Application and Analysis of Modified Metal-Oxide Memristor Models in Electronic Devices †
Abstract
:1. Introduction
2. A Description of the Applied Memristor Models
2.1. Classical Memristor Models
2.1.1. Strukov-Williams Memristor Model [1]
2.1.2. Joglekar Memristor Model [4]
2.1.3. Biolek Memristor Model [34]
2.1.4. Lehtonen-Laiho Memristor Model [35]
2.2. Modified Memristor Models
2.2.1. A Modified Memristor Model Based on Biolek and Lehtonen-Laiho Models (Model A11) [17]
2.2.2. A Modified Model Based on Lehtonen-Laiho Memristor Model A12) (Model A12) [15]
2.2.3. A Modified Memristor Model Founded on Strukov-Williams and Lehtonen-Laiho Models (A13) [19] (Model A13)
3. A Generation of LTSPICE Memristor Library Models
- 1
- . subckt K2 te be Y
- 2
- . params ron = 100 roff = 16e3 k = 10e3 pp = 1
- 3
- C1 Y 0 1 IC = 0.3
- 4
- Rad Y 0 10G
- 5
- G2 0 Y value = {(k*V (te,be)*(1/(ron*(V(Y)) + roff*(1 − V(Y))))*(1 − pow((2*(V(Y)) − 1),(2*pp))))}
- 6
- G1 te be value = {V(te,be)*((1/(ron*(V(Y)) + roff*(1 − V(Y)))))}
- 7
- . ends K2
4. Memristor-Based Electronic Devices–Analysis in LTSPICE Environment
4.1. A Passive Memristor Memory Crossbar
4.2. A Hybrid Memory Crossbar
4.3. A Memristor-Based Neural Network
4.4. A Memristor-Based Amplifier
4.5. A Memristor-Based Generator
4.6. Memristor-Based Filters
5. A Comparison of the Used Memristor Models
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Ascoli, A.; Corinto, F.; Senger, V.; Tetzlaff, R. Memristor Model Comparison. IEEE Circuits Syst. Mag. 2013, 13, 89–105. [Google Scholar] [CrossRef]
- Joglekar, Y.N.; Wolf, S.J. The elusive memristor: Properties of basic electrical circuits. Eur. J. Phys. 2009, 30, 661. [Google Scholar] [CrossRef] [Green Version]
- Corinto, F.; Ascoli, A. A Boundary Condition-Based Approach to the Modeling of Memristor Nanostructures. IEEE Trans. Circuits Syst. 2012, 59, 2713–2727. [Google Scholar] [CrossRef]
- Amer, S.; Sayyaparaju, S.; Rose, G.S.; Beckmann, K.; Cady, N.C. A practical hafnium-oxide memristor model suitable for circuit design and simulation. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar]
- Strachan, J.P.; Torrezan, A.C.; Miao, F.; Pickett, M.D.; Yang, J.J.; Yi, W.; Medeiros-Ribeiro, G.; Williams, R.S. State dynamics and modeling of tantalum oxide memristors. IEEE Trans. Electron Devices 2013, 60, 2194–2202. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Z.; Davila, N.; Kumari, N.; Norris, K.J.; Huang, X.; Strachan, J.P.; Vine, D.; Kilcoyne, A.L.; Nishi, Y.; et al. Physical origins of current and temperature controlled negative differential resistances in NbO2. Nat. Commun. 2017, 8, 658. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, G.; Wang, C.; Zhang, W.; Li, R.-W.; Wang, L. Polymer memristor for information storage and neuromorphic applications. Mater. Horiz. 2014, 1, 489–506. [Google Scholar] [CrossRef]
- Chanthbouala, A.; Garcia, V.; Cherifi, R.O.; Bouzehouane, K.; Fusil, S.; Moya, X.; Xavier, S.; Yamada, H.; Deranlot, C.; Mathur, N.D.; et al. A ferroelectric memristor. Nat. Mater. 2012, 11, 860–864. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Y.; Xi, H.; Li, H.; Dimitrov, D. Spintronic Memristor through Spin-Torque-Induced Magnetization Motion. IEEE Electron Device Lett. 2009, 30, 294–297. [Google Scholar] [CrossRef]
- Romero, F.J.; Toral-Lopez, A.; Ohata, A.; Morales, D.P.; Ruiz, F.G.; Godoy, A.; Rodriguez, N. Laser-Fabricated reduced graphene oxide memristors. Nanomaterials 2019, 9, 897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammad, B.; Jaoude, M.; Kumar, V.; Al Homouz, D.; Nahla Heba Abu Al-Qutayri, M.; Christoforou, N. State of the art of metal oxide memristor devices. Nanotech. Rev. 2016, 5, 311–329. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Friedman, E.G. Memristor-Based Circuit Design for Multilayer Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 677–686. [Google Scholar] [CrossRef]
