Strategic Investment in Open Hardware for National Security
Abstract
:1. Introduction
Hardware whose design is made publicly available so that anyone can study, modify, distribute, make, and sell the design or hardware based on that design. The hardware’s source, the design from which it is made, is available in the preferred format for making modifications to it. Ideally, open source hardware uses readily-available components and materials, standard processes, open infrastructure, unrestricted content, and open-source design tools to maximize the ability of individuals to make and use hardware. Open source hardware gives people the freedom to control their technology while sharing knowledge and encouraging commerce through the open exchange of designs.
2. Methods
3. Case Study
4. Results
4.1. Case Study Risks from Exports
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (7)
- (8)
4.2. Case Study FOSH Targets
4.2.1. FOSH for Electric Vehicles
4.2.2. FOSH for Energy Conservation
4.2.3. FOSH for Heat Pumps
4.2.4. FOSH for Renewable Energy
5. Discussion
5.1. Countries Positioned to Use the FOSH Model
5.2. Target Response
5.3. Funding National Strategic FOSH Development
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lakhani, K.R.; von Hippel, E. How Open Source Software Works: “Free” User-to-User Assistance. In Produktentwicklung Mit Virtuellen Communities: Kundenwünsche Erfahren und Innovationen Realisieren; Herstatt, C., Sander, J.G., Eds.; Gabler Verlag: Wiesbaden, Germany, 2004; pp. 303–339. ISBN 978-3-322-84540-5. [Google Scholar]
- Zeitlyn, D. Gift Economies in the Development of Open Source Software: Anthropological Reflections. Res. Policy 2003, 32, 1287–1291. [Google Scholar] [CrossRef]
- Raymond, E. The Cathedral and the Bazaar. Know Technol. Pol. 1999, 12, 23–49. [Google Scholar] [CrossRef]
- Herstatt, C.; Ehls, D. Open Source Innovation: The Phenomenon, Participant’s Behaviour, Business Implications; Routledge: London, UK, 2015; ISBN 978-1-317-62425-7. [Google Scholar]
- Comino, S.; Manenti, F.M.; Parisi, M.L. From Planning to Mature: On the Success of Open Source Projects. Res. Policy 2007, 36, 1575–1586. [Google Scholar] [CrossRef]
- Lee, S.-Y.T.; Kim, H.-W.; Gupta, S. Measuring Open Source Software Success. Omega 2009, 37, 426–438. [Google Scholar] [CrossRef]
- Weber, S. The Success of Open Source; Harvard University Press: Cambridge, MA, USA, 2004; ISBN 978-0-674-01292-9. [Google Scholar]
- Hiteshdawda. Realising the Value of Cloud Computing with Linux. Available online: https://www.rackspace.com/en-gb/blog/realising-the-value-of-cloud-computing-with-linux (accessed on 24 February 2022).
- Parloff, R. How Linux Conquered the Fortune 500|Fortune. Available online: https://fortune.com/2013/05/06/how-linux-conquered-the-fortune-500/ (accessed on 24 February 2022).
- Vaughan-Nichols, S. Supercomputers: All Linux, All the Time. Available online: https://www.zdnet.com/article/supercomputers-all-linux-all-the-time/ (accessed on 24 February 2022).
- IDC—Smartphone Market Share. Available online: https://www.idc.com/promo/smartphone-market-share (accessed on 24 February 2022).
- Eclipse. IoT Developer Survey 2019 Results. Available online: https://iot.eclipse.org/community/resources/iot-surveys/assets/iot-developer-survey-2019.pdf (accessed on 24 February 2022).
- Gal, M.S. Viral Open Source: Competition vs. Synergy. J. Compet. Law Econ. 2012, 8, 469–506. [Google Scholar] [CrossRef]
- Hausberg, J.P.; Spaeth, S. Why Makers Make What They Make: Motivations to Contribute to Open Source Hardware Development. RD Manag. 2020, 50, 75–95. [Google Scholar] [CrossRef]
- Powell, A. Democratizing production through open source knowledge: From open software to open hardware. Media Cult. Soc. 2012, 34, 691–708. [Google Scholar] [CrossRef] [Green Version]
- Spaeth, S.; Hausberg, P. Can Open Source Hardware Disrupt Manufacturing Industries? The Role of Platforms and Trust in the Rise of 3D Printing. In The Decentralized and Networked Future of Value Creation: 3D Printing and Its Implications for Society, Industry, and Sustainable Development; Ferdinand, J.-P., Petschow, U., Dickel, S., Eds.; Progress in IS; Springer International Publishing: Cham, Switzerland, 2016; pp. 59–73. ISBN 978-3-319-31686-4. [Google Scholar]
- Open Hardware Definition (English). Available online: https://www.oshwa.org/definition/ (accessed on 20 September 2021).
- Cern Ohl Version 2 Wiki Projects/CERN Open Hardware Licence. Available online: https://ohwr.org/project/cernohl/wikis/Documents/CERN-OHL-version-2 (accessed on 24 February 2022).
