A New Compton Camera Imaging Model to Mitigate the Finite Spatial Resolution of Detectors and New Camera Designs for Implementation
Abstract
:1. Introduction
2. Existing Compton Camera Imaging Models
3. The Development of A New Imaging Model and Its Inversion
4. Camera Designs to Exploit the New Imaging Model
4.1. Reconstruction Using the New Imaging Model
4.2. Single First Detector Ring Second Detector Design
4.3. Beach Ball Design: A Camera for Fan-Beam Reconstruction
5. Methodology of Computer Simulations
Ellipsoid | Origin | Axes | Rotation | Gray Level | |||||
---|---|---|---|---|---|---|---|---|---|
x | y | z | x | y | z | ||||
Outer skull boundary | 0.0 | 0.0 | 0.0 | 0.75 | 0.75 | 1.00 | 0.0 | 0.0 | 1.00 |
Inner skull boundary | 0.0 | 0.0 | 0.0 | 0.637 | 0.637 | 0.85 | 0.0 | 0.0 | 0.75 |
Larger ventricle | −0.22 | 0.0 | 0.25 | 0.16 | 0.30 | 0.35 | 0.0 | 0.0 | 0.50 |
Smaller ventricle | 0.22 | 0.0 | 0.25 | 0.11 | 0.17 | 0.25 | 0.0 | 0.0 | 0.50 |
Small tumor | 0.0 | 0.0 | −0.40 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.825 |
6. Results of Computer Simulations
7. Discussion
7.1. Discussion of Camera Designs
7.1.1. MSFRS Camera Design
7.1.2. Beach Ball Camera Design
7.2. Advantages and Disadvantages of the New Imaging Model and Camera Designs
7.2.1. Mitigating the Effects of the Finite Spatial Resolution of Detectors
7.2.2. Reducing the Amount of Data Measured and Improving Its Quality
7.2.3. Increasing the Flexibility of Detector Designs
7.2.4. An Disadvantage: Loss of Sensitivity
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Jurcic, J.G.; Larson, S.M.; Sgouros, G.; McDevitt, M.R.; Finn, R.D.; Divgi, C.R.; Ballangrud, A.M.; Hamacher, K.A.; Ma, D.S.; Humm, J.L.; et al. Targeted at particle immunotherapy for myeloid leukemia. Blood 2002, 100, 1233–1239. [Google Scholar]
- Jurcic, J.G.; McDevitt, M.R.; Pandit-Taskar, N.; Divgi, C.R.; Finn, R.D.; Sgouros, G.; Apostalidis, C.; Chanel, S.; Larson, S.M.; Scheinberg, D.A. Alpha-particle immunotherapy for acute myeloid leukemia (AML) with bismuth-213 and actinium-225. Cancer Biother. Radiopharm. 2006, 21, 40. [Google Scholar]
- Rosenblat, T.; McDevitt, M.R.; Mulford, D.A.; Pandit-Taskar, N.; Weiss, M.A.; Heaney, M.L.; Chanel, S.; Morgenstern, A.; Larson, S.M.; Scheinberg, D.A.; et al. Sequential Cytarabine and Alpha-Particle Immunotherapy with Bismuth-213 (Bi-213)-Labeled-HuM195 (Lintuzumab) for Acute Myeloid Leukemia (AML). Blood 2008, 112, 1025–1025. [Google Scholar]
- Rosenblat, T.L.; McDevitt, M.R.; Mulford, D.A.; Pandit-Taskar, N.; Divgi, C.R.; Panageas, K.S.; Heaney, M.L.; Chanel, S.; Morgenstern, A.; Sgouros, G.; et al. Sequential Cytarabine and alpha-Particle Immunotherapy with Bismuth-213-Lintuzumab (HuM195) for Acute Myeloid Leukemia. Clin. Cancer Res. 2010, 16, 5303–5311. [Google Scholar] [CrossRef] [PubMed]