- Mladenov, V.; Kirilov, S. A Modified Metal Oxide Memristor Model. In Proceedings of the 2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Mazumder, P. A Drift-Tolerant Read/Write Scheme for Multi-Level Memristor Memory. IEEE Trans. Nanotechnol. 2017, 16, 1016–1027. [Google Scholar] [CrossRef]
- Mladenov, V.; Kirilov, S. An Improved Model for Metal Oxide-Based Memristors and Application in Memory Crossbars. In Proceedings of the 18th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Villasimius, Italy, 12–15 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Ascoli, A.; Tetzlaff, R.; Corinto, F.; Mirchev, M.; Gilli, M. Memristor-based filtering applications. In Proceedings of the 2013 14th Latin American Test Workshop-LATW, Cordoba, Argentina, 3–5 April 2013; pp. 1–6. [Google Scholar]
- Mladenov, V.; Kirilov, S.; Zaykov, I. A General Model for Metal Oxide-Based Memristors and Application in Filters. In Proceedings of the 2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Singh, C.P.; Pandey, S.K. An efficient and flexible window function for a memristor model and its analog circuit application. J. Comput. Electron. 2022, 21, 1425–1433. [Google Scholar] [CrossRef]
- Ascoli, A.; Weiher, M.; Herzig, M.; Slesazeck, S.; Mikolajick, T.; Tetzlaff, R. Graph Coloring via Locally-Active Memristor Oscillatory Networks. J. Low Power Electron. Appl. 2022, 12, 22. [Google Scholar] [CrossRef]
- Zidan, M.A.; Omran, H.; Radwan, A.G.; Salama, K.N. Memristor-based reactance-less oscillator. Electron. Lett. 2011, 47, 1220–1221. [Google Scholar] [CrossRef]
- Kvatinsky, S.; Wald, N.; Satat, G.; Kolodny, A.; Weiser, U.C.; Friedman, E.G. MRL—Memristor ratioed logic. In Proceedings of the 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications, Turin, Italy, 29–31 August 2012; pp. 1–6. [Google Scholar]
- Siemon, A.; Menzel, S.; Waser, R.; Linn, E. A complementary resistive switch-based crossbar array adder. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Wiefels, S.; Bengel, C.; Kopperberg, N.; Zhang, K.; Waser, R.; Menzel, S. HRS instability in oxide-based bipolar resistive switching cells. IEEE Trans. Electron Devices 2020, 67, 4208–4215. [Google Scholar] [CrossRef]
- Li, Y.; Kvatinsky, S.; Kornblum, L. Harnessing conductive oxide interfaces for resistive random-access memories. Front. Phys. 2021, 9, 772238. [Google Scholar] [CrossRef]
- Wang, W.; Bricalli, A.; Laudato, M.; Ambrosi, E.; Covi, E.; Ielmini, D. Physics-based modeling of volatile resistive switching memory (RRAM) for crosspoint selector and neuromorphic computing. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 40.3.1–40.3.4. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Song, W.; Yao, P.; Li, Y.; Van Nostrand, J.; Qiu, Q.; Ielmini, D.; Yang, J.J. Integration and co-design of memristive devices and algorithms for artificial intelligence. Iscience 2020, 23, 101809. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yu, S.; Wu, Y.; Engel, J.H.; Guan, X.; Wong, H.S.P. Verilog-A compact model for oxide-based resistive random access memory (RRAM). In Proceedings of the 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Yokohama, Japan, 9–11 September 2014; pp. 41–44. [Google Scholar]
