Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions
Abstract
1. Introduction
2. Statement of Problem
3. Decomposition of the Problem and Coordinate Transformations
4. Limit Problem
5. Concluding Remarks
Funding
Conflicts of Interest
References
- Destuynder, P.; Salaun, M. Mathematical Analysis of Thin Plate Models; Springer: Berlin/ Heidelberg, Germany, 1996. [Google Scholar]
- Khludnev, A.M.; Sokolowski, J. Modelling and Control in Solid Mechanics; Birkhäuser: Basel, Switzerland, 1997. [Google Scholar]
- Lagnese, J.E.; Lions, J.-L. Modelling Analysis and Control of Thin Plates; MASSON: Paris, France; Milan, France; Barcelone, Spain, 1988. [Google Scholar]
- Sweers, G. A survey on boundary conditions for the biharmonic. Complex Var. Elliptic Equ. 2009, 54, 79–93. [Google Scholar] [CrossRef]
- Rudoy, E.M. Asymptotic modelling of bonded plates by a soft thin adhesive layer. Sib. Electron. Math. Rep. 2020, 17, 615–625. [Google Scholar] [CrossRef]
- Furtsev, A.; Rudoy, E. Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates. Int. J. Solids Struct. 2020, 202, 562–574. [Google Scholar] [CrossRef]
- Kunets, Y.I.; Matus, V.V. Modeling of flexural vibrations of a Kirchhoff plate with a thin-walled elastic inclusion of weak contrast. J. Math. Sci. 2012, 187, 667–674. [Google Scholar] [CrossRef]
- Furtsev, A.I. On Contact Between a Thin Obstacle and a Plate Containing a Thin Inclusion. J. Math. Sci. 2019, 237, 530–545. [Google Scholar] [CrossRef]
- Furtsev, A.I. The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle. Sib. Electron. Math. Rep. 2020, 17, 364–379. [Google Scholar]
- Khludnev, A. Thin rigid inclusions with delaminations in elastic plates. Eur. J. Mech. A/Solids 2011, 32, 69–75. [Google Scholar] [CrossRef]
- Khludnev, A.M. On bending an elastic plate with a delaminated thin rigid inclusion. J. Appl. Ind. Math. 2011, 5, 582–594. [Google Scholar] [CrossRef]
- Fankina, I.V. A contact problem for an elastic plate with a thin rigid inclusion. J. Appl. Ind. Math. 2016, 10, 333–340. [Google Scholar] [CrossRef]
- Shcherbakov, V.V. Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff-Love plate. J. Appl. Ind. Math. 2014, 8, 97–105. [Google Scholar] [CrossRef]
- Dumont, S.; Lebon, F.; Rizzoni, R. Imperfect interfaces with graded materials and unilateral conditions: theoretical and numerical study. Math. Mech. Solids 2018, 23, 445–460. [Google Scholar] [CrossRef]
- Serpilli, M.; Rizzoni, R.; Lebon, F.; Dumont, S. An asymptotic derivation of a general imperfect interface law for linear multiphysics composites. Int. J. Solids Struct. 2019, 180–181, 97–107. [Google Scholar] [CrossRef]
- Dumont, S.; Rizzoni, R.; Lebon, F.; Sacco, E. Soft and hard interface models for bonded elements. Compos. Part Eng. 2018, 153, 480–490. [Google Scholar] [CrossRef]
- Schmidt, P. Modelling of adhesively bonded joints by an asymptotic method. Int. J. Eng. Sci. 2008, 46, 1291–1324. [Google Scholar] [CrossRef]
- Serpilli, M.; Rizzoni, R.; Dumont, S.; Lebon, F. Interface laws for multi-physic composites. In Proceedings of XXIV AIMETA Conference 2019; Lecture Notes in Mechanical Engineering; Carcaterra, A., Paolone, A., Graziani, G., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Bonaldi, F.; Geymonat, G.; Krasucki, F.; Serpilli, M. An asymptotic plate model for magneto-electro-thermo-elastic sensors and actuators. Math. Mech. Solids 2017, 22, 1–25. [Google Scholar] [CrossRef]