- Gibb, A. Building Open Source Hardware: DIY Manufacturing for Hackers and Makers; Pearson Education: London, UK, 2014. [Google Scholar]
- Yip, M.C.; Forsslund, J. Spurring Innovation in Spatial Haptics: How Open-Source Hardware Can Turn Creativity Loose. IEEE Robot. Autom. Mag. 2017, 24, 65–76. [Google Scholar] [CrossRef]
- Dosemagen, S.; Liboiron, M.; Molloy, J. Gathering for Open Science Hardware 2016. J. Open Hardw. 2017, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Hsing, P.-Y. Sustainable Innovation for Open Hardware and Open Science -Lessons from The Hardware Hacker. J. Open Hardw. 2018, 2, 4. [Google Scholar] [CrossRef]
- Pearce, J.M. Sponsored Libre Research Agreements to Create Free and Open Source Software and Hardware. Inventions 2018, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Fernando, P. Tools for Public Participation in Science: Design and Dissemination of Open-Science Hardware. In Proceedings of the 2019 on Creativity and Cognition, San Diego, CA, USA, 13 June 2019; Association for Computing Machinery: New York, NY, USA; pp. 697–701. [Google Scholar]
- Pearce, J.M. Quantifying the Value of Open Source Hard Ware Development. Mod. Econ. 2015, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Daniel, K.F.; Peter, J.G. Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research. Mod. Instrum. 2012, 2012, 18950. [Google Scholar] [CrossRef] [Green Version]
- Oberloier, S.; Pearce, J.M. Open Source Low-Cost Power Monitoring System. HardwareX 2018, 4, e00044. [Google Scholar] [CrossRef]
- Thompson, C. Build it. Share it. Profit. Can open source hardware work. Wired Magazine, 20 October 2011. [Google Scholar]
- Pearce, J.M. Return on Investment for Open Source Scientific Hardware Development. Sci. Public Policy 2016, 43, 192–195. [Google Scholar] [CrossRef]
- Pearce, J.M. Impacts of Open Source Hardware in Science and Engineering. The Bridge 2017, 47, 24–31. [Google Scholar]
- Harnett, C. Open Source Hardware for Instrumentation and Measurement. IEEE Instrum. Meas. Mag. 2011, 14, 34–38. [Google Scholar] [CrossRef]
- Pearce, J.M. Building Research Equipment with Free, Open-Source Hardware. Science 2012, 337, 1303–1304. [Google Scholar] [CrossRef]
- Pearce, J.M. Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Chagas, A.M. Haves and have nots must find a better way: The case for open scientific hardware. PLoS Biol. 2018, 16, e3000014. [Google Scholar] [CrossRef] [Green Version]
- Gibney, E. ‘Open-Hardware’ Pioneers Push for Low-Cost Lab Kit. Nature 2016, 531, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.M. Cut Costs with Open-Source Hardware. Nature 2014, 505, 618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, J.M. Economic Savings for Scientific Free and Open Source Technology: A Review. HardwareX 2020, 8, e00139. [Google Scholar] [CrossRef] [PubMed]
- Sells, E.; Bailard, S.; Smith, Z.; Bowyer, A.; Olliver, V. RepRap: The Replicating Rapid Prototyper: Maximizing Customizability by Breeding the Means of Production. In Handbook of Research in Mass Customization and Personalization; World Scientific Publishing Company: Singapore, 2009; pp. 568–580. ISBN 978-981-4280-25-9. [Google Scholar]
- Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A. RepRap- The replicating rapid prototyper. Robotica 2011, 29, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Kentzer, J.; Koch, B.; Thiim, M.; Jones, R.W.; Villumsen, E. An open source hardware-based mechatronics project: The replicating rapid 3-D printer. In Proceedings of the 2011 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia, 17–19 May 2011; pp. 1–8. [Google Scholar]
- Bowyer, A. 3D Printing and Humanity’s First Imperfect Replicator. 3D Print. Addit. Manuf. 2014, 1, 4–5. [Google Scholar] [CrossRef]
- Rundle, G. A Revolution in the Making; Simon and Schuster: New York, NY, USA, 2014; ISBN 978-1-922213-48-8. [Google Scholar]
- Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, J.L.; Pearce, J.M. Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics 2013, 23, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Petersen, E.E.; Pearce, J. Emergence of Home Manufacturing in the Developed World: Return on Investment for Open-Source 3-D Printers. Technologies 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.A. Government Open Source Policies. p. 66. Available online: https://openforumeurope.org/wp-content/uploads/2015/06/100416_Open_Source_Policies-1.pdf (accessed on 24 February 2022).
- Heikkinen, I.T.S.; Savin, H.; Partanen, J.; Seppälä, J.; Pearce, J.M. Towards National Policy for Open Source Hardware Research: The Case of Finland. Technol. Forecast. Soc. Chang. 2020, 155, 119986. [Google Scholar] [CrossRef]
- Dobbelaere, T.; Vereecken, P.M.; Detavernier, C. A USB-Controlled Potentiostat/Galvanostat for Thin-Film Battery Characterization. HardwareX 2017, 2, 34–49. [Google Scholar] [CrossRef]
- Petersen, E.E.; Kidd, R.W.; Pearce, J.M. Impact of DIY Home Manufacturing with 3D Printing on the Toy and Game Market. Technologies 2017, 5, 45. [Google Scholar] [CrossRef]
- Olanoff, D. The Internet Has Just Finally Killed The Encyclopedia. Available online: https://thenextweb.com/news/wikipedia-and-the-internet-just-killed-244-year-old-encyclopaedia-britannica (accessed on 24 February 2022).
- Erickson, K.; Perez, F.R.; Perez, J.R. What Is the Commons Worth? Estimating the Value of Wikimedia Imagery by Observing Downstream Use. In Proceedings of the 14th International Symposium on Open Collaboration, Paris, France, 22–24 August 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Fauchart, E.; Bacache-Beauvallet, M.; Bourreau, M.; Moreau, F. Do-It-Yourself or Do-It-Together: How Digital Technologies Affect Creating Alone or with Others? Technovation 2021, 112, 102412. [Google Scholar] [CrossRef]
- Dupont, L.; Kasmi, F.; Pearce, J.M.; Ortt, R.J. “Do-It-Together”: Towards the Factories of the Future. Cosmolocal Reader; José, M.R., Michel, B., Sharon, E., James, G.W., Eds.; Cosmo-local Reader; 2021; pp. 52–59. Available online: https://clreader.net/ (accessed on 24 February 2022).
- Mahajan, S.; Luo, C.-H.; Wu, D.-Y.; Chen, L.-J. From Do-It-Yourself (DIY) to Do-It-Together (DIT): Reflections on Designing a Citizen-Driven Air Quality Monitoring Framework in Taiwan. Sustain. Cities Soc. 2021, 66, 102628. [Google Scholar] [CrossRef]
- Hirscher, A.-L.; Niinimäki, K.; Joyner Armstrong, C.M. Social Manufacturing in the Fashion Sector: New Value Creation through Alternative Design Strategies? J. Clean. Prod. 2018, 172, 4544–4554. [Google Scholar] [CrossRef]
- Cullmann, S.; Guittard, C.; Schenk, E. Participative Creativity Serving Product Design in SMEs: A case study. J. Innov. Econ. Manag. 2015, 18, 79–98. [Google Scholar] [CrossRef]
- Russia. The World Factbook; CIA: Washington, DC, USA, 2022. Available online: https://www.cia.gov/the-world-factbook/countries/russia (accessed on 24 February 2022).
