (0.0025) | 0.0041 ** | (0.0017) | 0.0426 *** | (0.0014) | 0.0212 *** | (0.0017) | −0.0620 *** | (0.0029) | |
Germany | female | 0.0246 *** | (0.0012) | −0.0307 *** | (0.0006) | −0.1247 *** | (0.0007) | −0.1269 *** | (0.0007) | −0.1514 *** | (0.0010) |
GEM | −0.0218 *** | (0.0016) | −0.0153 *** | (0.0009) | −0.0176 *** | (0.0009) | 0.0114 *** | (0.0010) | 0.0279 *** | (0.0017) | |
female × GEM | −0.0207 *** | (0.0023) | 0.0041 *** | (0.0012) | 0.0244 *** | (0.0013) | −0.0103 *** | (0.0012) | −0.0597 *** | (0.0019) | |
Denmark | female | −0.0543 *** | (0.0015) | −0.0859 *** | (0.0010) | −0.1017 *** | (0.0009) | −0.1328 *** | (0.0012) | −0.1639 *** | (0.0020) |
GEM | −0.0080 *** | (0.0015) | −0.0152 *** | (0.0011) | −0.0041 *** | (0.0010) | 0.0268 *** | (0.0014) | 0.0492 *** | (0.0027) | |
female × GEM | −0.0002 | (0.0023) | 0.0334 *** | (0.0016) | 0.0304 *** | (0.0014) | 0.0000 | (0.0018) | −0.0268 *** | (0.0031) | |
Estonia | female | −0.0559 *** | (0.0076) | −0.2175 *** | (0.0099) | −0.1847 *** | (0.0055) | −0.2000 *** | (0.0068) | −0.2757 *** | (0.0110) |
GEM | −0.1570 *** | (0.0095) | −0.1536 *** | (0.0118) | −0.1014 *** | (0.0066) | −0.0370 *** | (0.0088) | −0.0581 *** | (0.0151) | |
female × GEM | −0.0097 | (0.0137) | 0.0309 * | (0.0164) | 0.0878 *** | (0.0088) | 0.0250 ** | (0.0111) | 0.0540 *** | (0.0180) | |
Greece | female | −0.0460 *** | (0.0069) | −0.0749 *** | (0.0053) | −0.0583 *** | (0.0049) | −0.1524 *** | (0.0061) | −0.2216 *** | (0.0115) |
GEM | −0.1065 *** | (0.0084) | −0.0576 *** | (0.0062) | 0.0397 *** | (0.0060) | −0.0417 *** | (0.0078) | 0.0013 | (0.0167) | |
female × GEM | 0.0347 *** | (0.0120) | −0.0066 | (0.0090) | −0.0743 *** | (0.0081) | 0.0047 | (0.0101) | 0.0213 | (0.0194) | |
Spain | female | −0.1436 *** | (0.0028) | −0.1684 *** | (0.0021) | −0.1600 *** | (0.0023) | −0.0924 *** | (0.0022) | −0.1093 *** | (0.0027) |
GEM | −0.0259 *** | (0.0026) | 0.0268 *** | (0.0021) | 0.0247 *** | (0.0023) | 0.0291 *** | (0.0023) | −0.0280 *** | (0.0031) | |
female × GEM | 0.0067 | (0.0044) | 0.0530 *** | (0.0033) | −0.0003 | (0.0034) | −0.0200 *** | (0.0033) | 0.0372 *** | (0.0042) | |
France | female | −0.0917 *** | (0.0008) | −0.0990 *** | (0.0007) | −0.0934 *** | (0.0006) | −0.1520 *** | (0.0008) | −0.1960 *** | (0.0013) |
GEM | −0.0049 *** | (0.0006) | −0.0007 | (0.0006) | 0.0037 *** | (0.0006) | 0.0119 *** | (0.0009) | 0.0387 *** | (0.0014) | |
female × GEM | 0.0270 *** | (0.0012) | 0.0190 *** | (0.0011) | −0.0025 *** | (0.0009) | −0.0194 *** | (0.0013) | −0.0316 *** | (0.0020) | |
Croatia | female | −0.1540 *** | (0.0041) | −0.1698 *** | (0.0038) | −0.1521 *** | (0.0035) | −0.1592 *** | (0.0045) | −0.1898 *** | (0.0066) |
GEM | −0.0431 *** | (0.0035) | −0.0130 *** | (0.0036) | −0.0235 *** | (0.0035) | −0.0110 *** | (0.0041) | −0.0182 *** | (0.0061) | |
female × GEM | −0.0061 | (0.0061) | −0.0172 *** | (0.0055) | 0.0229 *** | (0.0051) | 0.0108 * | (0.0063) | −0.0095 | (0.0091) | |