- Serpilli, M. On modeling interfaces in linear micropolar composites. Math. Mech. Solids 2018, 23, 667–685. [Google Scholar] [CrossRef]
- Raffa, M.L.; Lebon, F.; Rizzoni, R. Derivation of a model of imperfect interface with finite strains and damage by asymptotic techniques: An application to masonry structures. Meccanica 2018, 53, 1645–1660. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Leugering, G. A Shape-Topological Control Problem for Nonlinear Crack-Defect Interaction: The Antiplane Variational Model. SIAM J. Control Optim. 2016, 54, 1329–1351. [Google Scholar] [CrossRef]
- Serpilli, M.; Lenci, S. An overview of different asymptotic models for anisotropic three-layer plates with soft adhesive. Int. J. Solids Struct. 2016, 81, 130–140. [Google Scholar] [CrossRef]
- Geymonat, G.; Krasucki, F. Analyse asymptotique du comportement en exion de deux plaques collées. C. R. Acad. Sci. Paris 1997, 325, 307–314. [Google Scholar]
- Zaittouni, F.; Lebon, F.; Licht, C. Étude théorique et numérique du comportement d’un assemblage de plaques. C. R. Mec. 2002, 330, 359–364. [Google Scholar] [CrossRef]
- Khludnev, A.M.; Kovtunenko, V.A. Analysis of Cracks in Solids; WIT-Press: Southampton, UK; Boston, MA, USA, 2000. [Google Scholar]
- Pelekh, B.L. Theory of Shells with Finite Shear Rigidity; Naukova Dumka: Kiev, Russia, 1973. (In Russian) [Google Scholar]
- Cherdantsev, M.; Cherednichenko, K. Bending of thin periodic plates. Calc. Var. Partial Differ. Equ. 2015, 54, 4079–4117. [Google Scholar] [CrossRef]
- Lazarev, N.P. Problem of equilibrium of the timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity. J. Appl. Mech. Tech. Phys. 2013, 54, 322–330. [Google Scholar] [CrossRef]
- Rudoy, E.M. Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut. Sib. Math. J. 2009, 50, 341–354. [Google Scholar] [CrossRef]
- Rudoy, E.M. Invariant integrals for the equilibrium problem for a plate with a crack. Sib. Math. J. 2004, 45, 388–397. [Google Scholar] [CrossRef]
- Rudoy, E.M. The Griffith formula and Cherepanov-Rice integral for a plate with a rigid inclusion and a crack. J. Math. Sci. 2012, 186, 511–529. [Google Scholar] [CrossRef]
- Furtsev, A.I. Differentiation of energy functional with respect to delamination’s length in problem of contact between plate and beam. Sib. Electron. Math. Rep. 2018, 15, 935–949. [Google Scholar]
- Furtsev, A.I. A Contact Problem for a Plate and a Beam in Presence of Adhesion. J. Appl. Ind. Math. 2019, 13, 208–218. [Google Scholar] [CrossRef]
- Lazarev, N.P.; Rudoy, E.M. Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge. ZAMM Z. Angew. Math. Mech. 2017, 97, 1120–1127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudoy, E. Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions. Technologies 2020, 8, 59. https://doi.org/10.3390/technologies8040059
Rudoy E. Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions. Technologies. 2020; 8(4):59. https://doi.org/10.3390/technologies8040059
Chicago/Turabian StyleRudoy, Evgeny. 2020. "Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions" Technologies 8, no. 4: 59. https://doi.org/10.3390/technologies8040059
APA StyleRudoy, E. (2020). Asymptotic Justification of Models of Plates Containing Inside Hard Thin Inclusions. Technologies, 8(4), 59. https://doi.org/10.3390/technologies8040059