- Kristensen, H.M.; Norris, R.S. Russian Nuclear Forces. Bull. At. Sci. 2016, 72, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Norris, R.S.; Kristensen, H.M. Global Nuclear Weapons Inventories, 1945–2010. Bull. At. Sci. 2010, 66, 77–83. [Google Scholar] [CrossRef]
- Pearce, J.M.; Denkenberger, D.C. A National Pragmatic Safety Limit for Nuclear Weapon Quantities. Safety 2018, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Russia: Average Nominal Wage per Month 2020. Available online: https://www.statista.com/statistics/1010660/russia-average-monthly-nominal-wage/ (accessed on 25 February 2022).
- Rutland, P. Russia as an Energy Superpower. New Political Econ. 2008, 13, 203–210. [Google Scholar] [CrossRef]
- Global Natural Gas Reserves by Country 2020. Available online: https://www.statista.com/statistics/265329/countries-with-the-largest-natural-gas-reserves/ (accessed on 25 February 2022).
- Putin Says He Moonlighted as Taxi Driver after Fall of Soviet Union. Available online: https://www.nbcnews.com/news/world/russia-s-putin-laments-soviet-collapse-says-he-moonlighted-taxi-n1285807 (accessed on 25 February 2022).
- Makszimov, V. Strasbourg Court Rules Russia Has “Direct Control” over Abkhazia, South Ossetia. Available online: https://www.euractiv.com/section/europe-s-east/news/strasbourg-court-rules-russia-has-direct-control-over-abkhazia-south-ossetia/ (accessed on 25 February 2022).
- European Court Finds Russia Guilty of Georgia Violations in 2008. Available online: https://www.euronews.com/2021/01/26/russia-guilty-of-violations-during-2008-war-with-georgia-says-europe-s-top-court (accessed on 25 February 2022).
- Mankoff, J. Russia’s Latest Land Grab: How Putin Won Crimea and Lost Ukraine. Foreign Aff. 2014, 93, 60. [Google Scholar]
- Treisman, D. Why Putin Took Crimea: The Gambler in the Kremlin. Foreign Aff. 2016, 95, 47. [Google Scholar]
- Resolutions Calling on Withdrawal of Forces from Crimea, Establishing Epidemic Preparedness International Day among Texts Adopted by General Assembly|Meetings Coverage and Press Releases. Available online: https://www.un.org/press/en/2020/ga12295.doc.htm (accessed on 25 February 2022).
- Putin Shatters Peace in Europe as Russia Invades Ukraine. Available online: https://www.aljazeera.com/news/2022/2/24/russia-putin-shatters-peace-europe-ukraine-invasion (accessed on 25 February 2022).
- Toh, M.; Ogura, J.; Humayun, H.; McGee, C.; Yee, I.; Cheung, E.; Fossum, S.; Kennedy, N. CNN The List of Global Sanctions on Russia for the War in Ukraine. Available online: https://www.cnn.com/2022/02/25/business/list-global-sanctions-russia-ukraine-war-intl-hnk/index.html (accessed on 25 February 2022).
- CNN, K.L. Biden Imposes Additional Sanctions on Russia: “Putin Chose This War”. Available online: https://www.cnn.com/2022/02/24/politics/joe-biden-ukraine-russia-sanctions/index.html (accessed on 25 February 2022).
- Henderson, J.; Mitrova, T. Implications of the Global Energy Transition on Russia. In The Geopolitics of the Global Energy Transition; Hafner, M., Tagliapietra, S., Eds.; Lecture Notes in Energy; Springer International Publishing: Cham, Switzerland, 2020; pp. 93–114. ISBN 978-3-030-39066-2. [Google Scholar]
- Jamet, S.; Corfee-Morlot, J. Assessing the Impacts of Climate Change: A Literature Review; OECD: Paris, France, 2009. [Google Scholar]
- Kummu, M.; Heino, M.; Taka, M.; Varis, O.; Viviroli, D. Climate Change Risks Pushing One-Third of Global Food Production Outside the Safe Climatic Space. One Earth 2021, 4, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Ebi, K. Preventing and Mitigating Health Risks of Climate Change. Environ. Res. 2019, 174, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Stern, N. Stern Review: The Economics of Climate Change; Government of the United Kingdom: London, UK, 2006.
- Russia (RUS) Exports, Imports, and Trade Partners|OEC -The Observatory of Economic Complexity. Available online: https://oec.world/en/profile/country/rus/ (accessed on 25 February 2022).
- Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.-L.; Parmesan, C.; et al. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 2013, 8, e81648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Galetti, M.; Alamgir, M.; Crist, E.; Mahmoud, M.I.; Laurance, W.F. World Scientists’ Warning to Humanity: A Second Notice. BioScience 2017, 67, 1026–1028. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; 151p, ISBN 978-92-9169-143-2. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Dhainaut, J.F.; Claessens, Y.E.; Ginsburg, C.; Riou, B. Unprecedented heat-related deaths during the 2003 heat wave in Paris: Consequences on emergency departments. Crit. Care 2003, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Poumadère, M.; Mays, C.; Le Mer, S.; Blong, R. The 2003 Heat Wave in France: Dangerous Climate Change Here and Now: The 2003 Heat Wave in France. Risk Anal. 2005, 25, 1483–1494. [Google Scholar] [CrossRef]
- Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Guihenneuc-Jouyaux, C.; Clavel, J.; Jougla, E.; Hémon, D. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occ. Env. Health 2006, 80, 16–24. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, G.; Cecchi, L. Effects of climate change on environmental factors in respiratory allergic diseases. Clin. Exp. Allergy 2008, 38, 1264–1274. [Google Scholar] [CrossRef]
- Gislason, A.; Gorsky, G. (Eds.) Proceedings of the Joint ICES/CIESM Workshop to Compare Zooplankton Ecology and Methodologies between the Mediterranean and the North Atlantic (WKZEM); ICES, International Council for the Exploration of the Sea: Copenhagen, Denmark, 2010. [Google Scholar]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Parry, M.; Rosenzweig, C.; Livermore, M. Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society. Bio. Sci. 2005, 360, 2125–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vine, E. Adaptation of California’s electricity sector to climate change. Clim. Chang. 2012, 111, 75–99. [Google Scholar] [CrossRef]
- Val, D.V.; Yurchenko, D.; Nogal, M.; O’Connor, A. Chapter Seven-Climate Change-Related Risks and Adaptation of Interdependent Infrastructure Systems. In Climate Adaptation Engineering; Bastidas-Arteaga, E., Stewar, M.G., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 207–242. ISBN 978-0-12-816782-3. [Google Scholar]
- Dai, A. Drought under global warming: A review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Diffenbaugh, N.S.; Swain, D.L.; Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA 2015, 112, 3931–3936. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Gleick, P.H. Climate change and California drought in the 21st century. Proc. Natl. Acad. Sci. USA 2015, 112, 3858–3859. [Google Scholar] [CrossRef] [Green Version]
- Dale, V.H.; Joyce, L.A.; Mcnulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate Change and Forest Disturbances. BioScience 2001, 51, 723. [Google Scholar] [CrossRef] [Green Version]
- Amiro, B.D.; Stocks, B.J.; Alexander, M.E.; Flannigan, M.D.; Wotton, B.M. Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire 2001, 10, 405–413. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Turetsky, M.; Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Chang. Biol. 2009, 15, 549–560. [Google Scholar] [CrossRef]
- Moorhead, K.K.; Brinson, M.M. Response of Wetlands to Rising Sea Level in the Lower Coastal Plain of North Carolina. Ecol. App. 1995, 5, 261. [Google Scholar] [CrossRef]
- Frihy, O.E. The Nile delta-Alexandria coast: Vulnerability to sea-level rise, consequences and adaptation. Mitig. Adapt. Strateg. Glob. Chang. 2003, 8, 115–138. [Google Scholar] [CrossRef]
- Bobba, A.G. Numerical modelling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydro. Sci. J. 2002, 47, S67–S80. [Google Scholar] [CrossRef] [Green Version]
- Post, V.E.A. Fresh and Saline Groundwater Interaction in Coastal Aquifers: Is Our Technology Ready for the Problems Ahead? Hydrogeol. J. 2005, 13, 120–123. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Hoozemans, F.M.; Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Glob. Environ. Chang. 1999, 9, S69–S87. [Google Scholar] [CrossRef]
- Desantis, L.R.G.; Bhotika, S.; Williams, K.; Putz, F.E. Sea-level rise and drought interactions accelerate forest decline on the Gulf Coast of Florida, USA. Glob. Chang. Biol. 2007, 13, 2349–2360. [Google Scholar] [CrossRef]
- Cox, D.; Hunt, J.; Mason, P.; Wheater, H.; Wolf, P.; Poff, N.L. Ecological Response to and Management of Increased Flooding Caused by Climate Change. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1497–1510. [Google Scholar] [CrossRef]
- Knox, J.C. Sensitivity of Modern and Holocene Floods to Climate Change. Quat. Sci. Rev. 2000, 19, 439–457. [Google Scholar] [CrossRef]
- Carnicer, J.; Coll, M.; Ninyerola, M.; Pons, X.; Sánchez, G.; Peñuelas, J. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 2011, 108, 1474–1478. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Ou, X.; Yan, X.; Zhang, X. Electric Vehicle Market Penetration and Impacts on Energy Consumption and CO2 Emission in the Future: Beijing Case. Energies 2017, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Lambert, F. Global Market Share of Electric Cars More than Doubled in 2021 as the EV Revolution Gains Steam. Electrek 2022. Available online: https://electrek.co/2022/02/02/global-market-share-of-electric-cars-more-than-doubled-2021/ (accessed on 24 February 2022).
- Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372–404. [Google Scholar] [CrossRef]
- Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric Vehicles Batteries: Requirements and Challenges. Joule 2020, 4, 511–515. [Google Scholar] [CrossRef]
- Vaughan-Nichols, S. EVerest: The Open Source Software Stack for EV Charging Infrastructure. Available online: https://www.zdnet.com/article/everest-the-open-source-software-stack-for-electric-vehicle-charging-infrastructure/ (accessed on 25 February 2022).
- All Our Patent Are Belong to You. Available online: https://www.tesla.com/blog/all-our-patent-are-belong-you (accessed on 25 February 2022).
- Ford Motor Company Announces Open Source Portfolio of EV Patents. Available online: http://greenlivingguy.com/2015/06/ford-motor-company-announces-open-source-portfolio-of-ev-patents/ (accessed on 27 February 2022).