- Pagel, J.M.; Kenoyer, A.L.; Back, T.; Hamlin, D.K.; Wilbur, D.S.; Fisher, D.R.; Park, S.I.; Frayo, S.; Axtman, A.; Orgun, N.; et al. Anti-CD45 pretargeted radioimmunotherapy using bismuth-213: High rates of complete remission and long-term survival in a mouse myeloid leukemia xenograft model. Blood 2011, 118, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Ranson, M.; Tian, Z.; Andronicos, N.M.; Rizvi, S.; Allen, B.J. In vitro cytotoxicity of bismuth-213 (Bi-213)-labeled-plasminogen activator inhibitor type 2 (alpha-PAI-2) on human breast cancer cells. Breast Cancer Res. Treat. 2002, 71, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.J.; Tian, Z.; Rizvi, S.M.A.; Li, Y.; Ranson, M. Preclinical studies of targeted alpha therapy for breast cancer using Bi-213-labelled-plasminogen activator inhibitor type 2. Br. J. Cancer 2003, 88, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Shahverdi, K.; Huso, D.L.; Esaias, C.; Fox, J.; Liedy, A.; Zhang, Z.; Reilly, R.T.; Apostolidis, C.; Morgenstern, A.; et al. Bi-213 (alpha-emitter)-antibody targeting of breast cancer metastases in the neu-N transgenic mouse model. Cancer Res. 2008, 68, 3873–3880. [Google Scholar] [CrossRef] [PubMed]
- Lingappa, M.; Song, H.; Thompson, S.; Bruchertseifer, F.; Morgenstern, A.; Sgouros, G. Immunoliposomal Delivery of Bi-213 for alpha-Emitter Targeting of Metastatic Breast Cancer. Cancer Res. 2010, 70, 6815–6823. [Google Scholar] [CrossRef] [PubMed]
- Senekowitsch-Schmidtke, R.; Schuhmacher, C.; Becker, K.; Nikula, T.; Seidl, C.; Becker, I.; Miederer, M.; Apostolidis, C.; Adam, C.; Huber, R.; et al. Highly specific tumor binding of a Bi-213-labeled monoclonal antibody against mutant E-cadherin suggests its usefulness for locoregional alpha-radioimmunotherapy of diffuse-type gastric cancer. Cancer Res. 2001, 61, 2804–2808. [Google Scholar] [PubMed]
- Bloechl, S.; Beck, R.; Seidl, C.; Morgenstern, A.; Schwaiger, M.; Senekowitsch-Schmidtke, R. Fractionated locoregional low-dose radioimmunotherapy improves survival in a mouse model of diffuse-type gastric cancer using a Bi-213-conjugated monoclonal antibody. Clin. Cancer Res. 2005, 11, 7070S–7074S. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.; Seidl, C.; Pfost, B.; Morgenstern, A.; Bruchertseifer, F.; Baum, H.; Schwaiger, M.; Senekowitsch-Schmidtke, R. Bi-213-radioimmunotherapy defeats early-stage disseminated gastric cancer in nude mice. Cancer Sci. 2007, 98, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Cordier, D.; Forrer, F.; Bruchertseifer, F.; Morgenstern, A.; Apostolidis, C.; Good, S.; Muller-Brand, J.; Macke, H.; Reubi, J.C.; Merlo, A. Targeted alpha-radionuclide therapy of functionally critically located gliomas with Bi-213-DOTA-[Thi(8),Met(O-2)(11)] -substance P: A pilot trial. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Heeger, S.; Moldenhauer, G.; Egerer, G.; Wesch, H.; Martin, S.; Nikula, T.; Apostolidis, C.; Brechbiel, M.W.; Ho, A.D.; Haas, R. Alpha-radioimmunotherapy of B-lineage non-Hodgkin’s lymphoma using Bi-213-labelled anti-CD19 and anti-CD20-CHX-A″-DTPA conjugates. Abstr. Papers Am. Chem. Soc. 2003, 225, U261. [Google Scholar]
- Park, S.I.; Shenoi, J.; Pagel, J.M.; Hamlin, D.K.; Wilbur, D.S.; Orgun, N.; Kenoyer, A.L.; Frayo, S.; Axtman, A.; Back, T.; et al. Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood 2010, 116, 4231–4239. [Google Scholar] [CrossRef] [PubMed]
