Fundamental Frequency and Phonation Differences in the Production of Stop Laryngeal Contrasts of Endangered Shina
Abstract
:1. Introduction
1.1. Typology of Laryngeal Contrasts in Dardic Languages
1.2. Acoustic Correlates of Laryngeal Contrasts
2. Methods
2.1. Speakers
2.2. Speech Materials and Recording Procedure
2.3. Acoustic and Statistical Analyses
3. Results
Correlations
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Place | Laryngeal | IPA |
---|---|---|
Voiceless Unaspirated | /pa/ | |
Bilabial | Voiceless Aspirated | /pha/ |
Voiced Unaspirated | /ba/ | |
Voiceless Unaspirated | /t̪a/ | |
Dental | Voiceless Aspirated | /t̪ha/ |
Voiced Unaspirated | /d̪a/ | |
Voiceless Unaspirated | /ʈa/ | |
Retroflex | Voiceless Aspirated | /ʈha/ |
Voiced Unaspirated | /ɖa/ | |
Voiceless Unaspirated | /ʧa/ | |
Palatal | Voiceless Aspirated | /ʧha/ |
Voiced Unaspirated | /ʤa/ | |
Voiceless Unaspirated | /ka/ | |
Velar | Voiceless Aspirated | /kha/ |
Voiced Unaspirated | /ɡa/ |
F0 | H1*-H2* | ||||||
Place | Comparisons | Est. | t | p | Est. | t | p |
Bilabial | Voiced Unaspirated vs. Voiceless Aspirated | −6.83 | −8.45 | <0.001 | −1.90 | −3.64 | =0.033 |
Voiced Unaspirated vs. Voiceless Unaspirated | −5.96 | −10.03 | <0.001 | −1.72 | −5.02 | =0.004 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.87 | 1.76 | =0.227 | 0.18 | 0.63 | =0.805 | |
Dental | Voiced Unaspirated vs. Voiceless Aspirated | −10.14 | −12.76 | <0.001 | −3.18 | −6.10 | =0.004 |
Voiced Unaspirated vs. Voiceless Unaspirated | −9.00 | −15.64 | <0.001 | −2.27 | −6.63 | =0.001 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 1.14 | 2.31 | =0.097 | 0.92 | 3.22 | =0.023 | |
Retroflex | Voiced Unaspirated vs. Voiceless Aspirated | −1.60 | −2.01 | =0.194 | −0.66 | −1.26 | =0.473 |
Voiced Unaspirated vs. Voiceless Unaspirated | −0.75 | −1.30 | =0.429 | −0.33 | −0.93 | =0.640 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.84 | 1.70 | =0.250 | 0.34 | 1.16 | =0.502 | |
Palatal | Voiced Unaspirated vs. Voiceless Aspirated | 2.55 | 3.08 | =0.043 | 0.76 | 1.42 | =0.393 |
Voiced Unaspirated vs. Voiceless Unaspirated | 4.46 | 7.14 | <0.001 | 0.99 | 2.72 | =0.057 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 1.91 | 3.81 | =0.007 | 0.22 | 0.79 | =0.720 | |
Velar | Voiced Unaspirated vs. Voiceless Aspirated | −2.61 | −3.27 | =0.041 | −0.48 | −0.92 | =0.653 |
Voiced Unaspirated vs. Voiceless Unaspirated | −1.55 | −2.69 | =0.058 | −0.29 | −0.84 | =0.691 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 1.06 | 2.13 | =0.129 | 0.19 | 0.67 | =0.784 | |
H1*-A1* | H1*-A2* | ||||||
Place | Comparisons | Est. | t | p | Est. | t | p |
Bilabial | Voiced Unaspirated vs. Voiceless Aspirated | −1.11 | −5.62 | =0.002 | −1.87 | −4.53 | =0.009 |
Voiced Unaspirated vs. Voiceless Unaspirated | −0.96 | −7.57 | <0.001 | −1.67 | −6.03 | <0.001 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.15 | 1.07 | =0.551 | 0.19 | 0.74 | =0.743 | |
Dental | Voiced Unaspirated vs. Voiceless Aspirated | −2.08 | −10.76 | <0.001 | −3.07 | −7.54 | =0.001 |
Voiced Unaspirated vs. Voiceless Unaspirated | −1.60 | −13.25 | <0.001 | −2.18 | −8.06 | <0.001 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.48 | 3.42 | =0.014 | 0.89 | 3.45 | =0.012 | |
Retroflex | Voiced Unaspirated vs. Voiceless Aspirated | −0.32 | −1.66 | =0.292 | −0.49 | −1.19 | =0.501 |
Voiced Unaspirated vs. Voiceless Unaspirated | −0.15 | −1.22 | =0.454 | −0.21 | −0.78 | =0.723 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.17 | 1.21 | =0.470 | 0.27 | 1.05 | =0.559 | |
Palatal | Voiced Unaspirated vs. Voiceless Aspirated | 0.39 | 1.92 | =0.198 | 0.50 | 1.17 | =0.506 |