- Sylvestrin, G.R.; Scherer, H.F.; Hideo Ando Junior, O. Hardware and Software Development of an Open Source Battery Management System. IEEE Lat. Am. Trans. 2021, 19, 1153–1163. [Google Scholar] [CrossRef]
- Fleming, J.; Amietszajew, T.; McTurk, E.; Towers, D.P.; Greenwood, D.; Bhagat, R. Development and Evaluation of In-Situ Instrumentation for Cylindrical Li-Ion Cells Using Fibre Optic Sensors. HardwareX 2018, 3, 100–109. [Google Scholar] [CrossRef]
- Carloni, A.; Baronti, F.; Di Rienzo, R.; Roncella, R.; Saletti, R. An Open-Hardware and Low-Cost Maintenance Tool for Light-Electric-Vehicle Batteries. Energies 2021, 14, 4962. [Google Scholar] [CrossRef]
- Yensen, N.; Allen, P.B. Open Source All-Iron Battery for Renewable Energy Storage. HardwareX 2019, 6, e00072. [Google Scholar] [CrossRef]
- Koirala, D.; Yensen, N.; Allen, P.B. Open Source All-Iron Battery 2.0. HardwareX 2021, 9, e00171. [Google Scholar] [CrossRef]
- Loukatos, D.; Dimitriou, N.; Manolopoulos, I.; Kontovasilis, K.; Arvanitis, K.G. Revealing Characteristic IoT Behaviors by Performing Simple Energy Measurements via Open Hardware/Software Components. In Proceedings of the Sixth International Congress on Information and Communication Technology, London, UK, 25–26 February 2021; Yang, X.-S., Sherratt, S., Dey, N., Joshi, A., Eds.; Springer: Singapore, 2022; pp. 1045–1053. [Google Scholar]
- Raval, M.; Bhardwaj, S.; Aravelli, A.; Dofe, J.; Gohel, H. Smart Energy Optimization for Massive IoT Using Artificial Intelligence. Internet Things 2021, 13, 100354. [Google Scholar] [CrossRef]
- Lopez, L.J.R.; Aponte, G.P.; Garcia, A.R. Internet of Things Applied in Healthcare Based on Open Hardware with Low-Energy Consumption. Healthc. Inform. Res. 2019, 25, 230–235. [Google Scholar] [CrossRef]
- Viciana, E.; Alcayde, A.; Montoya, F.G.; Baños, R.; Arrabal-Campos, F.M.; Manzano-Agugliaro, F. An Open Hardware Design for Internet of Things Power Quality and Energy Saving Solutions. Sensors 2019, 19, 627. [Google Scholar] [CrossRef] [Green Version]
- Makonin, S.; Popowich, F.; Moon, T.; Gill, B. Inspiring Energy Conservation through Open Source Power Monitoring and In-Home Display. In Proceedings of the 2013 IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Makonin, S.; Sung, W.; Dela Cruz, R.; Yarrow, B.; Gill, B.; Popowich, F.; Bajić, I.V. Inspiring Energy Conservation through Open Source Metering Hardware and Embedded Real-Time Load Disaggregation. In Proceedings of the 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kowloon, Hong Kong, 8–11 December 2013; pp. 1–6. [Google Scholar]
- Adamo, F.; Cavone, G.; Di Nisio, A.; Lanzolla, A.M.L.; Spadavecchia, M. A Proposal for an Open Source Energy Meter. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013; pp. 488–492. [Google Scholar]
- Ferry, C.; Connolly, J. Open Source Power Quality Meter with Cloud Monitoring. In Proceedings of the 2020 31st Irish Signals and Systems Conference (ISSC), Letterkenny, Ireland, 11–12 June 2020; pp. 1–6. [Google Scholar]
- Klemenjak, C.; Egarter, D.; Elmenreich, W. YoMo: The Arduino-Based Smart Metering Board. Comput. Sci. Res. Dev. 2016, 31, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Klemenjak, C.; Jost, S.; Elmenreich, W. YoMoPie: A User-Oriented Energy Monitor to Enhance Energy Efficiency in Households. In Proceedings of the 2018 IEEE Conference on Technologies for Sustainability (SusTech), Long Beach, CA, USA, 11–13 November 2018; pp. 1–7. [Google Scholar]
- Jameel, H.; Farhan, H.K. Low-Cost Energy-Efficient Smart Monitoring System Using Open-Source Microcontrollers. IREACO 2016, 9, 423. [Google Scholar] [CrossRef]
- Pocero, L.; Amaxilatis, D.; Mylonas, G.; Chatzigiannakis, I. Open Source IoT Meter Devices for Smart and Energy-Efficient School Buildings. HardwareX 2017, 1, 54–67. [Google Scholar] [CrossRef]
- Andreou, G.T.; Chatzigeorgiou, I.M. Open Source Hardware and Software to Support Energy Efficiency and Demand Response in LV Installations. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June 2015; pp. 1–5. [Google Scholar]
- Merenda, M.; Iero, D.; Pangallo, G.; Falduto, P.; Adinolfi, G.; Merola, A.; Graditi, G.; Della Corte, F.G. Open-Source Hardware Platforms for Smart Converters with Cloud Connectivity. Electronics 2019, 8, 367. [Google Scholar] [CrossRef] [Green Version]
- Mlakić, D.; Baghaee, H.R.; Nikolovski, S.; Vukobratović, M.; Balkić, Z. Conceptual Design of IoT-Based AMR Systems Based on IEC 61850 Microgrid Communication Configuration Using Open-Source Hardware/Software IED. Energies 2019, 12, 4281. [Google Scholar] [CrossRef] [Green Version]
- A DIY Blower Door—Easy to Build—Easy to Use—Cheap. Available online: https://www.builditsolar.com/Projects/Conservation/BlowerDoor/BlowerDoor.htm (accessed on 25 February 2022).
- Walter-Herrmann, J.; Büching, C. FabLab: Of Machines, Makers and Inventors; Transcript Verlag: Bielefeld, Germany, 2014; ISBN 978-3-8394-2382-0. [Google Scholar]
- Redlich, T.; Buxbaum-Conradi, S.; Basmer-Birkenfeld, S.-V.; Moritz, M.; Krenz, P.; Osunyomi, B.D.; Wulfsberg, J.P.; Heubischl, S. OpenLabs—Open Source Microfactories Enhancing the FabLab Idea. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Kauai, HI, USA, 5–8 January 2016; pp. 707–715. [Google Scholar]
- Open Source Cellulose Insulation Manufacturing. Available online: https://www.appropedia.org/Open_source_cellulose_insulation_manufacturing (accessed on 25 February 2022).
- Domínguez, J.E.; Olivos, E.; Vázquez, C.; Rivera, J.M.; Hernández-Cortes, R.; González-Benito, J. Automated Low-Cost Device to Produce Sub-Micrometric Polymer Fibers Based on Blow Spun Method. HardwareX 2021, 10, e00218. [Google Scholar] [CrossRef]
- E.U. Will Unveil a Strategy to Break Free from Russian Gas, after Decades of Dependence. Washington Post. Available online: https://www.washingtonpost.com/climate-environment/2022/02/23/russia-ukraine-eu-nordstream-strategy-energy/ (accessed on 24 February 2022).
- Pearce, J.M.; Sommerfeldt, N. Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada. Energies 2021, 14, 834. [Google Scholar] [CrossRef]
- Padovani, F.; Sommerfeldt, N.; Longobardi, F.; Pearce, J.M. Decarbonizing Rural Residential Buildings in Cold Climates: A Techno-Economic Analysis of Heating Electrification. Energy Build. 2021, 250, 111284. [Google Scholar] [CrossRef]
- Rowntree, D. Arduino Powered Heat Pump Controller Helps Warm Your Toes. Hackaday 2021. Available online: https://hackaday.com/2021/09/08/arduino-powered-heat-pump-controller-helps-warm-your-toes/ (accessed on 24 February 2022).
