Combustion Characteristics of a Supersonic Combustor with a Large Cavity Length-to-Depth Ratio
Abstract
:1. Introduction
2. Experimental Setup
3. Results
3.1. Chemiluminescence Images
3.2. POD and DMD Analyses
3.3. Temporally Resolved Flame Dynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; Li, X.; Liang, J.; Yu, Y.; Yu, X. Laser-Induced Plasma Ignition of Hydrocarbon Fuel in Supersonic Flows. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, UK, 6–9 July 2015. [Google Scholar]
- Tian, Y.; Yang, S.; Le, J. Study on flame stabilization of a hydrogen and kerosene fueled combustor. Aerosp. Sci. Technol. 2016, 59, 183–188. [Google Scholar] [CrossRef]
- Huang, W. Transverse jet in supersonic crossflows. Aerosp. Sci. Technol. 2016, 50, 183–195. [Google Scholar] [CrossRef]
- Rabadan Santana, E.; Weigand, B. Effect of the reaction mechanism on the numerical prediction of the performance of a scramjet combustor at cruise flight 8 Mach number. Aerosp. Sci. Technol. 2021, 112, 106595. [Google Scholar] [CrossRef]
- Huellmantel, L.W.; Ziemer, R.W.; Cambel, A.B. Stabilization of Premixed Propane-Air Flames in Recessed Ducts. J. Jet Propuls. 1957, 27, 31–34. [Google Scholar] [CrossRef]
- Rasmussen, C.C.; Dhanuka, S.K.; Driscoll, J.F. Visualization of flameholding mechanisms in a supersonic combustor using PLIF. Proc. Combust. Inst. 2007, 31, 2505–2512. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, T.; Yao, W.; Fan, X.; Zhang, P. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence. Proc. Combust. Inst. 2017, 36, 2919–2925. [Google Scholar] [CrossRef] [Green Version]
- Qin, F.; Huang, Z.-W.; He, G.-Q.; Wang, S.; Wei, X.-G.; Liu, B. Flame stabilization mechanism study in a hydrogen-fueled model supersonic combustor under different air inflow conditions. Int. J. Hydrog. Energ. 2017, 42, 21360–21370. [Google Scholar] [CrossRef]
- Liu, C.; Sun, M.; Wang, H.; Yang, L.; An, B.; Pan, Y. Ignition and flame stabilization characteristics in an ethylene-fueled scramjet combustor. Aerosp. Sci. Technol. 2020, 106, 106186. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, T.; Yao, W.; Fan, X. Study on Flame Stabilization in a Dual-Mode Combustor Using Optical Measurements. J. Propuls. Power 2015, 31, 1524–1531. [Google Scholar] [CrossRef] [Green Version]
- Nakaya, S.; Kinoshita, R.; Lee, J.; Ishikawa, H.; Tsue, M. Analysis of supersonic combustion characteristics of ethylene/methane fuel mixture on high-speed measurements of CH* chemiluminescence. Proc. Combust. Inst. 2019, 37, 3749–3756. [Google Scholar] [CrossRef]
- Nakaya, S.; Yamana, H.; Tsue, M. Experimental investigation of ethylene/air combustion instability in a model scramjet combustor using image-based methods. Proc. Combust. Inst. 2021, 38, 3869–3880. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Z.-G.; Pourkashanian, M.; Ma, L.; Ingham, D.B.; Luo, S.-B.; Lei, J.; Liu, J. Numerical investigation on the shock wave transition in a three-dimensional scramjet isolator. Acta Astronaut. 2011, 68, 1669–1675. [Google Scholar] [CrossRef]
- Huang, W.; Yan, L.; Tan, J.-G. Survey on the mode transition technique in combined cycle propulsion systems. Aerosp. Sci. Technol. 2014, 39, 685–691. [Google Scholar] [CrossRef]
- Huang, W.; Li, L.-Q.; Yan, L.; Liao, L. Numerical exploration of mixing and combustion in a dual-mode combustor with backward-facing steps. Acta Astronaut. 2016, 127, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Gerlinger, P.; Stoll, P.; Kindler, M.; Schneider, F.; Aigner, M. Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity. Aerosp. Sci. Technol. 2008, 12, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Ben-Yakar, A.; Hanson, R.K. Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview. J. Propuls. Power 2001, 17, 869–877. [Google Scholar] [CrossRef]