Voiced Unaspirated vs. Voiceless Unaspirated | 0.82 | 5.99 | <0.001 | 0.87 | 2.90 | =0.029 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.43 | 3.02 | =0.027 | 0.37 | 1.41 | =0.363 | |
Velar | Voiced Unaspirated vs. Voiceless Aspirated | −0.40 | −2.08 | =0.171 | −0.51 | −1.26 | =0.466 |
Voiced Unaspirated vs. Voiceless Unaspirated | −0.25 | −2.01 | =0.136 | −0.32 | −1.16 | =0.504 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.16 | 1.12 | =0.521 | 0.20 | 0.78 | =0.724 | |
H1*-A3* | CPP | ||||||
Place | Comparisons | Est. | t | p | Est. | t | p |
Bilabial | Voiced Unaspirated vs. Voiceless Aspirated | −1.87 | −4.53 | =0.009 | −2.77 | −4.46 | =0.020 |
Voiced Unaspirated vs. Voiceless Unaspirated | −1.67 | −6.03 | <0.001 | −2.50 | −4.72 | =0.015 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.19 | 0.74 | =0.743 | 0.27 | 1.53 | =0.298 | |
Dental | Voiced Unaspirated vs. Voiceless Aspirated | −3.07 | −7.54 | =0.001 | −3.16 | −5.09 | =0.012 |
Voiced Unaspirated vs. Voiceless Unaspirated | −2.18 | −8.06 | <0.001 | −2.77 | −5.25 | =0.010 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.89 | 3.45 | =0.012 | 0.39 | 2.16 | =0.102 | |
Retroflex | Voiced Unaspirated vs. Voiceless Aspirated | −0.49 | −1.19 | =0.501 | −0.55 | −0.89 | =0.675 |
Voiced Unaspirated vs. Voiceless Unaspirated | −0.21 | −0.78 | =0.723 | −0.28 | −0.53 | =0.860 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.27 | 1.05 | =0.559 | 0.27 | 1.48 | =0.319 | |
Palatal | Voiced Unaspirated vs. Voiceless Aspirated | 0.50 | 1.17 | =0.506 | 0.16 | 0.25 | =0.966 |
Voiced Unaspirated vs. Voiceless Unaspirated | 0.87 | 2.90 | =0.029 | 0.47 | 0.88 | =0.674 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.37 | 1.41 | =0.363 | 0.32 | 1.76 | =0.207 | |
Velar | Voiced Unaspirated vs. Voiceless Aspirated | −0.51 | −1.26 | =0.466 | −0.72 | −1.17 | =0.526 |
Voiced Unaspirated vs. Voiceless Unaspirated | −0.32 | −1.16 | =0.504 | −0.39 | −0.75 | =0.751 | |
Voiceless Aspirated vs. Voiceless Unaspirated | 0.20 | 0.78 | =0.724 | 0.33 | 1.84 | =0.182 |
1 | |
2 | Kashmiri also contrasts palatalized stops in addition to plain stops (Koul 2003; Wali and Koul 1997). |
3 | These two languages are shown here because of their relevance for the three laryngeal categories of Shina. |
References
- Baart, Joan L. G. 1999. Tone rules in Kalam Kohistani (Garwi, Bashkarik). Bulletin of the School of Oriental and African Studies 62: 88–104. [Google Scholar] [CrossRef]
- Backstrom, Peter C., and Carla F. Radloff. 1992. Sociolinguistic Survey of Northern Pakistan (Volume 2: Languages of Northern Areas). Islamabad: National Institute of Pakistan Studies and Summer Institute of Linguistics. [Google Scholar]
- Bashir, Elena. 2003. Dardic. In The Indo-Aryan Languages. Edited by George Cardona and Dhanesh Jain. London: Routledge, pp. 818–94. [Google Scholar]
- Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48. [Google Scholar] [CrossRef]
- Berkson, Kelly Harper. 2019. Acoustic correlates of breathy sonorants in Marathi. Journal of Phonetics 73: 70–90. [Google Scholar] [CrossRef]
- Bhushan, Nitin, Florian Mohnert, Daniel Sloot, Lise Jans, Casper Albers, and Linda Steg. 2019. Using a Gaussian Graphical Model to explore relationships between items and variables in environmental psychology research. Frontiers in Psychology 10: 1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boersma, Paul, and David Weenink. 2007. Praat: Doing Phonetics by Computer [Computer Program]. Version 6.0.30. Available online: http://www.praat.org (accessed on 30 July 2017).