- Thomson, C.C.; Jakubowski, M. Toward an Open Source Civilization: Innovations Case Narrative: Open Source Ecology. Innov. Technol. Gov. Glob. 2012, 7, 53–70. [Google Scholar] [CrossRef]
- Renewable Electricity Growth Is Accelerating Faster than Ever Worldwide, Supporting the Emergence of the New Global Energy Economy—News. Available online: https://www.iea.org/news/renewable-electricity-growth-is-accelerating-faster-than-ever-worldwide-supporting-the-emergence-of-the-new-global-energy-economy (accessed on 25 February 2022).
- Choi, C.-S.; Jeong, J.-D.; Lee, I.-W.; Park, W.-K. LoRa Based Renewable Energy Monitoring System with Open IoT Platform. In Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018; pp. 1–2. [Google Scholar]
- Vidal, Y.; Acho, L.; Luo, N.; Tutiven, C. Hardware in the Loop Wind Turbine Simulator for Control System Testing. In Wind Turbine Control and Monitoring; Luo, N., Vidal, Y., Acho, L., Eds.; Advances in Industrial Control; Springer International Publishing: Cham, Switzerland, 2014; pp. 449–466. ISBN 978-3-319-08413-8. [Google Scholar]
- Reinauer, T.; Hansen, U.E. Determinants of Adoption in Open-Source Hardware: A Review of Small Wind Turbines. Technovation 2021, 106, 102289. [Google Scholar] [CrossRef]
- Solar Industry Research Data. Available online: https://www.seia.org/solar-industry-research-data (accessed on 13 April 2020).
- Vaughan, A. Time to shine: Solar power is fastest-growing source of new energy. Guardian, 4 October 2017. [Google Scholar]
- Pearce, J.M. Photovoltaics—A Path to Sustainable Futures. Futures 2002, 34, 663–674. [Google Scholar] [CrossRef]
- Pearce, J.; Lau, A. Net Energy Analysis For Sustainable Energy Production From Silicon Based Solar Cells. In Proceedings of the American Society of Mechanical Engineers Solar 2002: Sunrise on the Reliable Energy Economy, Reno, NV, USA, 15–20 June 2002. [Google Scholar]
- Fthenakis, V.M.; Moskowitz, P.D. Photovoltaics: Environmental, health and safety issues and perspectives. Prog. Photovolt. Res. Appl. 2000, 8, 27–38. [Google Scholar] [CrossRef]
- Fthenakis, V.; Alsema, E. Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004–early 2005 status. Prog. Photovolt. Res. Appl. 2006, 14, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Feldman, D.; Barbose, G.; Margolis, R.; Bolinger, M.; Chung, D.; Fu, R.; Seel, J.; Davidson, C.; Darghouth, N.; Wiser, R. Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections 2015 Edition; NREL: Golden, CO, USA, 2015.
- Barbose, G.L.; Darghouth, N.R.; LaCommare, K.H.; Millstein, D.; Rand, J. Tracking the Sun: Installed Price Trends for Distributed Photovoltaic Systems in the United States-2018 Edition; LBL: Berkeley, CA, USA, 2018.
- Barron, A.R. Cost reduction in the solar industry. Mater. Today 2015, 18, 2–3. [Google Scholar] [CrossRef] [Green Version]
- Matasci, S. Solar Panel Cost: Avg. Solar Panel Prices by State in 2019: EnergySage. Solar News, Energy Sage. 5 June 2019. Available online: news.energysage.com/how-much-does-the-average-solar-panel-installation-cost-in-the-u-s/ (accessed on 24 February 2022).
- Dudley, D. Renewable Energy Will Be Consistently Cheaper Than Fossil Fuels by 2020, Report Claims [WWW Document]. Forbes. 2019. Available online: https://www.forbes.com/sites/dominicdudley/2018/01/13/renewable-energy-cost-effective-fossil-fuels-2020/ (accessed on 13 April 2020).
- Minigrids in the Money. Available online: https://rmi.org/insight/minigrids-money/ (accessed on 25 February 2022).
- Alafita, T.; Pearce, J.M. Securitization of residential solar photovoltaic assets: Costs, risks and uncertainty. Energy Policy 2014, 67, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Grafman, L.; Pearce, J.M. To Catch the Sun; Humboldt University Press: Arcata, CA, USA, 2021. [Google Scholar]
- Feldman, D.G.; Barbose, R.; Margolis, R.; Wiser, N.D.; Goodrich, A. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections, Sunshot; NREL: Golden, CO, USA, 2019. [Google Scholar]
- Renewables International. Photovoltaics after Grid Parity Plug-and-Play PV: The Controversy 2013. Renewables. 2013. Available online: http://www.renewablesinternational.net/plug-and-play-pv-the-controversy/150/452/72715/ (accessed on 18 December 2015).
- Mundada, A.S.; Nilsiam, Y.; Pearce, J.M. A review of technical requirements for plug-and-play solar photovoltaic microinverter systems in the United States. Sol. Energy 2016, 135, 455–470. [Google Scholar] [CrossRef]
- Khan, M.T.A.; Norris, G.; Chattopadhyay, R.; Husain, I.; Bhattacharya, S. Autoinspection and Permitting with a PV Utility Interface (PUI) for Residential Plug-and-Play Solar Photovoltaic Unit. IEEE Trans. Ind. Appl. 2017, 53, 1337–1346. [Google Scholar] [CrossRef]
- Khan, M.T.A.; Husain, I.; Lubkeman, D. Power electronic components and system installation for plug-and-play residential solar PV. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 3272–3278. [Google Scholar]
- Lundstrom, B.R. Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications; Cooperative Research and Development Final Report, CRADA Number CRD-13-523; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017.