- Ma, F.; Li, J.; Yang, V.; Lin, K.-C.; Jackson, T. Thermoacoustic Flow Instability in a Scramjet Combustor. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, USA, 10–13 July 2005. [Google Scholar]
- Wang, Z.-G.; Sun, M.-B.; Wang, H.-B.; Yu, J.-F.; Liang, J.-H.; Zhuang, F.-C. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor. Proc. Combust. Inst. 2015, 35, 2137–2144. [Google Scholar] [CrossRef]
- Allison, P.M.; Frederickson, K.; Kirik, J.; Rockwell, R.D.; Lempert, W.R.; Sutton, J. Investigation of supersonic combustion dynamics via 50 kHz CH* chemiluminescence imaging. Proc. Combust. Inst. 2017, 36, 2849–2856. [Google Scholar] [CrossRef]
- Micka, D.J.; Driscoll, J.F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder. Proc. Combust. Inst. 2009, 32, 2397–2404. [Google Scholar] [CrossRef]
- Lin, K.-C.; Jackson, K.; Behdadnia, R.; Jackson, T.A.; Ma, F.; Yang, V. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Cavity Flameholder. J. Propuls. Power 2010, 26, 1161–1170. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, Z.; Sun, M. Experimental study of oscillations in a scramjet combustor with cavity flameholders. Exp. Therm. Fluid Sci. 2013, 45, 259–263. [Google Scholar] [CrossRef]
- Ouyang, H.; Liu, W.; Sun, M. Parametric study of combustion oscillation in a single-side expansion scramjet combustor. Acta Astronaut. 2016, 127, 603–613. [Google Scholar] [CrossRef]
- Ouyang, H.; Liu, W.; Sun, M. The influence of cavity parameters on the combustion oscillation in a single-side expansion scramjet combustor. Acta Astronaut. 2017, 137, 52–59. [Google Scholar] [CrossRef]
- Benyakar, A.; Mungal, M.G.; Hanson, R.K. Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 2006, 18, 026101. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-Y.; Ma, F.; Yang, V. Combustion oscillations in a scramjet engine combustor with transverse fuel injection. Proc. Combust. Inst. 2005, 30, 2851–2858. [Google Scholar] [CrossRef]
- Li, F.; Sun, M.; Cai, Z.; Sun, Y.; Li, F.; Zhang, J.; Zhu, J. Experimental study of flame stabilization in a single-side expansion scramjet combustor with different cavity length-to-depth ratios. Acta Astronaut. 2020, 173, 1–8. [Google Scholar] [CrossRef]
- Tian, Y.; Zeng, X.; Yang, S.; Zhong, F.; Le, J. Experimental study on the effect of equivalence ratio and injector position on flow structure and flame development in the scramjet combustor. Aerosp. Sci. Technol. 2018, 82–83, 9–19. [Google Scholar] [CrossRef]
- Xiong, P.; Zheng, D.; Tan, Y.; Tian, Y.; Le, J. Experimental study of ignition and combustion characteristics of ethylene in cavity-based supersonic combustor at low stagnation temperature and pressure. Aerosp. Sci. Technol. 2021, 109, 106414. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, S.; Le, J.; Zhong, F.; Tian, X. Investigation of combustion process of a kerosene fueled combustor with air throttling. Combust. Flame 2017, 179, 74–85. [Google Scholar] [CrossRef]
- Schefer, R.; Kulatilaka, W.; Patterson, B.; Settersten, T. Visible emission of hydrogen flames. Combust. Flame 2009, 156, 1234–1241. [Google Scholar] [CrossRef] [Green Version]
- Ballester, J.; Hernandez, R.; Sanz, A.; Smolarz, A.; Barroso, J.; Pina, A. Chemiluminescence monitoring in premixed flames of natural gas and its blends with hydrogen. Proc. Combust. Inst. 2009, 32, 2983–2991. [Google Scholar] [CrossRef]
- Zhong, F.; Le, J.; Tian, Y.; Yue, M. Investigation of the combustion process in an ethylene-fueled scramjet combustor. J. Exp. Fluid Mech. 2021, 35, 34–43. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Sun, M.; Wu, H. Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor. Int. J. Hydrog. Energy 2013, 38, 12078–12089. [Google Scholar] [CrossRef]