- Brunelle, Marc, Ta Thanh Tan, James Kirby, and Dinh Lu Giang. 2019. Obstruent devoicing and registrogenesis in Chru. In Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne, Australia 2019. Edited by Sasha Calhoun, Paola Escudero, Marija Tabain and Paul Warren. Canberra: Australasian Speech Science and Technology Association Inc., pp. 517–21. [Google Scholar]
- Brunelle, Marc, Ta Thanh Tan, James Kirby, and Dinh Lu Giang. 2020. Transphonologization of voicing in Chru: Studies in production and perception. Laboratory Phonology 11: 1–33. [Google Scholar] [CrossRef]
- Cacopardo, Alberto M., and Augusto S. Cacopardo. 2001. Gates of Peristan: History, Religion and Society in the Hindu Kush. Rome: Instituto Italiano Per L’ Africa E L’Oriente, Centro Scavi E Ricerche Archeologiche, vol. 5. [Google Scholar]
- Chen, Yiya. 2011. How does phonology guide phonetics in segment–f0 interaction? Journal of Phonetics 39: 612–25. [Google Scholar] [CrossRef]
- Decker, Sandra J. 1992. Ushojo. In Sociolinguistic Survey of Northern Pakistan (Volume 1: Languages of Kohistan). Edited by Calvin R. Rensch, Sandra J. Decker and Daniel G. Hallberg. Islamabad: National Institute of Pakistan Studies and Summer Institute of Linguistics, pp. 65–82. [Google Scholar]
- Dmitrieva, Olga, and Indranil Dutta. 2020. Acoustic correlates of the four-way laryngeal contrast in Marathi. Phonetica 77: 209–37. [Google Scholar] [CrossRef] [PubMed]
- Epskamp, Sacha, Denny Borsboom, and Eiko I. Fried. 2018. Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods 50: 195–212. [Google Scholar] [CrossRef] [Green Version]
- Esposito, Christina M., and Sameer Dowla Khan. 2012. Contrastive breathiness across consonants and vowels: A comparative study of Gujarati and White Hmong. Journal of the International Phonetic Association 42: 123–43. [Google Scholar] [CrossRef] [Green Version]
- Esposito, Christina M., and Sameer Dowla Khan. 2020. The cross-linguistic patterns of phonation types. Language and Linguistics Compass 14: e12392. [Google Scholar] [CrossRef]
- Esposito, Christina M., Sameer Dowla Khan, Kelly H. Berkson, and Max Nelson. 2020. Distinguishing breathy consonants and vowels in Gujarati. Journal of South Asian Languages and Linguistics 6: 215–43. [Google Scholar] [CrossRef]
- Gao, Jiayin, Pierre Hallé, and Christoph Draxler. 2020. Breathy voice and low-register: A case of trading relation in Shanghai Chinese tone perception? Language and Speech 63: 582–607. [Google Scholar] [CrossRef] [PubMed]
- Garellek, Marc. 2019. The phonetics of voice. In The Routledge Handbook of Phonetics. Edited by William F. Katz and Peter F. Assmann. Bloomington: Routledge, pp. 75–106. [Google Scholar]
- Garellek, Marc, and Christina M. Esposito. 2021. Phonetics of White Hmong vowel and tonal contrasts. Journal of the International Phonetic Association 1–20. [Google Scholar] [CrossRef]
- Garellek, Marc, and Patricia Keating. 2011. The acoustic consequences of phonation and tone interactions in Jalapa Mazatec. Journal of the International Phonetic Association 41: 185–205. [Google Scholar] [CrossRef] [Green Version]
- Gruber, James Frederick. 2011. An Articulatory, Acoustic, and Auditory Study of Burmese Tone. Ph.D. thesis, Georgetown University, Washington, DC, USA. [Google Scholar]
- Hombert, Jean-Marie, John J. Ohala, and William G. Ewan. 1979. Phonetic explanations for the development of tones. Language 55: 37–58. [Google Scholar] [CrossRef]
- House, Arthur S., and Grant Fairbanks. 1953. The influence of consonant environment upon the secondary acoustical characteristics of vowels. Journal of the Acoustical Society of America 25: 105–13. [Google Scholar] [CrossRef]
- Hussain, Qandeel. 2018. A typological study of Voice Onset Time (VOT) in Indo-Iranian languages. Journal of Phonetics 71: 284–305. [Google Scholar] [CrossRef]
- Hussain, Qandeel. 2020. Punjabi (India and Pakistan)—Language Snapshot. Language Documentation and Description 19: 144–53. [Google Scholar]
- Hussain, Qandeel. 2021. Phonetic correlates of laryngeal and place contrasts of Burushaski. Speech Communication 126: 71–89. [Google Scholar] [CrossRef]