- Mundada, A.S.; Prehoda, E.W.; Pearce, J.M. US market for solar photovoltaic plug-and-play systems. Renew. Energy 2017, 103, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Wittbrodt, B.; Pearce, J.M. 3-D Printing Solar Photovoltaic Racking in Developing World. Energy Sustain. Dev. 2017, 36, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hollman, M.R.; Pearce, J.M. Geographic Potential of Shotcrete Photovoltaic Racking: Direct and Low-Concentration Cases. Sol. Energy 2021, 216, 386–395. [Google Scholar] [CrossRef]
- Arefeen, S.; Dallas, T. Low-Cost Racking for Solar Photovoltaic Systems with Renewable Tensegrity Structures. Sol. Energy 2021, 224, 798–807. [Google Scholar] [CrossRef]
- Pearce, J.M. Parametric Open Source Cold-Frame Agrivoltaic Systems. Inventions 2021, 6, 71. [Google Scholar] [CrossRef]
- Wittbrodt, B.T.; Pearce, J.M. Total U.S. Cost Evaluation of Low-Weight Tension-Based Photovoltaic Flat-Roof Mounted Racking. Sol. Energy 2015, 117, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Wittbrodt, B.; Laureto, J.; Tymrak, B.; Pearce, J.M. Distributed Manufacturing with 3-D Printing: A Case Study of Recreational Vehicle Solar Photovoltaic Mounting Systems. J. Frugal Innov. 2015, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.M.; Meldrum, J.; Osborne, N. Design of Post-Consumer Modification of Standard Solar Modules to Form Large-Area Building-Integrated Photovoltaic Roof Slates. Designs 2017, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Motahhir, S.; EL Hammoumi, A.; EL Ghzizal, A.; Derouich, A. Open Hardware/Software Test Bench for Solar Tracker with Virtual Instrumentation. Sustain. Energy Technol. Assess. 2019, 31, 9–16. [Google Scholar] [CrossRef]
- Carballo, J.A.; Bonilla, J.; Roca, L.; Berenguel, M. New Low-Cost Solar Tracking System Based on Open Source Hardware for Educational Purposes. Sol. Energy 2018, 174, 826–836. [Google Scholar] [CrossRef]
- Carballo, J.A.; Bonilla, J.; Berenguel, M.; Fernández-Reche, J.; García, G. New Approach for Solar Tracking Systems Based on Computer Vision, Low Cost Hardware and Deep Learning. Renew. Energy 2019, 133, 1158–1166. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Uceda, F.J.; Ramirez-Faz, J.; Varo-Martinez, M.; Fernández-Ahumada, L.M. New Omnidirectional Sensor Based on Open-Source Software and Hardware for Tracking and Backtracking of Dual-Axis Solar Trackers in Photovoltaic Plants. Sensors 2021, 21, 726. [Google Scholar] [CrossRef]
- Buitenhuis, A.J.; Pearce, J.M. Open-Source Development of Solar Photovoltaic Technology. Energy Sustain. Dev. 2012, 16, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Stein, J.S.; Holmgren, W.F.; Forbess, J.; Hansen, C.W. PVLIB: Open Source Photovoltaic Performance Modeling Functions for Matlab and Python. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference, Portland, OR, USA, 5–10 June 2016; pp. 3425–3430. [Google Scholar]
- Andrews, R.W.; Stein, J.S.; Hansen, C.; Riley, D. Introduction to the Open Source PV LIB for Python Photovoltaic System Modelling Package. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference, Denver, CO, USA, 8–13 June 2014; pp. 170–174. [Google Scholar]
- Freeman, J.M.; DiOrio, N.A.; Blair, N.J.; Neises, T.W.; Wagner, M.J.; Gilman, P.; Janzou, S. System Advisor Model (SAM) General Description (Version 2017.9.5); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2018.
- SAM Open Source—System Advisor Model (SAM). Available online: https://sam.nrel.gov/about-sam/sam-open-source.html (accessed on 26 February 2022).
- Merenda, M.; Iero, D.; Carotenuto, R.; Della Corte, F.G. Simple and Low-Cost Photovoltaic Module Emulator. Electronics 2019, 8, 1445. [Google Scholar] [CrossRef] [Green Version]
- Sunderman, W.; Dugan, R.C.; Smith, J. Open Source Modeling of Advanced Inverter Functions for Solar Photovoltaic Installations. In Proceedings of the 2014 IEEE PES T D Conference and Exposition, Chicago, IL, USA, 14 April 2014; pp. 1–5. [Google Scholar]
- Hofierka, J.; Kaňuk, J. Assessment of Photovoltaic Potential in Urban Areas Using Open-Source Solar Radiation Tools. Renew. Energy 2009, 34, 2206–2214. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Pearce, J.M. Estimating Potential Photovoltaic Yield with r.Sun and the Open Source Geographical Resources Analysis Support System. Sol. Energy 2010, 84, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.; Babasola, A.; Andrews, R. Open Solar Photovoltaic Systems Optimization. In Proceedings of the Open 2012: NCIIA 16th Annual Conference, San Francisco, CA, USA, 21–24 May 2012. [Google Scholar]
- Botero-Valencia, J.S.; Valencia-Aguirre, J.; Gonzalez-Montoya, D.; Ramos-Paja, C.A. A Low-Cost System for Real-Time Measuring of the Sunlight Incident Angle Using IoT. HardwareX 2022, 11, e00272. [Google Scholar] [CrossRef]
- Botero-Valencia, J.S.; Mejia-Herrera, M. Modular System for UV–Vis-NIR Radiation Measurement with Wireless Communication. HardwareX 2021, 10, e00236. [Google Scholar] [CrossRef]
- Botero-Valencia, J.S.; Mejia-Herrera, M.; Pearce, J.M. Design and Implementation of 3-D Printed Radiation Shields for Environmental Sensors. HardwareX 2022, 11, e00267. [Google Scholar] [CrossRef]
- González, I.; Portalo, J.M.; Calderón, A.J. Configurable IoT Open-Source Hardware and Software I-V Curve Tracer for Photovoltaic Generators. Sensors 2021, 21, 7650. [Google Scholar] [CrossRef]
- Singh, T.; Thakur, R. Design and Development of PV Solar Panel Data Logger. IJCSE 2019, 7, 364–369. [Google Scholar] [CrossRef]