Hungary | female | −0.0046 *** | (0.0012) | −0.0250 *** | (0.0013) | −0.1152 *** | (0.0016) | −0.1186 *** | (0.0017) | −0.2366 *** | (0.0033) |
GEM | −0.0058 *** | (0.0014) | −0.0192 *** | (0.0015) | −0.0392 *** | (0.0018) | 0.0070 *** | (0.0020) | 0.0469 *** | (0.0044) | |
female × GEM | −0.0115 *** | (0.0018) | −0.0014 | (0.0019) | 0.0587 *** | (0.0024) | −0.0160 *** | (0.0026) | −0.0653 *** | (0.0053) | |
Italy | female | −0.0680 *** | (0.0015) | −0.1207 *** | (0.0013) | −0.1413 *** | (0.0013) | −0.1581 *** | (0.0018) | −0.2423 *** | (0.0039) |
GEM | −0.0102 *** | (0.0017) | −0.0191 *** | (0.0015) | −0.0406 *** | (0.0015) | −0.0094 *** | (0.0025) | −0.1263 *** | (0.0057) | |
female × GEM | 0.0795 *** | (0.0022) | 0.1211 *** | (0.0020) | 0.1232 *** | (0.0020) | 0.0353 *** | (0.0032) | 0.0302 *** | (0.0068) | |
Latvia | female | −0.1125 *** | (0.0028) | −0.2212 *** | (0.0036) | −0.2022 *** | (0.0025) | −0.2417 *** | (0.0032) | −0.3019 *** | (0.0054) |
GEM | −0.0412 *** | (0.0029) | −0.0784 *** | (0.0040) | −0.0446 *** | (0.0029) | −0.0113 *** | (0.0038) | 0.0153 ** | (0.0065) | |
female × GEM | 0.0766 *** | (0.0043) | 0.1501 *** | (0.0056) | 0.1261 *** | (0.0039) | 0.0906 *** | (0.0050) | 0.0440 *** | (0.0083) | |
Malta | female | −0.1033 *** | (0.0071) | −0.0818 *** | (0.0063) | −0.0343 *** | (0.0054) | −0.0271 *** | (0.0065) | −0.1654 *** | (0.0109) |
GEM | −0.0641 *** | (0.0071) | −0.0962 *** | (0.0068) | −0.0046 | (0.0061) | −0.0311 *** | (0.0078) | −0.0093 | (0.0146) | |
female × GEM | 0.0540 *** | (0.0107) | 0.0095 | (0.0097) | −0.0632 *** | (0.0084) | −0.0875 *** | (0.0102) | −0.0054 | (0.0170) | |
Netherlands | female | 0.0358 *** | (0.0011) | −0.0646 *** | (0.0012) | −0.0719 *** | (0.0009) | −0.1093 *** | (0.0010) | −0.1245 *** | (0.0016) |
GEM | 0.0141 *** | (0.0013) | 0.0320 *** | (0.0015) | 0.0301 *** | (0.0010) | 0.0193 *** | (0.0012) | 0.0521 *** | (0.0021) | |
female × GEM | −0.0357 *** | (0.0017) | 0.0272 *** | (0.0019) | 0.0155 *** | (0.0014) | −0.0152 *** | (0.0015) | −0.0303 *** | (0.0025) | |
Norway | female | −0.0372 *** | (0.0016) | −0.0642 *** | (0.0011) | −0.0893 *** | (0.0009) | −0.1464 *** | (0.0013) | −0.1896 *** | (0.0022) |
GEM | −0.0329 *** | (0.0017) | −0.0254 *** | (0.0011) | −0.0040 *** | (0.0010) | 0.0130 *** | (0.0015) | 0.0079 *** | (0.0028) | |
female × GEM | 0.0224 *** | (0.0025) | 0.0197 *** | (0.0017) | 0.0130 *** | (0.0014) | 0.0157 *** | (0.0020) | 0.0047 | (0.0033) | |
Poland | female | −0.0505 *** | (0.0009) | −0.1285 *** | (0.0008) | −0.1795 *** | (0.0007) | −0.2078 *** | (0.0010) | −0.1988 *** | (0.0014) |
GEM | 0.0027 *** | (0.0009) | −0.0272 *** | (0.0008) | −0.0423 *** | (0.0009) | −0.0047 *** | (0.0011) | 0.0384 *** | (0.0015) | |
female × GEM | 0.0181 *** | (0.0014) | 0.0346 *** | (0.0012) | 0.0448 *** | (0.0011) | 0.0129 *** | (0.0016) | −0.0378 *** | (0.0022) | |