- Knor, S.; Sato, S.; Huber, T.; Morgenstern, A.; Bruchertseifer, F.; Schmitt, M.; Kessler, H.; Senekowitsch-Schmidtke, R.; Magdolen, V.; Seidl, C. Development and evaluation of peptidic ligands targeting tumour-associated urokinase plasminogen activator receptor (uPAR) for use in alpha-emitter therapy for disseminated ovarian cancer. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.J.; Qu, C.F.; Rizvi, S.M.A.; Li, Y.; Robertson, G.; Raja, C.; Morgenstern, A.; Apostolidis, C.; Perkins, A.C.; Allen, B.J. Cytotoxicity of PAI2, C595 and Herceptin vectors labeled with the alpha-emitting radioisotope Bismuth-213 for ovarian cancer cell monolayers and clusters. Cancer Lett. 2006, 234, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.F.; Song, E.Y.; Li, Y.; Rizvi, S.M.A.; Raja, C.; Smith, R.; Morgenstern, A.; Apostolidis, C.; Allen, B.J. Pre-clinical study of Bi-213 labeled PAI2 for the control of micrometastatic pancreatic cancer. Clin. Exp. Metastasis 2005, 22, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, L.; Burvenich, I.; Staelens, S.; Dumolyn, C.; Waegemans, E.; van Steenkiste, M.; Baird, S.K.; Scott, A.M.; de Vos, F. Preclinical Evaluation of Monoclonal Antibody 14C5 for Targeting Pancreatic Cancer. Cancer Biother. Radiopharm. 2010, 25, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Drecoll, E.; Gaertner, F.C.; Miederer, M.; Blechert, B.; Vallon, M.; Muller, J.M.; Alke, A.; Seidl, C.; Bruchertseifer, F.; Morgenstern, A.; et al. Treatment of Peritoneal Carcinomatosis by Targeted Delivery of the Radio-Labeled Tumor Homing Peptide Bi-213-DTPA-[F3](2) into the Nucleus of Tumor Cells. PLoS ONE 2009, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vallon, M.; Seidl, C.; Blechert, B.; Li, Z.L.; Gilbertz, K.P.; Baumgart, A.; Aichler, M.; Feuchtinger, A.; Gaertner, F.C.; Bruchertseifer, F.; et al. Enhanced efficacy of combined Bi-213-DTPA-F3 and paclitaxel therapy of peritoneal carcinomatosis is mediated by enhanced induction of apoptosis and G2/M phase arrest. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1886–1897. [Google Scholar] [CrossRef] [PubMed]
- Essler, M.; Gärtner, F.C.; Neff, F.; Blechert, B.; Senekowitsch-Schmidtke, R.; Bruchertseifer, F.; Morgenstern, A.; Seidl, C. Therapeutic efficacy and toxicity of 225Ac-labelled vs. 213Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.M.A.; Li, Y.; Song, E.Y.J.; Qu, C.F.; Raja, C.; Morgenstern, A.; Apostollidis, C.; Allen, B.J. Preclinical studies of Bismuth-213 labeled plasminogen activator inhibitor type 2 (PAI2) in a prostate cancer nude mouse xenograft model. Cancer Biol. Ther. 2006, 5, 386–393. [Google Scholar] [CrossRef]
- McDevitt, M.R.; Barendswaard, E.; Ma, D.; Lai, L.; Curcio, M.J.; Sgouros, G.; Ballangrud, A.M.; Yang, W.H.; Finn, R.D.; Pellegrini, V.; et al. An alpha-particle emitting antibody (Bi-213 J591) for radioimmunotherapy of prostate cancer. Cancer Res. 2000, 60, 6095–6100. [Google Scholar] [PubMed]
- Wild, D.; Frischknecht, M.; Morgenstern, A.; Bruchertseifer, F.; Boisclair, J.; Provencher-Bolliger, A.; Maecke, H. An alpha-Particle Emitting Radiopeptide (213Bi-DOTA-PESIN) for therapy of Prostate Cancer. In Proceedings of the SNM’s 56th Annual Meeting, Toronto, ON, Canada, 13–17 June 2009. Society of Nuclear Medicine; number 38; Meeting Abstract.