- Montes-Romero, J.; Piliougine, M.; Muñoz, J.V.; Fernández, E.F.; De la Casa, J. Photovoltaic Device Performance Evaluation Using an Open-Hardware System and Standard Calibrated Laboratory Instruments. Energies 2017, 10, 1869. [Google Scholar] [CrossRef] [Green Version]
- Papageorgas, P.; Piromalis, D.; Antonakoglou, K.; Vokas, G.; Tseles, D.; Arvanitis, K.G. Smart Solar Panels: In-Situ Monitoring of Photovoltaic Panels Based on Wired and Wireless Sensor Networks. Energy Procedia 2013, 36, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Charaabi, L. Open Monitoring System for Photovoltaic Solar Installations. In Proceedings of the 2020 6th IEEE International Energy Conference (ENERGYCon), Gammarth, Tunisia, 1 October 2020; pp. 1068–1071. [Google Scholar]
- De Arquer Fernández, P.; Fernández Fernández, M.Á.; Carús Candás, J.L.; Arboleya Arboleya, P. An IoT Open Source Platform for Photovoltaic Plants Supervision. Int. J. Electr. Power Energy Syst. 2021, 125, 106540. [Google Scholar] [CrossRef]
- López-Vargas, A.; Fuentes, M.; García, M.V.; Muñoz-Rodríguez, F.J. Low-Cost Datalogger Intended for Remote Monitoring of Solar Photovoltaic Standalone Systems Based on ArduinoTM. IEEE Sens. J. 2019, 19, 4308–4320. [Google Scholar] [CrossRef]
- López-Vargas, A.; Fuentes, M.; Vivar, M. On the Application of IoT for Real-Time Monitoring of Small Stand-Alone PV Systems: Results from a New Smart Datalogger. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 605–607. [Google Scholar]
- Portalo, J.M.; González, I.; Calderón, A.J. Monitoring System for Tracking a PV Generator in an Experimental Smart Microgrid: An Open-Source Solution. Sustainability 2021, 13, 8182. [Google Scholar] [CrossRef]
- González Pérez, I.; Calderón Godoy, A.J.; Portalo Calero, J.M.; Calderón Godoy, M. Monitoring Interfaces for Photovoltaic Systems and DC Microgrids: Brief Survey and Application Case; Universidade da Coruña, Servizo de Publicacións: A Coruña, Spain, 2021; pp. 183–189. [Google Scholar] [CrossRef]
- Botero-Valencia, J.S.; Mejia-Herrera, M.; Pearce, J.M. Low Cost Climate Station for Smart Agriculture Applications with Photovoltaic Energy and Wireless Communication. HardwareX 2022, 11, e00296. [Google Scholar] [CrossRef]
- Kadhim Abed, J. Smart Monitoring System of DC to DC Converter for Photovoltaic Application. IJPEDS 2018, 9, 722. [Google Scholar] [CrossRef]
- Russia Exports—January 2022 Data—1994-2021 Historical—February Forecast. Available online: https://tradingeconomics.com/russia/exports (accessed on 25 February 2022).
- Labs Map|FabLabs. Available online: https://www.fablabs.io/labs/map (accessed on 26 February 2022).
- China Bets on Open-Source Technologies to Boost Domestic Innovation. Available online: https://merics.org/en/short-analysis/china-bets-open-source-technologies-boost-domestic-innovation (accessed on 26 February 2022).
- Cimpanu, C. Two of China’s Largest Tech Firms Are Uniting to Create a New ‘Domestic OS’|ZDNet. 2019. Available online: https://www.zdnet.com/google-amp/article/two-of-chinas-largest-tech-firms-are-uniting-to-create-a-new-domestic-os (accessed on 24 February 2022).
- Winning Bid Software + Tianjin Kirin = the New Flagship of China’s Domestic Operating System-China Electronics. Available online: https://www.cec.com.cn/jtxw/2019/1209/8ac085cc6e112a0f016ee947c8ac00b5.html (accessed on 24 February 2022).
- One-Fifth Of Russians Live In Poverty, 36 Percent In “Risk Zone”, Study Finds. Radio Free Europe/Radio Liberty 14:19:18Z. Available online: https://www.rferl.org/a/study-22-percent-of-russians-live-in-poverty-36-percent-in-risk-zone-/29613059.html (accessed on 24 February 2022).
- Pathways to Enable Open-Source Ecosystems (POSE). Available online: https://beta.nsf.gov/funding/opportunities/pathways-enable-open-source-ecosystems-pose (accessed on 26 February 2022).
- Pearce, J.; Pascaris, A.S.; Schelly, C. Professors Want to Share: Preliminary Survey Results on Establishing Open Source Endowed Professorships. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Sierla, S.; Sorsamäki, L.; Azangoo, M.; Villberg, A.; Hytönen, E.; Vyatkin, V. Towards Semi-Automatic Generation of a Steady State Digital Twin of a Brownfield Process Plant. Appl. Sci. 2020, 10, 6959. [Google Scholar] [CrossRef]
- Coakley, M.F.; Hurt, D.E.; Weber, N.; Mtingwa, M.; Fincher, E.C.; Alekseyev, V.; Chen, D.T.; Yun, A.; Gizaw, M.; Swan, J.; et al. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints. 3D Print. Addit. Manuf. 2014, 1, 137–140. [Google Scholar] [CrossRef]
- UNCTAD. Note on a Proposed United Nations Centralised Database of Open-Source Appropriate Technologies; UNCTAD: Geneva, Switzerland, 2021; Available online: https://unctad.org/webflyer/note-proposed-united-nations-centralised-database-open-source-appropriate-technologies (accessed on 24 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pearce, J.M. Strategic Investment in Open Hardware for National Security. Technologies 2022, 10, 53. https://doi.org/10.3390/technologies10020053
Pearce JM. Strategic Investment in Open Hardware for National Security. Technologies. 2022; 10(2):53. https://doi.org/10.3390/technologies10020053
Chicago/Turabian StylePearce, Joshua M. 2022. "Strategic Investment in Open Hardware for National Security" Technologies 10, no. 2: 53. https://doi.org/10.3390/technologies10020053
APA StylePearce, J. M. (2022). Strategic Investment in Open Hardware for National Security. Technologies, 10(2), 53. https://doi.org/10.3390/technologies10020053