- Hussain, Qandeel, and Jeff Mielke. 2020. An acoustic and articulatory study of laryngeal and place contrasts of Kalasha (Indo-Aryan, Dardic). Journal of the Acoustical Society of America 147: 2873–90. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Qandeel, Michael Proctor, Mark Harvey, and Katherine Demuth. 2019. Punjabi (Lyallpuri variety). Journal of the International Phonetic Association 50: 282–97. [Google Scholar] [CrossRef]
- Iseli, Markus, Yen-Liang Shue, and Abeer Alwan. 2007. Age, sex, and vowel dependencies of acoustic measures related to the voice source. Journal of the Acoustical Society of America 121: 2283–95. [Google Scholar] [CrossRef] [Green Version]
- Keating, Patricia, and Christina Esposito. 2007. Linguistic voice quality. UCLA Working Papers in Phonetics 105: 85–91. [Google Scholar]
- Kim, Hyunsoon, Shinji Maeda, and Kiyoshi Honda. 2010. Invariant articulatory bases of the features [tense] and [spread glottis] in Korean plosives: New stroboscopic cine-MRI data. Journal of Phonetics 38: 90–108. [Google Scholar] [CrossRef]
- Kingston, John. 2011. Tonogenesis. In The Blackwell Companion to Phonology. Edited by Marc van Oostendorp, Colin J. Ewen, Elizabeth Hume and Keren Rice. Chichester: Wiley Online Library, pp. 2304–34. [Google Scholar]
- Kirby, James P. 2018a. Onset pitch perturbations and the cross-linguistic implementation of voicing: Evidence from tonal and non-tonal languages. Journal of Phonetics 71: 326–54. [Google Scholar] [CrossRef]
- Kirby, James P. 2018b. PraatSauce: Praat-Based Tools for Spectral Analysis, Version 0.2.4; Computer Program; Available online: https://github.com/kirbyj/praatsauce (accessed on 8 April 2020).
- Kirby, James P., and Gwendolyn Hyslop. 2019. Acoustic analysis of onset voicing in Dzongkha obstruents. In Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne, Australia 2019. Edited by Sasha Calhoun, Paola Escudero, Marija Tabain and Paul Warren. Canberra: Australasian Speech Science and Technology Association Inc., pp. 3607–11. [Google Scholar]
- Kirby, James P., and D. Robert Ladd. 2016. Effects of obstruent voicing on vowel F0: Evidence from “true voicing” languages. Journal of the Acoustical Society of America 140: 2400–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochetov, Alexei, Paul Arsenault, Jan Heegård Petersen, Sikandar Kalas, and Taj Khan Kalash. 2020. Kalasha (Bumburet variety). Journal of the International Phonetic Association, 1–22. [Google Scholar] [CrossRef]
- Koreman, Jacobus Johannes Maria. 1996. Decoding Linguistic Information in the Glottal Airflow. Ph.D. thesis, University of Nijmegen, Nijmegen, The Netherlands. [Google Scholar]
- Koul, Omkar N. 2003. Kashmiri. In The Indo-Aryan Languages. Edited by George Cardona and Dhanesh Jain. London: Routledge, pp. 991–1051. [Google Scholar]
- Kreiman, Jody, Yen-Liang Shue, Gang Chen, Markus Iseli, Bruce R. Gerratt, Juergen Neubauer, and Abeer Alwan. 2012. Variability in the relationships among voice quality, harmonic amplitudes, open quotient, and glottal area waveform shape in sustained phonation. Journal of the Acoustical Society of America 132: 2625–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuznetsova, Alexandra, Per B. Brockhoff, and Rune Haubo Bojesen Christensen. 2017. lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software 82: 1–26. [Google Scholar] [CrossRef] [Green Version]
- Ladd, D. Robert, and Stephan Schmid. 2018. Obstruent voicing effects on F0, but without voicing: Phonetic correlates of Swiss German lenis, fortis, and aspirated stops. Journal of Phonetics 71: 229–48. [Google Scholar] [CrossRef]
- Lai, Yuwen, Christopher Huff, Joan Sereno, and Allard Jongman. 2009. The raising effect of aspirated prevocalic consonants on F0 in Taiwanese. Paper presented at the 2nd International Conference on East Asian Linguistics, Simon Fraser University Working Papers in Linguistics; Available online: https://www.sfu.ca/content/dam/sfu/linguistics/Gradlings/SFUWPL/Lai_EtAl.pdf (accessed on 8 April 2020).