Portugal | female | −0.0794 *** | (0.0020) | −0.0988 *** | (0.0023) | −0.1936 *** | (0.0043) | −0.1960 *** | (0.0053) | −0.1556 *** | (0.0054) |
GEM | −0.0668 *** | (0.0020) | −0.0621 *** | (0.0023) | −0.1433 *** | (0.0048) | 0.0509 *** | (0.0055) | 0.0878 *** | (0.0063) | |
female × GEM | 0.0050 | (0.0031) | 0.0588 *** | (0.0034) | 0.1139 *** | (0.0067) | −0.0469 *** | (0.0079) | −0.1104 *** | (0.0084) | |
Romania | female | −0.0016 | (0.0014) | −0.0842 *** | (0.0018) | −0.1067 *** | (0.0016) | −0.1076 *** | (0.0019) | −0.1320 *** | (0.0026) |
GEM | −0.0271 *** | (0.0014) | −0.0020 | (0.0017) | −0.0089 *** | (0.0016) | 0.0303 *** | (0.0017) | 0.0789 *** | (0.0023) | |
female × GEM | −0.0141 *** | (0.0018) | −0.0347 *** | (0.0023) | −0.0543 *** | (0.0021) | −0.0450 *** | (0.0024) | −0.0505 *** | (0.0033) | |
Sweden | female | −0.0157 *** | (0.0009) | −0.0235 *** | (0.0007) | −0.0475 *** | (0.0008) | −0.0642 *** | (0.0012) | −0.1359 *** | (0.0020) |
GEM | 0.0107 *** | (0.0009) | 0.0059 *** | (0.0007) | −0.0031 *** | (0.0008) | 0.0294 *** | (0.0014) | 0.0262 *** | (0.0025) | |
female × GEM | 0.0057 *** | (0.0014) | 0.0054 *** | (0.0011) | 0.0025 ** | (0.0012) | −0.0358 *** | (0.0018) | −0.0075 ** | (0.0031) | |
Slovakia | female | −0.0751 *** | (0.0021) | −0.1701 *** | (0.0016) | −0.2520 *** | (0.0015) | −0.2625 *** | (0.0019) | −0.2204 *** | (0.0028) |
GEM | 0.0051 ** | (0.0024) | −0.0324 *** | (0.0018) | −0.0703 *** | (0.0019) | −0.0554 *** | (0.0025) | 0.0441 *** | (0.0040) | |
female × GEM | −0.0074 ** | (0.0035) | 0.0494 *** | (0.0026) | 0.0880 *** | (0.0025) | 0.0321 *** | (0.0031) | −0.1067 *** | (0.0049) |
Country | Variable | q10 | q25 | q50 | q75 | q90 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Coefficient | (s.e.) | Coefficient | (s.e.) | Coefficient | (s.e.) | Coefficient | (s.e.) | Coefficient | (s.e.) | ||
Belgium | female | 0.0359 | (0.0348) | −0.0241 | (0.0249) | −0.0675 *** | (0.0155) | −0.0258 | (0.0170) | 0.0030 | (0.0154) |
female × GEM | 0.0413 | (0.0567) | 0.0555 | (0.0419) | 0.0509 * | (0.0291) | 0.0449 | (0.0323) | −0.0030 | (0.0328) | |
Bulgaria | female | −0.0107 | (0.0069) | −0.0559 *** | (0.0077) | −0.1174 *** | (0.0077) | −0.1473 *** | (0.0103) | −0.1835 *** | (0.0148) |
female × GEM | 0.0208 * | (0.0107) | 0.0437 *** | (0.0117) | 0.0242 ** | (0.0121) | 0.0177 | (0.0161) | 0.0218 | (0.0232) | |
Cyprus | female | −0.1214 *** | (0.0247) | −0.1748 *** | (0.0219) | −0.1707 *** | (0.0259) | −0.0282 | (0.0216) | −0.0069 | (0.0248) |
female × GEM | 0.1667 *** | (0.0378) | 0.1912 *** | (0.0361) | 0.1198 ** | (0.0583) | −0.1261 *** | (0.0481) | −0.1667 ** | (0.0649) | |
Czechia | female | −0.0876 *** | (0.0049) | −0.1202 *** | (0.0031) | −0.1522 *** | (0.0024) | −0.1825 *** | (0.0030) | −0.1999 *** | (0.0052) |
female × GEM | −0.0061 | (0.0082) | 0.0198 *** | (0.0052) | 0.0527 *** | (0.0039) | 0.0337 *** | (0.0048) | −0.0644 *** | (0.0087) | |