- Allen, B.J.; Singla, A.A.; Rizvi, S.M.A.; Graham, P.; Bruchertseifer, F.; Apostolidis, C.; Morgenstern, A. Analysis of patient survival in a Phase I trial of systemic targeted alpha-therapy for metastatic melanoma. Immunotherapy 2011, 3, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Raja, C.; Graham, P.; Rizvi, S.M.A.; Song, E.; Goldsmith, H.; Thompson, J.; Bosserhoff, A.; Morgenstern, A.; Apostolidis, C.; Kearsley, J.; et al. Interim analysis of oxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 2007, 6, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.J.; Raja, C.; Rizvi, S.; Li, Y.; Tsui, W.; Graham, P.; Thompson, J.F.; Reisfeld, R.A.; Kearsley, J.; Morgenstern, A.; et al. Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 2005, 4, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.M.A.; Qu, C.F.; Song, Y.J.; Raja, C.; Allen, B.J. In vivo studies of pharmacokinetics and efficacy of bismuth-213 labeled antimelanoma monoclonal antibody 9.2.27. Cancer Biol. Ther. 2005, 4, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, A.; Bruchertseifer, F.; Apostolidis, C.; Giesel, F.; Mier, W.; Haberkorn, U.; Kratochwil, C. Synthesis of 213Bi-DOTATOC for peptide receptor alpha-therapy of GEP-NET patients refractory to beta therapy. J. Nucl. Med. Meet. Abstr. 2012, 53, 455. [Google Scholar]
- Casadevall, A.; Goldstein, H.; Dadachova, E.A. Targeting host cells harbouring viruses with radiolabeled antibodies. Expert Opin. Biol. Ther. 2007, 7, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Dadachova, E.A. Bismuth-213 in Radioimmunotherapy of Infectious Diseases. In Proceedings of the SNM’s 56th Annual Meeting. Society of Nuclear Medicine, Toronto, ON, Canada, 13–17 June 2009. Society of Nuclear Medicine; number 130; Meeting Abstract.
- Uche, C.Z. Optimizing Compton Camera Performance. Ph.D. Thesis, The University of Waikato, Hamilton, New Zealand, 2011. [Google Scholar]
- Todd, R.W.; Nightingale, J.M.; Everett, D.B. A proposed Gamma camera. Nature 1974, 251, 132–134. [Google Scholar] [CrossRef]
- Compton, A.H. A quantum theory of the scattering of x-rays by light elements. Phys. Rev. 1923, 21, 483–502. [Google Scholar] [CrossRef]
- Cree, M.J.; Bones, P.J. Towards direct reconstruction from a gamma camera based on Compton scattering. IEEE Trans. Med. Imaging 1994, 13, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Parra, L.C. Reconstruction of cone-beam projections from Compton scattered data. IEEE Trans. Nucl. Sci. 2000, 47, 1543–1550. [Google Scholar] [CrossRef]
- Smith, B.D. Line-reconstruction from Compton cameras: Data sets and a camera design. Opt. Eng. 2011, 50, 10. [Google Scholar] [CrossRef]
- Smith, B.D. Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods. IEEE Trans. Med. Imaging 1985, 4, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.D. Reconstruction Methods and Completeness Conditions for Two Compton Data Models. J. Opt. Soc. Am. A 2005, 22, 445–459. [Google Scholar] [CrossRef]
- Jaszczak, R.J.; Chang, L.T.; Murphy, P.H. Single photon-emission computed-tomography using multi-slice fan beam collimators. IEEE Trans. Nucl. Sci. 1979, 26, 610–618. [Google Scholar] [CrossRef]
- Tsui, B.M.W.; Gullberg, G.T.; Edgerton, E.R.; Gilland, D.R.; Perry, J.R.; McCartney, W.H. Design and clinical utility of a fan beam collimator for SPECT imaging of the head. J. Nucl. Med. 1986, 27, 810–819. [Google Scholar] [PubMed]