- Lee, Seunghun, and Shigeto Kawahara. 2018. The phonetic structure of Dzongkha: A preliminary study. Journal of the Phonetic Society of Japan 22: 13–20. [Google Scholar]
- Lee, Seunghun J., Shigeto Kawahara, Céleste Guillemot, and Tomoko Monou. 2019. Acoustics of the four-way laryngeal contrast in Drenjongke (Bhutia): Observations and implications. Journal of the Phonetic Society of Japan 23: 65–75. [Google Scholar]
- Lenth, Russell V. 2016. Least-Squares Means: The R package lsmeans. Journal of Statistical Software 69: 1–33. [Google Scholar] [CrossRef] [Green Version]
- Liljegren, Henrik. 2013. Notes on Kalkoti: A Shina language with strong Kohistani influences. Linguistic Discovery 11: 129–60. [Google Scholar] [CrossRef] [Green Version]
- Liljegren, Henrik. 2017. Profiling Indo-Aryan in the Hindukush-Karakoram: A preliminary study of micro-typological patterns. Journal of South Asian Languages and Linguistics 4: 107–56. [Google Scholar] [CrossRef]
- Liljegren, Henrik, and Fakhruddin Akhunzada. 2017. Linguistic diversity, vitality and maintenance: A case study on the language situation in northern Pakistan. Multiethnica, 61–79. [Google Scholar]
- Liljegren, Henrik, and Naseem Haider. 2009. Palula. Journal of the International Phonetic Association 39: 381–86. [Google Scholar] [CrossRef] [Green Version]
- Liljegren, Henrik, and Afsar Ali Khan. 2017. Khowar. Journal of the International Phonetic Association 47: 219–29. [Google Scholar] [CrossRef] [Green Version]
- Luo, Qian, Karthik Durvasula, and Yen-Hwei Lin. 2016. Inconsistent consonantal effects on f0 in Cantonese and Mandarin. Paper presented at the Tonal Aspects of Languages, Buffalo, NY, USA, May 24–27; pp. 52–55. [Google Scholar]
- Michaud, Alexis, and Bonny Sands. 2020. Tonogenesis. In Oxford Research Encyclopedia of Linguistics. Oxford: Oxford University Press. [Google Scholar] [CrossRef]
- Misnadin. 2016. Phonetics and Phonology of the Three-way Laryngeal Contrast in Madurese. Ph.D. thesis, The University of Edinburgh, Edinburgh, UK. [Google Scholar]
- Misnadin, and James Kirby. 2020. Acoustic correlates of plosive voicing in Madurese. Journal of the Acoustical Society of America 147: 2779–90. [Google Scholar] [CrossRef]
- Morgenstierne, Georg. 1932. Report on a Linguistic Mission to North-Western India. Norway: Det Mallingske Bogtrykkeri. [Google Scholar]
- Morgenstierne, Georg. 1940. Notes on Bashkarik. Acta Orientalia 18, Pt 3: 4. [Google Scholar]
- Morgenstierne, Georg. 1942. Notes on Dameli: A Kafir-Dardic language of Chitral. Norsk Tidsskrift for Sprogvidenskap 12: 115–98. [Google Scholar]
- Ohde, Ralph N. 1984. Fundamental frequency as an acoustic correlate of stop consonant voicing. Journal of the Acoustical Society of America 75: 224–30. [Google Scholar] [CrossRef]
- Pearce, Mary Dorothy. 2007. The Interaction of Tone with Voicing and Foot Structure: Evidence from Kera Phonetics and Phonology. Ph.D. thesis, University College London, London, UK. [Google Scholar]
- Perder, Emil. 2013. A Grammatical Description of Dameli. Ph.D. thesis, Stockholm University, Stockholm, Sweden. [Google Scholar]
- R Core Team. 2013. R: A Language and Environment for Statistical Computing. Version 3.6.3; Computer Program. Vienna: R Foundation for Statistical Computing. [Google Scholar]
- Radloff, Carla F. 1999. Aspects of the Sound System of Gilgiti Shina. Islamabad: National Institute of Pakistan Studies, Quaid-i-Azam University. [Google Scholar]
- Ratliff, Martha. 2015. Tonoexodus, tonogenesis, and tone change. In The Oxford Handbook of Historical Phonology. Edited by Patrick Honeybone and Joseph Salmons. Oxford: Oxford University Press, pp. 245–61. [Google Scholar]
- Rehman, Khawaja A., and Joan L. G. Baart. 2005. A first look at the language of Kundal Shahi in Azad Kashmir. SIL Electronic Working Papers 53: 1–22. [Google Scholar]
- Schertz, Jessamyn, and Sarah Khan. 2020. Acoustic cues in production and perception of the four-way stop laryngeal contrast in Hindi and Urdu. Journal of Phonetics 81: 1–25. [Google Scholar] [CrossRef]
- Seyfarth, Scott, and Marc Garellek. 2018. Plosive voicing acoustics and voice quality in Yerevan Armenian. Journal of Phonetics 71: 425–50. [Google Scholar] [CrossRef]
- Shimizu, Katsumasa. 1989. A cross-language study of voicing contrasts of stops. Studia Phonologica 23: 1–12. [Google Scholar]
- Strand, Richard F. 1973. Notes on the Nūristāni and Dardic languages. Journal of the American Oriental Society 93: 297–305. [Google Scholar] [CrossRef]
- Strand, Richard F. 2001a. The Sound System of Bhat’e-sa z’ib. Available online: https://nuristan.info/ (accessed on 14 June 2021).