Germany | female | 0.0006 | (0.0123) | −0.0418 *** | (0.0072) | −0.1411 *** | (0.0074) | −0.1513 *** | (0.0070) | −0.2347 *** | (0.0128) |
female × GEM | 0.0005 | (0.0212) | 0.0069 | (0.0123) | 0.0503 *** | (0.0125) | 0.0187 | (0.0120) | 0.0326 | (0.0219) | |
Denmark | female | −0.0309 *** | (0.0020) | −0.0565 *** | (0.0014) | −0.0818 *** | (0.0012) | −0.1266 *** | (0.0016) | −0.1680 *** | (0.0029) |
female × GEM | −0.0005 | (0.0031) | 0.0162 *** | (0.0022) | 0.0175 *** | (0.0018) | 0.0033 | (0.0026) | −0.0246 *** | (0.0047) | |
Estonia | female | −0.0303 | (0.0239) | −0.1499 *** | (0.0284) | −0.1138 *** | (0.0167) | −0.1013 *** | (0.0203) | −0.1977 *** | (0.0287) |
female × GEM | 0.0228 | (0.0388) | 0.0673 | (0.0455) | 0.0518 ** | (0.0260) | −0.0366 | (0.0312) | 0.0473 | (0.0472) | |
Greece | female | −0.0043 | (0.0421) | −0.0791 * | (0.0444) | −0.0481 | (0.0403) | −0.1314 *** | (0.0483) | −0.1605 | (0.1014) |
female × GEM | 0.0011 | (0.0750) | 0.0199 | (0.0716) | −0.0662 | (0.0622) | −0.0202 | (0.0747) | −0.0452 | (0.1578) | |
Spain | female | −0.1275 *** | (0.0246) | −0.1359 *** | (0.0251) | −0.1516 *** | (0.0257) | −0.0984 *** | (0.0233) | −0.1411 *** | (0.0304) |
female × GEM | 0.0419 | (0.0376) | 0.0528 | (0.0358) | 0.0228 | (0.0351) | −0.0024 | (0.0318) | 0.0776 * | (0.0433) | |
France | female | −0.0683 *** | (0.0132) | −0.0861 *** | (0.0115) | −0.0877 *** | (0.0086) | −0.1342 *** | (0.0119) | −0.1925 *** | (0.0152) |
female × GEM | 0.0228 | (0.0181) | 0.0360 ** | (0.0159) | −0.0048 | (0.0121) | −0.0486 *** | (0.0168) | −0.0647 *** | (0.0232) | |
Croatia | female | −0.0614 *** | (0.0142) | −0.0678 *** | (0.0127) | −0.0748 *** | (0.0135) | −0.1201 *** | (0.0188) | −0.1636 *** | (0.0271) |
female × GEM | −0.0466 ** | (0.0223) | −0.0625 *** | (0.0196) | −0.0127 | (0.0209) | −0.0041 | (0.0284) | −0.0474 | (0.0409) | |
Hungary | female | −0.0418 *** | (0.0050) | −0.0230 *** | (0.0043) | −0.0720 *** | (0.0053) | −0.0918 *** | (0.0055) | −0.1986 *** | (0.0109) |
female × GEM | 0.0307 *** | (0.0071) | 0.0122 ** | (0.0062) | 0.0340 *** | (0.0075) | −0.0195 ** | (0.0079) | −0.0511 *** | (0.0161) | |
Italy | female | −0.0389 *** | (0.0123) | −0.0899 *** | (0.0124) | −0.1185 *** | (0.0115) | −0.1327 *** | (0.0177) | −0.1929 *** | (0.0389) |
female × GEM | 0.0362 * | (0.0189) | 0.0755 *** | (0.0179) | 0.0954 *** | (0.0176) | −0.0247 | (0.0297) | −0.0656 | (0.0654) | |
Latvia | female | −0.0273 ** | (0.0112) | −0.0550 *** | (0.0136) | −0.0722 *** | (0.0095) | −0.1282 *** | (0.0126) | −0.1648 *** | (0.0223) |
female × GEM | −0.0126 | (0.0186) | −0.0028 | (0.0215) | −0.0048 | (0.0151) | −0.0340 * | (0.0198) | −0.1058 *** | (0.0351) | |
Malta | female | −0.1428 *** | (0.0314) | −0.1485 *** | (0.0265) | −0.0504 ** | (0.0238) | −0.0705 ** | (0.0292) | −0.1690 *** | (0.0492) |
female × GEM | 0.1231 *** | (0.0434) | 0.1267 *** | (0.0379) | −0.0262 | (0.0335) | 0.0015 | (0.0427) | 0.0087 | (0.0750) | |