- Shepp, L.A. Computerized tomography and nuclear magnetic resonance. J. Comput. Assist. Tomogr. 1980, 4, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Earnhart, J.R.D. A Compton Camera for Spectroscopic Imaging from 100 keV to 1 MeV. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 1999. [Google Scholar]
- Kim, S.M.; Lee, J.S.; Lee, M.N.; Lee, J.H.; Lee, C.S.; Kim, C.H.; Lee, D.S.; Lee, S.J. Two approaches to implementing projector-backprojector pairs for 3D reconstruction from Compton scattered data. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2007, 571, 255–258. [Google Scholar] [CrossRef]
- Kim, S.M.; Lee, J.S.; Lee, C.S.; Kim, C.H.; Lee, M.C.; Lee, D.S.; Lee, S.J. Fully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemes. Phys. Med. Biol. 2010, 55, 5007–5027. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Lee, J.S.; Kim, J.H.; Seo, H.; Kim, C.H.; Lee, C.S.; Lee, S.J.; Lee, M.C.; Lee, D.S. Variance-reduction normalization technique for a Compton camera system. J. Instrum. 2011, 6. [Google Scholar] [CrossRef]
- Andreyev, A.; Sitek, A.; Celler, A. Fast image reconstruction for Compton camera using stochastic origin ensemble approach. Med. Phys. 2011, 38, 429–438. [Google Scholar] [PubMed]
- Nguyen, V.G.; Lee, S.J.; Lee, M.N. GPU-accelerated 3D Bayesian image reconstruction from Compton scattered data. Phys. Med. Biol. 2011, 56, 2817–2836. [Google Scholar] [CrossRef] [PubMed]
- Knoll, G.F. Radiation Detection and Measurement, 2nd ed.; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Uritani, A.; Clinthorne, N.; Gormley, J.; LeBlanc, J.; Rogers, W.; Wehe, D.; Wilderman, S. An electronically collimated gamma camera with a parallel plate collimator for Tc-99m imaging. IEEE Trans. Nucl. Sci. 1997, 44, 894–898. [Google Scholar] [CrossRef]
- Meng, L.J.; Rogers, W.L.; Clinthorne, N.H.; Fessler, J.A. Feasibility study of Compton scattering enchanced multiple pinhole imager for nuclear medicine. IEEE Trans. Nucl. Sci. 2003, 50, 1609–1617. [Google Scholar] [CrossRef]
- Nguyen, C.; Gillam, J.; Brown, J.; Martin, D.; Nikulin, D.; Dimmock, M. Towards Optimal Collimator Design for the PEDRO Hybrid Imaging System. IEEE Trans. Nucl. Sci. 2011, 58, 639–650. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, B. A New Compton Camera Imaging Model to Mitigate the Finite Spatial Resolution of Detectors and New Camera Designs for Implementation. Technologies 2015, 3, 219-237. https://doi.org/10.3390/technologies3040219
Smith B. A New Compton Camera Imaging Model to Mitigate the Finite Spatial Resolution of Detectors and New Camera Designs for Implementation. Technologies. 2015; 3(4):219-237. https://doi.org/10.3390/technologies3040219
Chicago/Turabian StyleSmith, Bruce. 2015. "A New Compton Camera Imaging Model to Mitigate the Finite Spatial Resolution of Detectors and New Camera Designs for Implementation" Technologies 3, no. 4: 219-237. https://doi.org/10.3390/technologies3040219
APA StyleSmith, B. (2015). A New Compton Camera Imaging Model to Mitigate the Finite Spatial Resolution of Detectors and New Camera Designs for Implementation. Technologies, 3(4), 219-237. https://doi.org/10.3390/technologies3040219