- Strand, Richard F. 2001b. Tongues of Peristan. In Gates of Peristan: History, Religion, and Society in the Hindu Kush. Edited by Alberto M. Cacopardo and Augusto M. Cacopardo. Rome: Instituto Italiano Per L’ Africa E L’Oriente, Centro Scavi E Ricerche Archeologiche, pp. 251–57. [Google Scholar]
- Tan, Ta Thanh, Marc Brunelle, and Nguyen Tran Quy. 2019. Chrau register and the transphonologization of voicing. In Proceedings of the 19th International Congress of Phonetic Sciences, Melbourne, Australia 2019. Edited by Sasha Calhoun, Paola Escudero, Marija Tabain and Paul Warren. Canberra: Australasian Speech Science and Technology Association Inc., pp. 2094–98. [Google Scholar]
- Wali, Kashi, and Omkar N. Koul. 1997. Kashmiri: A Cognitive-Descriptive Grammar. London: Routledge. [Google Scholar]
- Wayland, Ratree P., and Allard Jongman. 2002. Registrogenesis in Khmer: A phonetic account. Mon-Khmer Studies 32: 101–15. [Google Scholar]
Place | F0 Ranking |
---|---|
Bilabial | voiceless aspirated > voiceless unaspirated > voiced unaspirated |
Dental | voiceless aspirated > voiceless unaspirated > voiced unaspirated |
Retroflex | voiceless aspirated > voiceless unaspirated > voiced unaspirated |
Palatal | voiced unaspirated > voiceless aspirated > voiceless unaspirated |
Velar | voiceless aspirated > voiceless unaspirated > voiced unaspirated |
F0 | H1*-H2* | |||||||||
Factors | Est. | SE | df | t | p | Est. | SE | df | t | p |
(Intercept) | 148.30 | 7.75 | 3.26 | 19.13 | <0.001 | 1.62 | 1.44 | 3.92 | 1.12 | =0.325 |
Laryngeal [Voiceless Aspirated] | 6.83 | 0.81 | 6.16 | 8.45 | <0.001 | 1.90 | 0.52 | 5.03 | 3.64 | =0.015 |
Laryngeal [Voiceless Unaspirated] | 5.96 | 0.59 | 10.28 | 10.03 | <0.001 | 1.72 | 0.34 | 7.10 | 5.02 | =0.001 |
Place [Dental] | 1.25 | 0.77 | 5.70 | 1.62 | =0.158 | 0.87 | 0.76 | 4.36 | 1.13 | =0.315 |
Place [Palatal] | 1.76 | 3.01 | 3.33 | 0.58 | =0.597 | 1.44 | 0.30 | 11.24 | 4.73 | =0.001 |
Place [Retroflex] | 7.66 | 0.69 | 7.03 | 11.13 | <0.001 | 2.03 | 0.40 | 5.97 | 5.09 | =0.002 |
Place [Velar] | 2.47 | 0.52 | 9.56 | 4.78 | =0.001 | 1.05 | 0.25 | 11.30 | 4.15 | =0.002 |
Laryngeal [Voiceless Aspirated]*Place [Dental] | 3.31 | 0.53 | 328.17 | 6.22 | <0.001 | 1.28 | 0.27 | 330.71 | 4.75 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Dental] | 3.04 | 0.53 | 328.17 | 5.71 | <0.001 | 0.55 | 0.27 | 330.71 | 2.03 | =0.043 |
Laryngeal [Voiceless Aspirated]*Place [Palatal] | −9.38 | 0.58 | 330.91 | −16.16 | <0.001 | −2.66 | 0.30 | 326.52 | −8.98 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Palatal] | −10.42 | 0.58 | 330.67 | −17.87 | <0.001 | −2.70 | 0.30 | 326.52 | −9.13 | <0.001 |
Laryngeal [Voiceless Aspirated]*Place [Retroflex] | −5.23 | 0.53 | 328.17 | −9.83 | <0.001 | −1.24 | 0.28 | 330.67 | −4.47 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Retroflex] | −5.21 | 0.54 | 328.05 | −9.73 | <0.001 | −1.39 | 0.28 | 330.83 | −4.95 | <0.001 |