Netherlands | female | 0.0373 *** | (0.0144) | −0.0352 *** | (0.0112) | −0.0675 *** | (0.0072) | −0.1258 *** | (0.0083) | −0.1429 *** | (0.0117) |
female × GEM | −0.0507 ** | (0.0226) | 0.0133 | (0.0186) | 0.0183 | (0.0115) | 0.0203 | (0.0130) | 0.0199 | (0.0182) | |
Norway | female | −0.0014 | (0.0019) | −0.0288 *** | (0.0012) | −0.0545 *** | (0.0010) | −0.1058 *** | (0.0014) | −0.1690 *** | (0.0024) |
female × GEM | −0.0044 | (0.0028) | −0.0039 ** | (0.0018) | −0.0161 *** | (0.0016) | −0.0221 *** | (0.0023) | −0.0194 *** | (0.0038) | |
Poland | female | −0.0370 *** | (0.0030) | −0.0829 *** | (0.0027) | −0.1121 *** | (0.0026) | −0.1598 *** | (0.0035) | −0.1549 *** | (0.0050) |
female × GEM | 0.0090 * | (0.0047) | 0.0136 *** | (0.0042) | 0.0130 *** | (0.0040) | −0.0038 | (0.0055) | −0.0760 *** | (0.0083) | |
Portugal | female | −0.0455 *** | (0.0141) | −0.0616 *** | (0.0153) | −0.1804 *** | (0.0265) | −0.2299 *** | (0.0334) | −0.1936 *** | (0.0360) |
female × GEM | −0.0076 | (0.0296) | 0.0415 | (0.0265) | 0.1362 *** | (0.0411) | 0.0328 | (0.0486) | −0.0240 | (0.0551) | |
Romania | female | −0.0347 *** | (0.0053) | −0.0785 *** | (0.0090) | −0.0902 *** | (0.0094) | −0.1206 *** | (0.0115) | −0.1232 *** | (0.0151) |
female × GEM | 0.0212 *** | (0.0072) | −0.0171 | (0.0115) | −0.0499 *** | (0.0118) | −0.0156 | (0.0141) | −0.0576 *** | (0.0194) | |
Sweden | female | −0.0052 | (0.0045) | −0.0144 *** | (0.0037) | −0.0496 *** | (0.0039) | −0.0821 *** | (0.0059) | −0.1606 *** | (0.0112) |
female × GEM | −0.0036 | (0.0069) | 0.0012 | (0.0057) | 0.0155 *** | (0.0060) | 0.0027 | (0.0090) | 0.0276 | (0.0174) | |
Slovakia | female | −0.0587 *** | (0.0068) | −0.0970 *** | (0.0048) | −0.1481 *** | (0.0048) | −0.1664 *** | (0.0061) | −0.1670 *** | (0.0112) |
female × GEM | −0.0054 | (0.0109) | 0.0227 *** | (0.0080) | 0.0381 *** | (0.0080) | −0.0111 | (0.0104) | −0.1354 *** | (0.0198) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro Romero, L.; Martín Barroso, V.; Santero-Sánchez, R. Does Gender Equality in Managerial Positions Improve the Gender Wage Gap? Comparative Evidence from Europe. Economies 2023, 11, 301. https://doi.org/10.3390/economies11120301
de Castro Romero L, Martín Barroso V, Santero-Sánchez R. Does Gender Equality in Managerial Positions Improve the Gender Wage Gap? Comparative Evidence from Europe. Economies. 2023; 11(12):301. https://doi.org/10.3390/economies11120301
Chicago/Turabian Stylede Castro Romero, Lidia, Víctor Martín Barroso, and Rosa Santero-Sánchez. 2023. "Does Gender Equality in Managerial Positions Improve the Gender Wage Gap? Comparative Evidence from Europe" Economies 11, no. 12: 301. https://doi.org/10.3390/economies11120301
APA Stylede Castro Romero, L., Martín Barroso, V., & Santero-Sánchez, R. (2023). Does Gender Equality in Managerial Positions Improve the Gender Wage Gap? Comparative Evidence from Europe. Economies, 11(12), 301. https://doi.org/10.3390/economies11120301