- Ambrogio, S.; Balatti, S.; Gilmer, D.C.; Ielmini, D. Analytical Modeling of Oxide-Based Bipolar Resistive Memories and Complementary Resistive Switches. IEEE Trans. Electron Devices 2014, 61, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Mladenov, V. Advanced Memristor Modeling—Memristor Circuits and Networks; MDPI: Basel, Switzerland, 2019; 172p, ISBN 978-3-03897-104-7. [Google Scholar]
- May, C. Passive Circuit Analysis with LTspice®®—An Interactive Approach; Springer Nature: Cham, Switzerland, 2020; p. 763. ISBN 978-3-030-38304-6. [Google Scholar] [CrossRef]
- Mladenov, V. A Unified and Open LTSPICE Memristor Model Library. Electronics 2021, 10, 1594. [Google Scholar] [CrossRef]
- Biolek, Z.; Biolek, D.; Biolkova, V. SPICE Model of Memristor with Nonlinear Dopant Drift. Radioengineering 2009, 18, 210–214. [Google Scholar]
- Lehtonen, E.; Laiho, M. CNN using memristors for neighborhood connections. In Proceedings of the 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010), Berkeley, CA, USA, 3–5 February 2010; pp. 1–4. [Google Scholar]
- Ascoli, A.; Tetzlaff, R.; Biolek, Z.; Kolka, Z.; Biolkova, V.; Biolek, D. The Art of Finding Accurate Memristor Model Solutions. IEEE J. Emerg. Sel. Top. Circuits Syst. 2015, 5, 133–142. [Google Scholar] [CrossRef]
- Strukov, D.; Williams, S. Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys. A 2009, 94, 515–519. [Google Scholar] [CrossRef]
- Lanza, M.; Waser, R.; Ielmini, D.; Yang, J.J.; Goux, L.; Suñe, J.; Kenyon, A.J.; Mehonic, A.; Spiga, S.; Rana, V.; et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano 2021, 15, 17214–17231. [Google Scholar] [CrossRef] [PubMed]
- Guseinov, D.V.; Matyushkin, I.V.; Chernyaev, N.V.; Mikhaylov, A.N.; Pershin, Y.V. Capacitive effects can make memristors chaotic. Chaos, Solitons Fractals 2021, 144, 110699. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, S. Circuit Systems with MATLAB and PSpice; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 978-04-7082-240-1. [Google Scholar]
- Carrillo, M.; González José, M. A new approach to modelling sigmoidal curves. Technol. Forecast. Soc. Chang. 2002, 69, 233–241. [Google Scholar] [CrossRef]
- Chen, S.; Billings, S.; Luo, W. Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control. 1989, 50, 1873–1896. [Google Scholar] [CrossRef]
- Winder, S. Analog and Digital Filter Design; Elsevier Science: Alpharetta, GA, USA, 2002; ISBN 0-7506-7547-0. [Google Scholar]
Model | Joglekar | Biolek | Lehtonen-Laiho | A11 | A12 | A13 |
---|---|---|---|---|---|---|
Complexity | low | low | high | low | low | low |
Operating Frequency | low | middle | high | high | high | high |
Simulation Time,ms | 16.42 | 16.74 | 18.65 | 17.23 | 17.34 | 17.28 |
Activation Thresholds | no | no | no | yes | yes | yes |
RMS Error | 6.24 | 5.87 | 3.63 | 3.75 | 3.68 | 3.72 |
Accuracy | low | middle | high | high | high | high |
Switching Properties | middle | middle | good | good | good | good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mladenov, V. Application and Analysis of Modified Metal-Oxide Memristor Models in Electronic Devices. Technologies 2023, 11, 20. https://doi.org/10.3390/technologies11010020
Mladenov V. Application and Analysis of Modified Metal-Oxide Memristor Models in Electronic Devices. Technologies. 2023; 11(1):20. https://doi.org/10.3390/technologies11010020
Chicago/Turabian StyleMladenov, Valeri. 2023. "Application and Analysis of Modified Metal-Oxide Memristor Models in Electronic Devices" Technologies 11, no. 1: 20. https://doi.org/10.3390/technologies11010020
APA StyleMladenov, V. (2023). Application and Analysis of Modified Metal-Oxide Memristor Models in Electronic Devices. Technologies, 11(1), 20. https://doi.org/10.3390/technologies11010020