Laryngeal [Voiceless Aspirated]*Place [Velar] | −4.22 | 0.54 | 328.26 | −7.89 | <0.001 | −1.42 | 0.27 | 330.72 | −5.22 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Velar] | −4.41 | 0.54 | 328.26 | −8.23 | <0.001 | −1.43 | 0.27 | 330.72 | −5.26 | <0.001 |
H1*-A1* | H1*-A2* | |||||||||
Factors | Est. | SE | df | t | p | Est. | SE | df | t | p |
(Intercept) | 12.00 | 1.25 | 4.08 | 9.63 | =0.001 | 10.03 | 1.65 | 3.61 | 6.06 | =0.005 |
Laryngeal [Voiceless Aspirated] | 1.11 | 0.20 | 6.80 | 5.62 | =0.001 | 1.87 | 0.41 | 6.15 | 4.53 | =0.004 |
Laryngeal [Voiceless Unaspirated] | 0.96 | 0.13 | 21.94 | 7.57 | <0.001 | 1.67 | 0.28 | 10.74 | 6.03 | <0.001 |
Place [Dental] | 0.20 | 0.27 | 4.78 | 0.74 | =0.497 | 0.73 | 0.59 | 4.88 | 1.25 | =0.267 |
Place [Palatal] | 0.26 | 0.52 | 4.86 | 0.50 | =0.636 | 0.95 | 0.38 | 6.32 | 2.49 | =0.045 |
Place [Retroflex] | 1.27 | 0.14 | 11.39 | 8.89 | <0.001 | 2.06 | 0.32 | 6.76 | 6.35 | <0.001 |
Place [Velar] | 0.40 | 0.13 | 17.72 | 3.15 | =0.006 | 0.98 | 0.22 | 23.05 | 4.47 | <0.001 |
Laryngeal [Voiceless Aspirated]*Place [Dental] | 0.97 | 0.14 | 328.71 | 6.72 | <0.001 | 1.20 | 0.27 | 330.81 | 4.51 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Dental] | 0.64 | 0.14 | 328.71 | 4.43 | <0.001 | 0.51 | 0.27 | 330.81 | 1.91 | =0.057 |
Laryngeal [Voiceless Aspirated]*Place [Palatal] | −1.50 | 0.16 | 329.99 | −9.51 | <0.001 | −2.36 | 0.29 | 330.02 | −8.14 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Palatal] | −1.78 | 0.16 | 329.90 | −11.23 | <0.001 | −2.54 | 0.29 | 330.92 | −8.68 | <0.001 |
Laryngeal [Voiceless Aspirated]*Place [Retroflex] | −0.79 | 0.14 | 328.71 | −5.45 | <0.001 | −1.38 | 0.27 | 330.81 | −5.18 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Retroflex] | −0.81 | 0.15 | 328.73 | −5.57 | <0.001 | −1.46 | 0.27 | 330.85 | −5.46 | <0.001 |
Laryngeal [Voiceless Aspirated]*Place [Velar] | −0.71 | 0.15 | 328.67 | −4.86 | <0.001 | −1.35 | 0.27 | 330.83 | −5.04 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Velar] | −0.71 | 0.15 | 328.67 | −4.91 | <0.001 | −1.36 | 0.27 | 330.83 | −5.07 | <0.001 |
H1*-A3* | CPP | |||||||||
Factors | Est. | SE | df | t | p | Est. | SE | df | t | p |
(Intercept) | −0.14 | 3.43 | 3.97 | −0.04 | =0.969 | 20.43 | 2.69 | 4.17 | 7.59 | =0.001 |
Laryngeal [Voiceless Aspirated] | 3.58 | 0.73 | 4.82 | 4.94 | =0.005 | 2.77 | 0.62 | 4.41 | 4.46 | =0.009 |
Laryngeal [Voiceless Unaspirated] | 3.21 | 0.54 | 5.82 | 5.93 | =0.001 | 2.50 | 0.53 | 4.59 | 4.72 | =0.007 |
Place [Dental] | 1.62 | 0.91 | 4.30 | 1.78 | =0.144 | 1.14 | 0.49 | 4.48 | 2.30 | =0.076 |
Place [Palatal] | 1.95 | 0.48 | 7.98 | 4.12 | =0.003 | 1.00 | 0.51 | 4.86 | 1.97 | =0.108 |
Place [Retroflex] | 4.00 | 0.72 | 4.81 | 5.51 | =0.003 | 3.08 | 0.66 | 4.33 | 4.66 | =0.008 |
Place [Velar] | 2.04 | 0.32 | 13.50 | 6.31 | <0.001 | 1.43 | 0.16 | 42.18 | 8.95 | <0.001 |
Laryngeal [Voiceless Aspirated]*Place [Dental] | 1.70 | 0.36 | 330.75 | 4.75 | <0.001 | 0.39 | 0.21 | 336.78 | 1.87 | =0.063 |