- Zebiri, B.; Piquet, A.; Hadjadj, A. Analysis of shock-wave unsteadiness in conical supersonic nozzles. Aerosp. Sci. Technol. 2020, 105, 106060. [Google Scholar] [CrossRef]
- Pavalavanni, P.K.; Sohn, C.H.; Lee, B.J.; Choi, J.-Y. Revisiting unsteady shock-induced combustion with modern analysis techniques. Proc. Combust. Inst. 2019, 37, 3637–3644. [Google Scholar] [CrossRef]
- Markovich, D.M.; Abdurakipov, S.S.; Chikishev, L.M.; Dulin, V.M.; Hanjalić, K. Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys Fluids 2014, 26, 065109. [Google Scholar] [CrossRef]
- Kumar, R.; Massa, L. Dynamic Mode Decomposition Analysis of Detonation Waves. In Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, LA, USA, 25–28 June 2012. [Google Scholar]
- Tian, Y.; Shi, W.; Guo, M.; Liu, Y.; Zhang, C.; Le, J. Investigation of combustion characteristics in a hydrogen-fueled scramjet combustor. Acta Astronaut. 2021, 186, 486–495. [Google Scholar] [CrossRef]
Case | Injector | Injection Pressure (MPa) | Equivalence Ration(Φ) |
---|---|---|---|
1 | K2 | 0.3 | 0.2 |
2 | K1 | 0.15 | 0.1 |
3 | K1 | 0.3 | 0.2 |
4 | K1 | 0.4 | 0.3 |
Authors | Fuel | Mach Number | L/D | Operating Conditions | Flame Stabilization Mode |
---|---|---|---|---|---|
Yuan et al. [10] | Ethylene | 2.5 | 4 | Φ = 0.258 Φ = 0.291 Φ = 0.376 Φ = 0.411 | Inside the cavity In the cavity shear layer Oscillation In the jet wake |
Nakaya et al. [11] | Ethylene | 2 | 5 | Φ = 0.070 Φ = 0.076 Φ = 0.150 | In the cavity shear layer Oscillation In the jet wake |
Micka and Driscoll [21] | Hydrogen | 2.2 | 4 | T0 = 1000–1100 K T0 = 1000–1300 K T0 > 1350 K | Inside the cavity Oscillation In the jet wake |
Wang et al. [35] | Hydrogen | 2.52 | 4, 7 | T0 = 1486 K | In the jet wake Inside the cavity/ In cavity shear layer |
Authors | Fuel | Mach Number | L/D | Dominant Frequency | Comment |
---|---|---|---|---|---|
Choi et al. [27] | Hydrogen | 3 | 4 | None | |
Lin et al. [22] | Ethylene | 2.2 | 3.9 | 100–400 HZ | The upper bound is dictated by the shock-flame coupling mechanism and the lower bound by the injector–flame interaction. |
Allision et al. [20] | Ethylene | 2 | 5.9 | 340 HZ | An instability in which acoustic waves are reflected and convected between the shock train and flame front. |
Micka and Driscoll [21] | Hydrogen | 2.2 | 4 | 5–20 HZ | The frequency of the oscillation between the modes. |
Wang et al. [23] | Hydrogen | 7 | 15–20 kHz | Both the frequency and intensity of the pressure oscillations shift to higher levels compared to cold flow. | |
Ouyang et al. [25] | Ethylene | 2.1 | 4, 5, 7 | 40–140 Hz | The dominant frequency fluctuates slightly with the variation of the length to depth ratios. |
Nakaya et al. [11] | Hydrogen /Ethylene | 2 | 5 | Low: 50–500 Hz High: kHz | The dominant frequency increased with increasing equivalence ratio. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lei, Q.; Zhao, X.; Fan, W.; Chen, S.; Chen, L.; Tian, Y.; Zhou, Q. Combustion Characteristics of a Supersonic Combustor with a Large Cavity Length-to-Depth Ratio. Aerospace 2022, 9, 214. https://doi.org/10.3390/aerospace9040214
Li X, Lei Q, Zhao X, Fan W, Chen S, Chen L, Tian Y, Zhou Q. Combustion Characteristics of a Supersonic Combustor with a Large Cavity Length-to-Depth Ratio. Aerospace. 2022; 9(4):214. https://doi.org/10.3390/aerospace9040214
Chicago/Turabian StyleLi, Xiang, Qingchun Lei, Xiaocun Zhao, Wei Fan, Shuang Chen, Li Chen, Ye Tian, and Quan Zhou. 2022. "Combustion Characteristics of a Supersonic Combustor with a Large Cavity Length-to-Depth Ratio" Aerospace 9, no. 4: 214. https://doi.org/10.3390/aerospace9040214
APA StyleLi, X., Lei, Q., Zhao, X., Fan, W., Chen, S., Chen, L., Tian, Y., & Zhou, Q. (2022). Combustion Characteristics of a Supersonic Combustor with a Large Cavity Length-to-Depth Ratio. Aerospace, 9(4), 214. https://doi.org/10.3390/aerospace9040214