Laryngeal [Voiceless Unaspirated]*Place [Dental] | 0.67 | 0.36 | 330.75 | 1.87 | =0.062 | 0.28 | 0.21 | 336.78 | 1.33 | =0.185 |
Laryngeal [Voiceless Aspirated]*Place [Palatal] | −4.32 | 0.39 | 329.54 | −11.00 | <0.001 | −2.93 | 0.23 | 338.26 | −12.75 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Palatal] | −4.46 | 0.39 | 329.54 | −11.33 | <0.001 | −2.97 | 0.23 | 338.26 | −12.93 | <0.001 |
Laryngeal [Voiceless Aspirated]*Place [Retroflex] | −2.69 | 0.36 | 330.75 | −7.52 | <0.001 | −2.22 | 0.21 | 336.78 | −10.60 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Retroflex] | −2.79 | 0.36 | 330.84 | −7.77 | <0.001 | −2.21 | 0.21 | 336.88 | −10.51 | <0.001 |
Laryngeal [Voiceless Aspirated]*Place [Velar] | −2.80 | 0.36 | 330.84 | −7.69 | <0.001 | −2.05 | 0.21 | 336.82 | −9.72 | <0.001 |
Laryngeal [Voiceless Unaspirated]*Place [Velar] | −2.74 | 0.37 | 330.96 | −7.41 | <0.001 | −2.10 | 0.21 | 336.82 | −9.98 | <0.001 |
Voiceless Unaspirated | Voiceless Aspirated | Voiced Unaspirated | |||||
---|---|---|---|---|---|---|---|
Parameter 1 | Parameter 2 | r | p | r | p | r | p |
F0 | H1*-A1* | 1.00 | <0.001 | 0.99 | <0.001 | 1.00 | <0.001 |
F0 | H1*-A2* | 0.99 | <0.001 | 0.96 | <0.001 | 1.00 | <0.001 |
F0 | H1*-A3* | 0.99 | <0.001 | 0.98 | <0.001 | 1.00 | <0.001 |
F0 | H1*-H2* | 0.94 | <0.001 | 0.92 | <0.001 | 0.96 | <0.001 |
F0 | CPP | 0.98 | <0.001 | 0.98 | <0.001 | 0.98 | <0.001 |
H1*-A1* | H1*-A2* | 0.99 | <0.001 | 0.99 | <0.001 | 1.00 | <0.001 |
H1*-A1* | H1*-A3* | 0.99 | <0.001 | 1.00 | <0.001 | 1.00 | <0.001 |
H1*-A1* | H1*-H2* | 0.92 | <0.001 | 0.94 | <0.001 | 0.95 | <0.001 |
H1*-A1* | CPP | 0.99 | <0.001 | 0.98 | <0.001 | 0.98 | <0.001 |
H1*-A2* | H1*-A3* | 0.99 | <0.001 | 0.99 | <0.001 | 0.99 | <0.001 |
H1*-A2* | H1*-H2* | 0.96 | <0.001 | 0.97 | <0.001 | 0.96 | <0.001 |
H1*-A2* | CPP | 0.97 | <0.001 | 0.94 | <0.001 | 0.98 | <0.001 |
H1*-A3* | H1*-H2* | 0.94 | <0.001 | 0.95 | <0.001 | 0.94 | <0.001 |
H1*-A3* | CPP | 0.99 | <0.001 | 0.97 | <0.001 | 0.99 | <0.001 |
H1*-H2* | CPP | 0.88 | <0.001 | 0.86 | <0.001 | 0.90 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, Q. Fundamental Frequency and Phonation Differences in the Production of Stop Laryngeal Contrasts of Endangered Shina. Languages 2021, 6, 139. https://doi.org/10.3390/languages6030139
Hussain Q. Fundamental Frequency and Phonation Differences in the Production of Stop Laryngeal Contrasts of Endangered Shina. Languages. 2021; 6(3):139. https://doi.org/10.3390/languages6030139
Chicago/Turabian StyleHussain, Qandeel. 2021. "Fundamental Frequency and Phonation Differences in the Production of Stop Laryngeal Contrasts of Endangered Shina" Languages 6, no. 3: 139. https://doi.org/10.3390/languages6030139
APA StyleHussain, Q. (2021). Fundamental Frequency and Phonation Differences in the Production of Stop Laryngeal Contrasts of Endangered Shina. Languages, 6(3), 139. https://doi.org/10.3390/languages6030139